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Bilinear spatial control of the velocity term in a

Kirchhoff plate equation ∗

Mary Elizabeth Bradley & Suzanne Lenhart

Abstract

We consider a bilinear optimal control problem with the state equation
being a Kirchhoff plate equation. The control is a function of the spatial
variables and acts as a multiplier of the velocity term. The unique optimal
control, driving the state solution close to a desired evolution function, is
characterized in terms of the solution of the optimality system.

1 Introduction

We consider the problem of controlling the solution of a Kirchhoff plate equation.
The motion with appropriate boundary conditions describes the motion of a
thin plate which is clamped along one portion of its boundary and has free
vibrations on the other portion of the boundary. We consider bilinear optimal
control, acting as a multiplier of a velocity term, is a function of the spatial
variables x and y.

Given control

h ∈ UM = {h ∈ L∞(Ω);−M ≤ h(x, y) ≤M},

the ‘displacement’ solution w = w(h) of our state equation satisfies

wtt + ∆2w = h(x, y)wt on Q = Ω× (0, T )
w(x, y, 0) = w01(x, y), wt(x, y, 0) = w02(x, y)

w =
∂w

∂ν
= 0 on Σ0 = Γ0 × (0, T ), (1.1)

∆w + (1− µ)B1w = 0 on Σ1 = Γ1 × (0, T ),
∂∆w
∂ν

+ (1− µ)B2w = 0 on Σ1 = Γ1 × (0, T ),
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where Ω ⊂ R2 with C2 boundary, ∂Ω = Γ0∪Γ1, Γ0∩Γ1 = ∅, Γ0 6= ∅, ν = 〈n1, n2〉
is the outward unit normal vector on ∂Ω, and

B1w = 2n1n2wxy − n2
1wyy − n2

2wxx,

B2w =
∂

∂τ

[
(n2

1 − n2
2)wxy + n1n2(wyy − wxx)

]
.

The direction τ in B2w is the tangential direction along Γ1. The plate is clamped
along Γ0 and has free vibrations along Γ1. The constant µ, 0 < µ < 1

2 , represents
Poisson’s ratio.

We take as our objective functional

J(h) =
1
2

(∫
Q

(w − z)2dQ+ β

∫
Ω

h2(x, y) dΩ
)

where z is the desired evolution for the plate and the quadratic term in h
represents the cost of implementing the control with weighting factor β > 0.
For convenience, we assume that

z ∈ C([0, T ];L2(Ω)) ,

zt ∈ C([0, T ];L2(Ω)).

We seek to minimize the objective functional, i.e., characterize an optimal con-
trol h∗ ∈ UM such that

J(h∗) = min
h∈UM

J(h).

For background on plate models and control, see the books by Lagnese and
Lions [15], Lagnese [13], Lagnese, Leugering, and Schmidt [14], Kormornik [11],
Li and Yong [18], and Lions [19]. The bilinear control case treated here does
not fit into the Riccati framework [17]; even though the objective functional is
quadratic, the state equation has a bilinear term, hwt. See [4, 6, 8, 9, 10, 12, 16]
for control papers involving Kirchhoff plates. Bilinear control problems similar
to the problem here were introduced in three papers by Ball, Marsden, and
Slemrod [1-3], and in Bradley and Lenhart [5] (with control acting through the
term hw). Note that in a recent paper by Bradley, Lenhart and Yong, the case
of h(t)wt was treated [7].

In section 2, we show well-posedness of our state problem. In section 3, we
show the existence of an optimal control by a minimizing sequence argument.
In section 4, we derive a characterization for optimal controls, in terms of the
solutions of an optimality system. The optimality system consists of the state
equation coupled with an adjoint equation, and it is derived by differentiating
the objective functional and the map h→ w(h) with respect to the control. In
section 5, we prove that the optimal control is unique for small time, T , provided
that initial data are taken to be sufficiently smooth.
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2 Well-posedness of the State Equation

We will begin by proving existence, uniqueness, and regularity results for the
state equation. We first define our solution spaces:

H2
Γ0

(Ω) =
{
w ∈ H2(Ω)|w =

∂w

∂ν
= 0 on Γ0

}
and

H = H2
Γ0

(Ω)× L2(Ω).

