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Uniform stability of displacement coupled

second-order equations ∗

A. Soufyane

Abstract

We prove that the uniform stability of semigroups associated to dis-
placement coupled dissipator systems is equivalent to the uniform stability
of velocity coupled dissipator systems. Using this equivalence, we give suf-
ficient conditions for obtaining uniform stability and exact controllability
of displacement coupled dissipator systems.

1 Introduction

We consider a linear oscillator in a Hilbert space H represented by

∂ttu(t) +Au(t) = h, (1)

where A is a (generally unbounded) positive self-adjoint operator on H. Russell
[12, p. 340] proposed to introduce

certain indirect damping mechanisms which arise, not from insertion
of damping terms into the original equations describing the mechan-
ical motion, but by coupling those equations to further equations
describing other processes in the structure . . .

He described, in the same work, two types of indirect damping : the velocity
coupled dissipator and the displacement coupled dissipator. Works on indirect
damping mechanisms of the first type leading to exponential decay of the total
energy may be found in [2, 3, 4, 7, 12]. In this paper, our attention will be
focused on the second type of indirect damping mechanisms. The description
given in [12] is the following. Consider a system with displacement vector (w, z),
velocity (∂tw, ∂tz) and energy form

E(w, z)(t) =
1
2

(
〈
(
w
z

)
, S

(
w
z

)
〉H×G + ‖∂tw‖2H + ‖∂tz‖2G

)
. (2)
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where G is a second Hilbert space and S is a positive self-adjoint operator on
H ×G representable in operator matrix form as

S =
(

A B
B∗ C

)
(3)

The energy E(w, z)(t) is conserved for the second order system(
∂ttw
∂ttz

)
+ S

(
w
z

)
= 0. (4)

Damping is then introduced in the second equation of the system:(
∂ttw
∂ttz

)
+ S

(
w
z

)
+ γ

(
0
∂tz

)
= 0.

At this level, Russell [12] assumes the inertial forces in the z system are small
in comparison with the damping and, then, ∂ttz is discarded. In our work, we
do not adopt this last assumption. Moreover, we replace the constant γ by an
(eventually unbounded) positive self-adjoint operator D acting on G(

∂ttw
∂ttz

)
+ S

(
w
z

)
+
(

0
D∂tz

)
= 0. (5)

Our problem is then to find, among all these damping mechanisms, those for
which the energy of the resulting system has an exponential decay to zero (Rus-
sell was interested in the analyticity of the associated semigroup).

This paper is organized as follows. In the second section, we give the relation
between the velocity coupled dissipator and the displacement coupled dissipa-
tor. The third section is devoted to uniform stability of displacement coupled
dissipator. In the fourth section we give some applications (two displacement
coupled wave equations and Timoshenko beam). And in the last section, we
give a result of exact controllability of the displacement coupled dissipator.

2 Relation between displacement coupling and
velocity coupling

Under suitable assumptions, we will show the equivalence between coupling
through displacements and coupling through velocities of two elastic systems.

Let H and G be Hilbert spaces. Let A and C be positive self-adjoint un-
bounded operators acting on H and G respectively, with compact resolvents.
Let B be an unbounded operator from G to H such that D(A) ⊂ D(B∗) and
D(C) ⊂ D(B). Let D be a positive self-adjoint operator on G.

We start by giving conditions for the well-posedeness of system (4). We
denote by (., .)H and (., .)G the scalar products on H and G respectively and
we set X = H ×G.
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Proposition 1 If there exists c ∈ [0, 1
2 [ such that, for all (u, v) ∈ D(A)×D(C)

|(u,Bv)| < c
(
‖A1/2u‖2H + ‖C1/2v‖2G

)
(6)

then S =
(

A B
B∗ C

)
is positive self-adjoint on X with domain D(S) = D(A)×

D(C).

Proof S is clearly symmetric and condition (6) implies its invertibility. In
fact, for (h, g) ∈ H ×G, we look for a solution (u, v) ∈ D(S) of the system

Au+Bv = h

B∗u+ Cv = g.
(7)

Solving for u in the first equation of (7) and replacing in the second, we obtain

u = −A−1Bv +A−1h,

(C −B∗A−1B)v = g −B∗A−1h.

