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HEAT POLYNOMIAL ANALOGS FOR HIGHER ORDER
EVOLUTION EQUATIONS

G. N. HILE & ALEXANDER STANOYEVITCH

Abstract. Polynomial solutions analogous to the heat polynomials are demon-
strated for higher order linear homogeneous evolution equations with coeffi-

cients depending on the time variable. Further parallels with the heat polyno-
mials are established when the equation is parabolic with constant coefficients

and only highest order terms.

1. Introduction

We consider a linear differential operator L, represented by

Lu (x, t) = ∂tu (x, t)−
∑
α

aα(t)∂αx u (x, t) . (1.1)

Here x ∈ Rn, t ∈ R, and the coefficients {aα} are real valued continuous functions
of t on an interval I containing the origin. We develop explicit formulas for real
valued solutions {pβ} of the initial value problems

Lpβ(x, t) = 0 , pβ(x, 0) = xβ . (1.2)

Each pβ is for fixed t a polynomial in x of degree |β|, of the form

pβ(x, t) =
∑
ν≤β

cν(t)xν ,

where each coefficient cν is a real valued function in C1 (I). Moreover, when the
coefficients {aα} are constant and L has no zero order term, pβ is a polynomial in
both x and t.

Our polynomials {pβ} are direct analogs of the classical heat polynomials, as
introduced by Rosenbloom and Widder [18], and described further by Widder in
[19, 20, 21]. Indeed, when L is the heat operator, H = ut −∆u, our polynomials
become these heat polynomials. As Rosenbloom and Widder demonstrated, heat
polynomials can serve as a basis for expansion of other solutions of the heat equa-
tion. The initial condition pβ(x, 0) = xβ is particularly convenient in approximating
initial data of solutions with intial data of linear combinations of heat polynomials.

We introduce the polynomials {pβ(x, t)} as the coefficients in the expansion in
powers of z of a generating function G(x, t, z), and we use this expansion to develop
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a few of their properties. The generating function has an explicit representation in
terms of the coefficients of the operator L. We establish also a general recursion
formula for the polynomials, and we show that every polynomial solves a prescribed
partial differential equation involving only space derivatives. These developments,
direct generalizations of results of Rosenbloom and Widder, require no assumption
of parabolicity on the operator L.

Rosenbloom and Widder introduced also so-called associate functions of heat
polynomials, comprising a biorthogonal family to the heat polynomials. These
associate functions are used to determine the coefficients of the expansion in an
infinite strip of a heat function in a series of heat polynomials. We have analogs
also of these associate functions, in the special case that L is a parabolic operator
with constant coefficients and only highest order terms. The associate functions
are defined in terms of the derivatives of the fundamental solution of L, and the
fundamental solution can be expanded in a series of these functions. We confirm a
biorthogonality relation between the polynomials {pβ} and their associates, thereby
laying the groundwork for further study concerning expansions of solutions of higher
order parabolic equations in terms of the polynomials {pβ}.

As also demonstrated by Rosenbloom and Widder, the heat polynomials in one
space dimension can be described in terms of Hermite polynomials. In the last
section we introduce a family of polynomials of a variable x in Rn, having a relation
to our polynomials {pβ} analogous to that between Hermite polynomials and heat
polynomials.

There have been a number of generalizations of heat polynomials for operators
besides the heat operator. For example, Kemnitz [16] presented such polynomials
for the equation in one space dimension,

∂u

∂t
=
∂ru

∂xr
(r ≥ 2) ,

and discussed series expansions in terms of these polynomials. Our polynomials
{pβ} specialize to those of Kemnitz, as we point out in a later example.

Haimo and Markett [12, 13] studied a closely related equation, the so-called
higher order heat equation (again in one space variable x),

∂

∂t
u(x, t) = (−1)q+1 ∂2q

∂x2q
u(x, t) .

They introduced polynomial solutions of this equation, as well as associate func-
tions, confirmed a biorthogonality relation, and in a meticulous study established
conditions under which a solution of the higher order heat equation can be ex-
panded in an infinite strip in a series of higher order heat polynomials. They also
suggested a generalization of Hermite polynomials to their higher order situation.
When our operator L is specialized to the operator of Haimo and Markett, our
polynomials {pβ} become their polynomials {pn,q}.

In this paper we borrow liberally from the methods of Rosenbloom and Widder,
as well as those of Kemnitz, Haimo and Markett.