Note that the bilinear form on H2
Γ0

(Ω),

a(u, v) =
∫

Ω

{∆w∆v + (1− µ)(2wxyvxy − wxxvyy − wyywxx} dΩ

induces a norm on H2
Γ0

(Ω) which is equivalent to the usual H2 norm on H2
Γ0

(Ω)
(see [12]).

Definition Given h ∈ UM , w̃ = w̃(h) = (w(h), wt(h)) is a weak solution to
(1.1) if w̃ ∈ C([0, T ];H), w̃(0) = (w01, w02) and w̃ satisfies∫ T

0

〈wtt, φ〉dt+
∫ T

0

a(w, φ)(t)dt =
∫
Q

hwtφdΩ dt

for all φ ∈ H2
Γ0

(Ω), and 〈·, ·〉 denotes the duality pairing between [H2
Γ0

(Ω)]′ and
H2

Γ0
(Ω).

Theorem 2.1 (i) Let w̃(0) = (w01, w02) ∈ H and h ∈ UM . Then the system
(1.1) has a unique weak solution w̃ = w̃(h) = (w,wt).

(ii) In addition, if (w01, w02) ∈ D0 where

D0 =
{

(w01, w02) ∈ (H4(Ω) ∩H2
Γ0

(Ω))×H2
Γ0

(Ω) :

∆w01 + (1− µ)B1w01 = 0 on Γ1,

∂∆w01

∂ν
+ (1− µ)B2w01 = 0 on Γ1

}
for h ∈ UM , then the weak solution satisfies

w̃ ∈ C([0, T ]; (H4(Ω) ∩H2
Γ0

(Ω))×H2
Γ0

(Ω))

and wtt ∈ C([0, T ];L2(Ω)).
Furthermore, (1.1) holds in the L2 sense.
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Proof. (i) To write the system in semigroup form, we define the operator A:
Aw = ∆2w with domain

D(A) =
{
w ∈ H4(Ω) ∩H2

Γ0
(Ω) : ∆w + (1− µ)B1w = 0 on Γ1

and
∂∆w
∂ν

+ (1− µ)B2w = 0 on Γ1

}
.

Then define operator A : H4(Ω)×H2
Γ0

(Ω)→ H by

Aw̃ =
[

0 I
−A 0

]
w̃ with D(A) = D0 .

Then the stated equation (1.1) can be written as

d

dt
w̃(t) = Aw̃(t) +Bw̃(t)

w̃(0) = w̃0 =
[
w01

w02

]

with Bw̃(t) =
[

0
hwt(t)

]
. Using skew-adjointness, the operator A generates a

strongly continuous unitary group on H. Since B is a bounded perturbation of
A on H, by standard semigroup theory [20], we have the conclusion of (i).

(ii) Assume that w̃0 ∈ D0 and h ∈ UM . From variation of parameters [20]
and (i),

w̃(t) = eAtw̃0 +
∫ t

0

eA(t−τ)B(w̃)(τ)dτ, (2.1)

where eAt represents the semigroup generated by A. Proceeding to formally
differentiate (2.1) in the t variable and defining a new variable ṽ = (v1, v2) = dw̃

dt ,
we seek a solution of the form:

ṽ(t) = AeAtw̃0 +Bw̃(t) +
∫ t

0

AeA(t−τ)Bw̃(τ)dτ.

Setting

F ṽ = AeAtw̃0 +Bw̃(t) +
∫ t

0

AeA(t−τ)Bw̃(τ)dτ, (2.2)

we seek a fixed point of F , i.e. we seek a unique point ṽ ∈ C([0, T ];H) such
that

F ṽ = ṽ.