Thus, (7) has a solution in D(S) if and only if C − B∗A−1B is boundedly
invertible. But, actually, one has

C −B∗A−1B = C1/2(I − C−1/2B∗A−1BC−1/2)C1/2.

Now, condition (6) may be rewritten as∣∣∣(A1/2u, (A−1/2BC−1/2)C1/2v)
∣∣∣ < c

(
‖A1/2u‖2H + ‖C1/2v‖2G

)
for all (u, v) ∈ D(S). Set x = A1/2u ∈ D(A1/2), y = C1/2v ∈ D(C1/2) and
T = A−1/2BC−1/2. Then

|(x, Ty)| < c
(
‖x‖2H + ‖y‖2G

)
.

Let x = Ty in this last inequality. Then

‖Ty‖2H ≤
c

1− c
‖y‖2G y ∈ D(C1/2).

Then, since C−1/2B∗A−1BC−1/2 = T ∗T and
c

1− c
< 1, it follows that I −

C−1/2B∗A−1BC−1/2 is boundedly invertible and, moreover maps D(C1/2) into
itself. So, the conclusion follows since

v = C−1/2(I − C−1/2B∗A−1BC−1/2)−1C−1/2(g −B∗A−1h) ∈ D(C).

This implies that S is self-adjoint. The positivity follows from (6 ). ♦

As a consequence of this proposition, it follows that system (4) is well-posed
in the energy space V = D(S

1
2 )×X.
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Remark 2 Using (6) we have

(1− 2c)
(
〈
(
w
z

)
,

(
A 0
0 C

)(
w
z

)
〉H×G + ‖∂tw‖2H + ‖∂tz‖2G

)
≤

(
〈
(
w
z

)
,

(
A B
B∗ C

)(
w
z

)
〉H×G + ‖∂tw‖2H + ‖∂tz‖2G

)
≤ (1 + 2c)

(
〈
(
w
z

)
,

(
A 0
0 C

)(
w
z

)
〉H×G + ‖∂tw‖2H + ‖∂tz‖2G

)
Theorem 3 If (w, z) is a solution of system (5), then (u, v) defined by

u = −A−1/2∂tw

v = z
(8)

is a solution of the system

∂ttu = −Au+A−1/2B∂tv

∂ttv = −B∗A−1/2∂tu− (C −B∗A−1B)v −D∂tv
(9)

Moreover, under the assumptions of Proposition 1, C −B∗A−1B is self-adjoint
positive. Conversely, if (u, v) is a solution of (9), then (w, z) defined by

w = A−1/2ut −A−1Bv

z = v
(10)

is a solution of (5).

Proof We use direct computations. From (8), one has

∂tu = −A−1/2∂ttw = −A−1/2(−Aw −Bz) = A1/2w +A−1/2Bz (11)

and thus
∂ttu = A1/2∂tw +A−1/2B∂tz = −Au+A−1/2B∂tv .

For the second equation in v, using (11) one has

∂ttv = −B∗w − Cv −D∂tv
= −B∗A−1/2∂tu− (C −B∗A−1B)v −D∂tv.

and this gives system (9). The converse is obtained by the same computations.

3 Uniform stability

Our main result is the uniform stability of (5). Before giving the assumptions
on the operators A,B,C and D to obtain the uniform stability we define the
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operators

A1 =


0 I 0 0
−A 0 −B 0
0 0 0 I
−B∗ 0 −C −D

 ,

Ã =


0 I 0 0
−A 0 0 A−1/2B

0 0 0 I
0 −B∗A−1/2 −C +B∗A−1B −D

 .

The operator A1 has dense domain,

D(A1) = D(A)×D(A1/2)×D(C)× (D(C1/2) ∩D(D)).

The system (5) can be written as

∂tY = A1Y . (12)

and (9) as
∂tZ = ÃZ . (13)

Theorem 4 The energy of system (12) decays exponentially if and only if the
energy of system (13) decays exponentially in the same energy space.

Proof Using the result of the Theorem 2, we have a bounded invertible trans-
formation P ∈ L(D(A1/2)×H ×D(C1/2)×G), such that

A1P = P Ã (14)

where

P =


0 A−1/2 −A−1B 0

−A1/2 0 0 0
0 0 I 0
0 0 0 I


and

P−1 =


0 −A−1/2 0 0

A1/2 0 A−1/2B 0
0 0 I 0
0 0 0 I

 .