The generalized heat equation, or radial heat equation,

∂u(r, t)
∂t

=
∂2u(r, t)
∂r2

+
2ν
r

∂u

∂r
, (1.3)

has been investigated by Bragg [1] and more extensively by Haimo [5, 6, 7, 9, 10, 11].
(In the case 2ν = n− 1, the right side of the equation is the n-dimensional Laplace
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operator in radial coordinates.) These authors defined generalized heat polynomi-
als for this equation, along with associated Appell transforms of the polynomials,
and studied series representations of solutions of the equation in terms of these
specialized solutions. Cholewinski and Haimo [2] developed a parallel theory for
the equation

∂u(x, t)
∂t

= xuxx(x, t) + (α+ 1− x)ux(x, t) ,

and in [8] Haimo extended some aspects of the theory to an analogous equation in
n space variables,

∂u(x, t)
∂t

= ∆nu(x, t) +
n∑
i=1

2ν
xi

∂u(x, t)
∂xi

.

Fitouhi [3] extended the theory of heat polynomials to a slightly more general
version of (1.3),

ut(x, t) = uxx(x, t) +
(

2ν
x

+
B′(x)
B(x)

)
ux(x, t) ,

with B a suitable analytic function. As the coefficients of these “generalized heat
equations” depend on the space variable x, our theory does not directly apply to
them.

Lo [17] found analogs of the heat polynomials, called generalized Helmholtz poly-
nomials, for a perturbed version of the heat equation in one space variable,

∂u

∂t
=
∂2u

∂x2
+ ε2 ∂

2u

∂t2
. (1.4)

Lo’s polynomials have properties much like those of the ordinary heat polynomials,
and when ε = 0 they reduce to the heat polynomials. Lo gave some conditions
under which solutions of (1.4) in the upper half plane can be expanded in a series
of generalized Helmholtz polynomials. As (1.4) does not quite fit into our format,
likewise our theory does not apply to this equation.

Finally, we want to mention our forthcoming paper [15] in which we continue
development of the theory of generalized heat polynomials. In this work we derive
pointwise upper bounds on the polynomials, and use these to expand solutions
of Cauchy problems for higher order evolution equations in series of polynomial
solutions.

2. Polynomial Solutions

We consider a linear differential operator L, defined by

Lu (x, t) = ut (x, t)−
∑
α

aα(t)∂αx u (x, t) (2.1)

=
∂u (x, t)
∂t

−Q (t, ∂x)u (x, t) ,

where Q(t, z) is the function

Q(t, z) =
∑
α

aα(t) zα . (2.2)
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All functions are real valued, and x ∈ Rn (n ≥ 1), t ∈ R. Also, z ∈ Rn and, given
a multi-index α in Rn, the derivative ∂αx and power zα have the usual definitions

∂αx :=
∂|α|

∂xα1
1 ∂xα2

2 · · · ∂x
αn
n

, zα := zα1
1 zα2

2 · · · zαnn .

The summation over α is assumed finite – that is, aα ≡ 0 except for a finite number
of multi-indices α. Each coefficient aα is a continuous function of t on an interval
I containing the origin in R. Initially we impose no further condition on L.

As the statement of our main result requires first some explaining of notation,
and because the notation is motivated only as the proof proceeds, we reverse the
usual procedure and prove our result before stating it.

We introduce a generating functionG to produce functions pβ = pβ(x, t), indexed
by multi-indices β ∈ Rn and defined for all x ∈ Rn and t ∈ I, solving the initial
value problem

Lpβ = 0 , pβ(x, 0) = xβ . (2.3)
First we define antiderivatives bα of the coefficients aα according to

bα(t) :=
∫ t

0

aα(s) ds , t ∈ I , (2.4)

and define R = R(t, z), for t ∈ I and z ∈ Rn, as

R(t, z) =
∑
α

bα(t) zα =
∫ t

0

Q(s, z) ds . (2.5)

Note that bα′(t) = aα(t), bα(0) = 0, and
∂

∂t
R(t, z) = Q(t, z) , R(0, z) = 0 .