Note that∫ t

0

AeA(t−τ)Bw̃(t)dt = −
∫ t

0

d

dτ

(
eA(t−τ)Bw̃(τ)

)
dτ +

∫ t

0

eA(t−τ) d

dτ
Bw̃(τ)dτ

= −Bw̃(t) + eAt
[

0
hw02

]
+
∫ t

0

eA(t−τ)

[
0

hwττ

]
dτ,
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where w02 = wt(x, y, 0). Thus from (2.2), F can be rewritten as

F (ṽ) = AeAtw̃0 + eAt
[

0
hw02

]
+
∫ t

0

eA(t−τ)

[
0
hv2

]
dτ.

Since w̃0 ∈ D(A) and h = h(x, y) ∈ UM ⊂ L∞(Ω), F : C([0, T ];H) →
C([0, T ];H) is bounded. We now verify that F is a contraction on C([0, T ];H)
for small T0 for 0 ≤ t ≤ T0,

‖F ṽ1 − F ṽ2‖C([0,T0];H) ≤
∥∥∥∥∫ t

0

eA(t−τ)

[
0

h(v12 − v22)

]
dτ

∥∥∥∥
C([0,T0];H)

≤ sup
0≤t≤T0

∫ t

0

‖h(v12 − v22)(τ)‖L2(Ω)dτ

≤ T0M‖ṽ1 − ṽ2‖C([0,T0];H).

Taking T0 <
1
M , we have the F is a contractive mapping on C([0, T0],H). To

complete the proof, we set ṽ(T0) (with ṽ being the fixed point) as the new initial
data and repeat the argument to obtain F as a contraction on C([T0, 2T0],H).
Repeating this procedure yields the result on [0, T ].

We observe first that

(wt, wtt) ∈ C([0, T ];H),

and then hwt ∈ L2(Q) with equation (1.1), gives

∆2w ∈ C([0, T ];L2(Ω)).

By standard elliptic theory, w ∈ C([0, T ];H4(Ω) ∩H2
Γ0

(Ω)). �

We now present an a priori estimate needed for the existence of an optimal
control.

Lemma 2.1 (A priori estimate) Given w̃(0) ∈ H and h ∈ UM , the weak
solution to (1.1) satisfies

‖w̃‖C([0,T ];H) ≤ (1 +MT )1/2eC2MT ‖w̃(0)‖H. (2.3)

Proof. Since D0 is dense in H, there exists a sequence, {w̃(0)n} in D0, such
that

w̃(0)n → w̃(0) strongly in H.
Denoting by w̃n the solution of (1.1) with initial data w̃(0)n and control h, then
w̃n has the additional regularity from Theorem 2.1(ii). Using wnt as a multiplier
in (1.1), we obtain

0 =
∫ s

0

∫
Ω

(wnttw
n
t + ∆2wnwnt − h(wnt )2) dΩ dt

=
∫ s

0

∫
Ω

1
2
d

dt
(wnt )2 dΩ dt+

∫ s

0

1
2
d

dt
a(wn, wn)dt−

∫ s

0

∫
Ω

h(wnt )2 dΩ dt .
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Consequently, we have

1
2

∫
Ω

(wnt )2(x, y, s) dΩ +
1
2
a(wn, wn)(s)

=
1
2
‖wn02‖2L2(Ω) +

1
2
a(wn01, w

n
01) +

∫ s

0

∫
Ω

h(wnt )2 dΩ dt

≤ 1
2
‖w̃(0)n‖2H +M

∫ s

0

‖w̃n(t)‖2Hdt.

Gronwall’s Inequality implies

sup
0≤s≤T

{∫
Ω

(wnt )2(x, y, t) dΩ + a(wn, wn)(s)
}
≤ ‖w̃(0)n‖2H(1 + 2MT )eC̃MT ,

(2.4)
which gives the desired result for smooth approximations. Now we can pass to
the limit and obtain (2.3) for w̃.

3 Existence of Optimal Controls

We now prove the existence of an optimal control by a minimizing sequence
argument.

Theorem 3.1 There exists an optimal control h∗ ∈ UM , which minimizes the
objective functional J(h) over h in UM .