Applying P to (13) leads to

∂tPZ = P ÃZ
= A1PZ,
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Then PZ := W is a solution of (12). If we suppose the uniform stability of
(13), that is: there exist positive constants M,ω such that

‖Z(t)‖2
D(A1/2)×H×D(C

1
2 )×G

≤M ‖Z(0)‖2D(A1/2)×H×D(C1/2)×G exp(−ωt) , t ≥ 0 ,

then for t ≥ 0, we have∥∥P−1W (t)
∥∥2

D(A1/2)×H×D(C
1
2 )×G

≤ M
∥∥P−1W (0)

∥∥2

D(A1/2)×H×D(C1/2)×G exp(−ωt) .

Using the boundedness of P−1, we obtain the uniform stability of (12). ♦

Remark 5 1) A1 (respectively Ã ) generates a C0−semigroup on D(A1/2) ×
H ×D(C1/2)×G, denoted by SA1(t) (respectively SÃ(t)). And

SA1(t) = PSÃ(t)P−1 , t ≥ 0

2) The semigroups SA1(t) and SÃ(t) have the same type.

Denote by B1 := A−1/2B and C1 := C −B∗A−1B. To give a sufficient con-
ditions for the uniform stabilization of the system (5 ) we will need the following
assumption: (H) B1 is boundedly invertible and the operators D−

1
2B1

−1A1/2,
D−1/2C1B

−1
1 A−1/2, D1/2B−1

1 and A−1/2B−1
1 D−1/2 all extend to bounded op-

erators on X.

Proposition 6 Under condition (6) and assumption (H) we have the uniform
stability of (5).

Proof The result of this proposition follows from the relation between dis-
placement coupling and velocity coupling, using Theorem 3, then the uniform
stability of the system (5) is equivalent to the uniform stability of the system

∂ttu = −Au+A−1/2B∂tv

∂ttv == −B∗A−1/2∂tu− (C −B∗A−1B)v −D∂tv .

Using a result in [1] we construct a Lyapunov function associated with the

system above. Let U =
(
u
v

)
and

χε(
(

U(t)
∂tU(t)

)
) :=

1
2

(‖U(t)‖2D(S1/2) + ‖∂tU(t)‖2X)

+ε
(

1
2

(u, ∂tu) +
1
4

∥∥∥D1/2v
∥∥∥+

1
2

(v, ∂tv)
)

+ε
(

1
2

(u,B1v) + (∂tv,B−1
1 ∂tu) + (C1v,B

−1
1 u)

)
.
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Next, we prove (see [1]) that for ε > 0 sufficiently small there exist aε, bε and cε
positive constants such that

aε(‖U(t)‖2D(S1/2) + ‖∂tU(t)‖2X) ≤ χε(
(

U(t)
∂tU(t)

)
) (15)

≤ bε(‖U(t)‖2D(S1/2) + ‖∂tU(t)‖2X)

and
d

dt
χε(
(

U(t)
∂tU(t)

)
) ≤ −cε.χε(

(
U(t)
∂tU(t)

)
) . (16)

Then the proof of this proposition is derived from (15) and (16). In fact, from
(16) it follows that

χε(
(

U(t)
∂tU(t)

)
≤ exp(−cεt)χε(

(
U(0)
∂tU(0)

)
and from (15) we have

‖U(t)‖2D(S1/2) + ‖∂tU(t)‖2X ≤
bε
aε

(‖U(0)‖2D(S1/2) + ‖∂tU(0)‖2X) exp(−cεt) .

4 Applications

Particular cases

In this subsection we set H = G and assume that B,C and D are powers of the
positive self-adjoint operator A, in this case we consider the system

∂ttu+Au+ a.Aαv = 0

∂ttv +Aβv + a.Aαu+Aγ∂tv = 0 ,
(17)

where a 6= 0 is a real constant such that

|a|
∥∥∥Aα−( β+1

2 )
∥∥∥
H
< 1 .

and α, β, γ are real constants. Our objective is to find conditions on α, β, γ in
order to obtain the uniform stability of the above system. By using our result
(Theorem 3), the uniform stability of system (17) is equivalent to the uniform
stability of the system

∂ttu+Au− a.Aα− 1
2 ∂tv = 0

∂ttv +Aβ(I − a2A2α−β−1)v + a.Aα−
1
2 ∂tu+Aγ∂tv = 0 .