Proof. Let {hn} be a minimizing sequence in UM , i.e.,

lim
n→∞

J(hn) = inf
h∈UM

J(h).

By Lemma 2.1, for w̃n = w̃(hn),

‖w̃n‖C([0,T ],H) ≤ C1e
C2MT .

On a subsequence, we have

wn ⇀ w∗ weakly* in L∞([0, T ];H2
Γ0

(Ω)),

wnt ⇀ w∗t weakly* in L∞([0, T ];L2(Ω)),

wntt ⇀ w∗tt weakly* in L∞([0, T ]; (H2
Γ0

(Ω))′),

hn ⇀ h∗ weakly in L2(Ω).

The convergence of the wntt sequence follows from the PDE (1.1) and the estimate
from Lemma 2.1

In weak form, wn satisfies∫ T

0

[〈wntt, φ〉+ a(wn, φ)(t)]dt =
∫
Q

hnwnt φdQ, (3.1)
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where we now allow that φ = φ(x, y, t) in L2([0, T ],H) and φt in L2(Q). In the
convergence as n→∞, the only difficult term is on the RHS of (3.1). Examining
the RHS we see that

RHS =
∫ T

0

∫
Ω

hn(x, y)wnt (x, y, t)φ(x, y, t) dΩ dt

=−
∫ T

0

∫
Ω

hn(x, y)wn(x, y, t)φt(x, y, t) dΩ dt

+
∫

Ω

hn(x, y) (wn(x, y, T )φ(x, y, T )− w01φ(x, y, 0)) dΩ ,

where we have used the fact that wn01 = w01 for all n. Now by a standard
result from semigroup theory (see, for example [20]), we know that wn(x, y, t) ∈
C([0, T ],H2

Γ0
), which implies that wn(x, y, T ) ∈ H2

Γ0
(Ω) ⊂ C(Ω), since Ω ⊂ R2.

As a consequence, we may pass with a limit on this equation to obtain

RHS →−
∫ T

0

∫
Ω

h∗(x, y)w∗(x, y, t)φt(x, y, t) dΩ dt

+
∫

Ω

h∗(x, y) (w∗(x, y, T )φ(x, y, T )− w01φ(x, y, 0)) dΩ as n→∞.

From this we obtain w̃∗ = w̃(h∗), which is the weak solution of (1.1) with
control h∗. Since the objective functional is lower semi-continuous with respect
to weak convergence, we obtain

J(h∗) = inf
h∈UM

J(h)

and h∗ is an optimal control.

4 Necessary Conditions

We now derive necessary conditions that any optimal control must satisfy. To
derive these necessary conditions, we must differentiate our functional J(h) and
w = w(h) with respect to h. The differentiation of J results in a characterization
of optimal controls in terms of the optimality system.

Lemma 4.1 The mapping

h ∈ UM → w̃(h) ∈ C([0, T ];H)

is differentiable in the following sense:

w̃(h+ ε`)− w̃(h)
ε

⇀ ψ̃ weakly* in L∞([0, T ];H),
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as ε → 0, for any h, h + ε` ∈ UM . Moreover, the limit ψ̃ = (ψ,ψt) is a weak
solution to the following system

ψtt + ∆2ψ − hψt = `wt in Q

ψ(x, y, 0) = ψt(x, y, 0) = 0 in Ω

ψ =
∂ψ

∂ν
= 0 on Σ0 (4.1)

∆ψ + (1− µ)B1ψ = 0 on Σ1

∂∆ψ
∂ν

+ (1− µ)B2ψ = 0 on Σ1 .

Proof. Denote by w̃ε = w̃(h + ε`) and w̃ = w̃(h). By (1.1), (w̃ε − w̃)/ε is a
weak solution of(

wε − w
ε

)
tt

+ ∆2

(
wε − w

ε

)
= h

(
wε − w

ε

)
t

+ `wεt in Q

with homogeneous initial and boundary conditions. Using the proof of Lemma
2.1 with source term `wεt , we obtain∥∥∥∥ w̃ε − w̃ε

∥∥∥∥
C([0,T ];H)

≤ ‖`wεt ‖L2(Q) e
CMT .

But we have a priori estimates on wεt ,

‖`wεt ‖L2(Q) ≤ T‖`‖∞‖w̃ε‖C(0,T ;H) ≤ (1 +MT )1/2eC2MT ‖w̃(0)‖H,

using Lemma 2.1 on w̃ε. Hence on a subsequence, as ε→ 0,
w̃ε − w̃

ε
⇀ ψ̃ weakly* in L∞([0, T ];H).

Similar to the proof of Theorem 3.1, we obtain that ψ̃ is a weak solution of
(4.1). �

We obtain the existence of an adjoint solution and use it in the differentiation
of the map h→ J(h) to obtain our characterization of an optimal control.

Theorem 4.1 Given an optimal control h∗ in UM and corresponding state so-
lution w̃∗ = w̃(h∗) to (1.1), there exists a unique weak solution

p̃ = (p, pt) ∈ C([0, T ];H)

to the adjoint problem:

ptt + ∆2p+ hpt = w∗ − z in Q

p =
∂p

∂ν
= 0 on Σ0 (4.2)

∆p+ (1− µ)B1p = 0 on Σ1

∂∆p
∂ν

+ (1− µ)B2p = 0 on Σ1

p(x, y, T ) = pt(x, y, T ) = 0 (transversality condition).
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Furthermore

h∗(x, y) = max
(
−M,min

(
− 1
β

∫ T

0

w∗t p(x, y, t)dt,M
))
. (4.3)

Proof. The proof of existence of the solution to the adjoint equation is similar
to the proof of existence of solution of the state equation since the source term
(w∗ − z) ∈ C([0, T ], L2(Ω)). However, since p(x, y, T ) = 0, there is a difference
in the constant in the a priori estimate:

sup
0≤s≤T

{∫
Ω

(pnt )2(x, y, t) dΩ + a(pn, pn)(s)
}

≤‖w∗ − z‖2C([0,T ],L2(Ω))(1 + 2MT )eC̃MT .

We now proceed to characterize the optimal control in terms of the state
w̃ = (w,wt) and and adjoint p̃ = (p, pt). Let h∗ + ε` be another control in UM
and w̃ε = w̃(h∗+ ε`) be the corresponding solution to the state equation. Then
since J achieves its minimum at h∗, we have

0 ≤ lim
ε→0+

J(h∗ + ε`)− J(h∗)
ε

= lim
ε→0+

∫
Q

(
wε − w∗

ε

)(
wε + w∗ − 2z

2

)
dQ+

β

2

∫
Ω

(2`h∗ + ε`2) dΩ

=
∫
Q

ψ(w∗ − z)dQ+ β

∫
Ω

h∗` dΩ .

Substituting in from the adjoint equation (4.2) for w∗−z and then using ψ PDE
(4.1), we obtain

0 ≤
∫ T

0

〈ψ, ptt〉dt+
∫ T

0

a(ψ, p)dt+
∫
Q

ψh∗pt dQ+ β

∫
Ω

h∗` dΩ

=
∫ T

0

〈ψtt, p〉dt+
∫ T

0

a(ψ, p)dt−
∫
Q

ψth
∗pdQ+ β

∫
Ω

h∗` dΩ

=
∫

Ω

`
(
βh∗ +

∫ T

0

(w∗t p)dt
)
dΩ.