(18)

We remark that the operator A2α−β−1 is a compact perturbation from
D(A1/2) to H, then the uniform stability of system ( 18) is equivalent to the
uniform stability of the system

∂ttu+Au− a.Aα− 1
2 ∂tv = 0

∂ttv +Aβv + a.Aα−
1
2 ∂tu+Aγ∂tv = 0 .

(19)
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Proposition 7 ([1]) When β 6= 1, system (19) is uniformly stable if

γ ∈ [max(2− 2α, 2α− 2, 2β − 2α), 2α− 1] .

When β = 1, system (19) is uniformly stable if and only if

γ ∈ [max(0, 2α− 2), 2α− 1] .

Timoshenko beam

We consider in this example a model of Timoshenko beam [13, 14]. The equa-
tions of motion for this system are given by

ρ∂ttu = K∂xxu−K∂xv in ]0, l[×R+

Iρ∂ttv = EI∂xxv +K(∂xu− v)− b(x)∂tv in ]0, l[×R+

u(0, t) = u(l, t) = v(0, t) = v(l, t) = 0 .

(20)

This system is coupled with the initial conditions

u(x; 0) = u0(x) ∂tu(x; 0) = u1(x)
v(x; 0) = v0(x) ∂tv(x; 0) = v1(x)

(21)

Here, t is the time variable and x is the space coordinate along the beam in
its equilibrium position. The functions u(x, t) is the transverse displacement
of the beam and v(x, t) is the rotation angle of a filament of the beam. The
coefficients ρ, Iρ, E and I are the mass per unit length, the mass moment of
inertia of the cross section, Young’s modulus and the moment of inertia of the
cross section, respectively. The coefficient K is the shear modulus and b(x) is a
positive function on [0, l] . The energy of the beam is given by

E(t) =
1
2

∫ l

0

(ρ(∂tu)2 + Iρ(∂tv)2 + EI(∂xv)2 +K(∂xu− v)2)dx

Remark 8 In this example B = −Kρ ∂x is not a power of the operator A =
K
ρ ∂xx.

Theorem 9 ([13, 14]) If b(x) > 0 on [0, l], then

E(t) ≤M.e−atE(0) if and only if
K

ρ
=
EI

Iρ
.

5 Exact Controllability

In this section we obtain an exact controllability result for displacement coupled
dissipator systems. We suppose that D is bounded on G. Our result is as
follows.
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Theorem 10 There exists T > 0 and c1 ≥ 0 such that the solution of the
system (

∂ttϕ(t)
∂ttφ(t)

)
=
(
−A −B
−B∗ −C

)(
ϕ(t)
φ(t)

)
(
ϕ(0)
φ(0)

)
=
(
ϕ0

φ0

)
,

(
∂tϕ(0)
∂tφ(0)

)
=
(
ϕ1

φ1

) (22)

satisfies ∣∣∣∣( ∂tϕ(0)
∂tφ(0)

)∣∣∣∣2
H×G

+
〈( A B

B∗ C

)(
ϕ(0)
φ(0)

)
,

(
ϕ(0)
φ(0)

)〉
H×G

≤ c1

∫ T

0

∣∣∣D1/2∂tφ(t)
∣∣∣2
G
dt

if and only if, the system

∂ttu = −Au+A−1/2B∂tv

∂ttv == −B∗A−1/2∂tu− (C −B∗A−1B)v −D∂tv
(u(0), v(0)) = (u0, v0) (∂tu(0), ∂tv(0)) = (u1, v1)

(23)

is exponentially stable.

Proof By Theorem 3, the uniform stability of (23) is equivalent to the uniform
stability of (5). We write the system (5) as

∂tt

(
u
v

)
+
(

A B
B∗ C

)(
u
v

)
+
(

0 0
0 D

)
∂t

(
u
v

)
= 0(

u(0)
v(0)

)
=
(
u0

v0

)
,

(
∂tu(0)
∂tv(0)

)
=
(
u1

v1

)
.

Using Proposition 1 we deduce that S is a self-adjoint, coercive operator on

X, and
(

0 0
0 D

)
is a bounded positive operator on X. Applying a result of

Haraux [6], we conclude the present proof.
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