Using a standard control argument based on the choices for the variation `(x, y),
we obtain the desired characterization for h∗:

h∗(x, y) = max
(
−M,min

(
− 1
β

∫ T

0

w∗t p(x, y, t)dt,M
))
.
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5 Uniqueness of the Optimal Control

We now characterize the optimal control as the unique solution to the optimality
system

wtt + ∆2w = max
(
−M,min

(
− 1
β

∫ T

0

w∗t p(x, y, s)ds,M
))
wt

in Q = Ω× (0, T )

ptt + ∆2p = −max
(
−M,min

(
− 1
β

∫ T

0

w∗t p(x, y, s)ds,M
))
pt + w∗ − z in Q

w = p =
∂w

∂ν
=
∂p

∂ν
= 0 onΣ0 = Γ0 × (0, T ), (OS)

∆w + (1− µ)B1w = ∆p+ (1− µ)B1p = 0 on Σ1 = Γ1 × (0, T )
∂∆w
∂ν

+ (1− µ)B2w =
∂∆p
∂ν

+ (1− µ)B2p = 0 on Σ1 = Γ1 × (0, T )

w(x, y, 0) = w01(x, y), wt(x, y, 0) = w02(x, y) on Ω,
p(x, y, T ) = pt(x, y, T ) = 0 on Ω× T .

The existence of solutions to (OS) is given by Theorems 2.1 and 4.1. We now
prove uniqueness, provided that time T is sufficiently small and that the condi-
tions on initial data are as in Theorem 2.1(ii).

Theorem 5.1 The solution to the optimality system, (OS), is unique for T
sufficiently small, optimal control h ∈ UM and initial data such that (w01, w02) ∈
D0, as in Theorem 2.1(ii).

Proof. Since zt ∈ C([0, T ];L2(Ω)), an extension of Theorem 2.1(ii) gives pt ∈
C([0, T ];H2(Ω)). Also, Theorem 2.1(ii) directly implies

wt ∈ C([0, T ];H2
Γ0

(Ω)).

Consequently, we have that w, p, wt, and pt are all bounded functions over Q.
Suppose we have two weak solutions corresponding to two optimal controls,

h and h:
w̃ = (w,wt), p̃ = (p, pt), ŵ = (w,wt), p̂ = (p, pt).

We then have that (w̃−ŵ) and (p̃−p̂) are weak solutions to the following system
of equations

(w − w)tt + ∆2(w − w) = hwt − hwt in Q

−(p− p)tt −∆2(p− p) = hpt − hpt + (w − w) in Q

(w − w)(t = 0) = 0; (w − w)t(t = 0) = 0 in Ω× {0}
(p− p)(t = T ) = 0; (p− p)t(t = T ) = 0 in Ω× {T},
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where we denote

h = max
(
−M,min

(∫ T

0

wtpdt,M
))
, (5.1.a)

h = max
(
−M,min

(∫ T

0

wtpdt,M
))
. (5.1.b)

Also, we have homogeneous boundary conditions as in (OS). (Here, we have
multiplied through the p-equation by -1.) Multiplying the w-equation by (w −
w)t (resp. the p-equation by (p − p)t) and integrating by parts over Ω × [0, t]
(resp. over Ω× [t, T ]) we obtain

1
2

∫
Ω

[
((w − w)t)2(t) + ((p− p)t)2(t)

]
dΩ

+
1
2
a(w − w,w − w)(t) +

1
2
a(p− p, p− p)(t) (5.2)

=
∫

Ω

∫ t

0

(hwt − hwt)(w − w)tdτdΩ

+
∫

Ω

∫ T

t

((hpt − hpt)(p− p)t + (w − w)(p− p)t)dτdΩ.

To estimate the RHS of equation (5.2), we note that

hwt − hwt = h(w − w)t + wt(h− h),

hpt − hpt = h(p− p)t + pt(h− h).

Consequently, we have∫
Ω

∫ t

0

|(hwt − hwt)(w − w)t| dτ dΩ

≤
∫

Ω

∫ t

0

[
|h|((w − w)t)2 + |h− h||wt||(w − w)t|

]
dτ dΩ

≤C
∫

Ω

∫ t

0

[
((w − w)t)2 + |h− h||(w − w)t|

]
dτ dΩ (h and wt are bounded)

≤C
∫

Ω

∫ t

0

((w − w)t)2 dτ dΩ (5.3)

+ C
( ∫

Ω

|h− h|2 dΩ
)1/2( ∫

Ω

∫ t

0

((w − w)t)2dτdΩ
)1/2 (Hölder’s in space)

≤3C
2

∫
Ω

∫ t

0

((w − w)t)2 dτ dΩ +
C

2

∫
Ω

|h− h|2 dΩ .

Similarly, for we have for the p-term∫
Ω

∫ T

t

|(hpt−hpt)(p−p)t| dτ dΩ ≤ 3C
2

∫
Ω

∫ T

t

((p−p)t)2dτdΩ+
C

2

∫
Ω

|h−h|2dΩ.

(5.4)
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We now estimate the h-term using equations (5.1.a)-(5.1.b).∫
Ω

|h− h|2dΩ

≤ 1
β2

∫
Ω

∣∣∣ ∫ T

0

(wtp− wtp) dτ
∣∣∣2dΩ

=
1
β2

∫
Ω

∣∣∣ ∫ T

0

[(w − w)tp+ (p− p)wtdτ ]
∣∣∣2dΩ

≤ 2
β2

{∫
Ω

[( ∫ T

0

(w − w)tpdτ
)2 +

( ∫ T

0

(p− p)wtdτ
)2]

dΩ
}

(5.5)

≤ 2
β2

{∫
Ω

[ ∫ T

0

((w − w)t)2dτ

∫ T

0

p2dτ +
∫ T

0

(p− p)2dτ

∫ T

0

(wt)2dτ
]
dΩ
}

≤ C
∫

Ω

∫ T

0

(
((w − w)t)2 + (p− p)2

)
dτ dΩ .

In the previous to the last inequality we used Hölder’s in time, and in the last
inequality the boundedness of p and wt. Bounding the last term in equation
(5.2), we have∫

Ω

∫ T

t

(w − w)(p− p)tdτdΩ (5.6)

≤ 1
2

∫
Ω

∫ T

t

(w − w)2dτdΩ +
∫

Ω

∫ T

t

((p− p)t)2dτdΩ.

Putting together equations (5.2)-(5.6),

1
2

∫
Ω

(
((w − w)t)2(t) + ((p− p)t)2(t)

)
dΩ

+
1
2
a(w − w,w − w)(t) +

1
2
a(p− p, p− p)(t) (5.7)

≤ C
∫

Ω

{∫ T

0

((w − w)t)2dτ +
∫ T

0

((p− p)t)2dτ

∫ T

0

((w − w)t)2dτ

+
∫ T

0

(p− p)2dτ +
∫ T

0

(w − w)2dτ
}
dΩ .

Now taking a supremum in time on both sides of the inequality, we have that

sup
0≤t≤T

{1
2

∫
Ω

(
((w − w)t)2(t) + ((p− p)t)2(t)

)
dΩ

+
1
2
a(w − w,w − w)(t) +

1
2
a(p− p, p− p)(t)

}
≤ sup

0≤t≤T
CT

∫
Ω

[
((w − w)t)2(t) + ((p− p)t)2(t)

+ (p− p)2(t) + (w − w)2(t)
]
dΩ.
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Using Poincare’s inequality,∫
Ω

[
(w − w)2(t) + (p− p)2(t)

]
dΩ ≤ a(w − w,w − w)(t) + a(p− p, p− p)(t).

Finally, by taking T such that CT < 1
2 , we have that

sup
0≤t≤T

{∫
Ω

(
((w − w)t)2(t) + ((p− p)t)2(t)

)
dΩ

+ a(w − w,w − w)(t) + a(p− p, p− p)(t)
}
≤ 0,

which implies

(w − w) = (p− p) = (w − w)t = (p− p)t = 0 =⇒ w̃ = ŵ and p̃ = p̂.

This completes present proof. �

Remark: In [7], we were able to solve the corresponding bilinear control prob-
lem, but with the controlled velocity coefficient, h(t), being a function of time
only. A main difference between our result here and that result is in the proofs
of the existence and the uniqueness of the optimal control. The case of the
controlled velocity coefficient, h(x, y, t), is an open problem at this time.

Acknowledgment The second author was partially supported by the Na-
tional Science Foundation.
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