Our generating function G then is defined as

G(x, t, z) := ex·zeR(t,z) , (2.6)

where x ·z is the usual dot product of vectors in Rn. Observe that, for each fixed z,
the function G(·, ·, z) is a solution in Rn × I of LG = 0; indeed, we have the simple
calculation

Q (t, ∂x)G(x, t, z) =
∑
α

aα(t)∂αxG(x, t, z) =
∑
α

aα(t)zαG(x, t, z)

= Q(t, z)G(x, t, z) =
∂

∂t
G(x, t, z).

We will expand G in a convergent power series of the form

G(x, t, z) =
∑
β

pβ(x, t)
zβ

β!
; (2.7)

then termwise differentiation (which we will justify) yields

0 = LG(x, t, z) =
∑
β

Lpβ(x, t)
zβ

β!
, (2.8)

and it follows that each pβ solves Lpβ = 0. Moreover, from (2.7) and (2.6) we have∑
β

pβ(x, 0)
zβ

β!
= G(x, 0, z) = ex·zeR(0,z) = ex·z =

∑
β

xβzβ

β!
,
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and hence pβ(x, 0) = xβ for each multi-index β.
For a multi-index β we stipulate |β| = β1 + · · · + βn, β! = β1! · · ·βn!, and for

another multi-index γ of the same dimension we say γ ≤ β, or β ≥ γ, whenever
γi ≤ βi for each i. Beginning with (2.6), we have the expansion

G(x, t, z) =

(∑
γ

xγzγ

γ!

) ∞∑
j=0

R(t, z)j

j!

 . (2.9)

We let K denote the number of indices α in the summation (2.2) corresponding to
nonzero aα, so that we may label these indices as α1, α2, · · · , αK , the corresponding
coefficients {aα} as a1, a2, · · · , aK , and the corresponding antiderivatives {bα} as
b1, b2, · · · , bK . We recall the general multinomial formula

(c1 + c2 + · · ·+ cK)j =
∑
|σ|=j

j!
σ!
cσ , (2.10)

where c := (c1, · · · , cK), and σ = (σ1, · · · , σK) represents a multi-index of length
K. To economize notation, we introduce vectors

a = (a1, a2, · · · , aK) , b = (b1, b2, · · · , bK) ,

and further define a vector of multi-indices α as

α =
(
α1, α2, · · · , αK

)
.

The dot product α · σ we define as the multi-index (in Rn)

α · σ :=
K∑
k=1

αkσk .

We then apply (2.10) to (2.5) to compute

R(t, z)j =
[
b1(t)zα

1
+ b2(t)zα

2
+ · · ·+ bK(t)zα

K
]j

=
∑
|σ|=j

j!
σ!

(
b1(t)zα

1
)σ1

(
b2(t)zα

2
)σ2

· · ·
(
bK(t)zα

K
)σK

=
∑
|σ|=j

j!
σ!
b(t)σzα·σ ,

and substitute this formula into (2.9) to arrive at

G(x, t, z) =

(∑
γ

xγzγ

γ!

) ∞∑
j=0

∑
|σ|=j

b(t)σzα·σ

σ!


=
∑
γ

∑
σ

xγb(t)σzγ+α·σ

γ!σ!
. (2.11)

Note that the first summation in (2.11) is over all multi-indices γ in Rn, while the
second is over all multi-indices σ in RK . As exponential series converge everywhere,
there is no trouble with pointwise convergence of this iterated double summation.
However, in order to justify rearrangements and termwise differentiations of this
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series, we must investigate absolute and uniform convergence. Applying estimates
of the form |xα| ≤ |x||α|, for each term of (2.11) we obtain the bound∣∣∣∣xγb(t)σzγ+α·σ

γ!σ!

∣∣∣∣ ≤ |x||γ| |b(t)||σ| |z||γ+α·σ|

γ!σ!
,

where b(t), because of our continuity assumption on the coefficients {aα}, is bounded
on compact subsets of I. We let ` = maxα |α| denote the degree of the operator L,
so that

|α · σ| =
K∑
k=1

∣∣αk∣∣σk ≤ ` K∑
k=1

σk = ` |σ| ,

|z||γ+α·σ| = |z||γ|+|α·σ| = |z||γ| |z||α·σ| ≤ |z||γ| (1 + |z|)`|σ| .
Using all these estimates in (2.11), along with the general formula∑

β

s|β|

β!
= ens (s ∈ R, β a multi-index in Rn),

we find that ∑
γ

∑
σ

∣∣∣∣xγb(t)σzγ+α·σ

γ!σ!

∣∣∣∣ (2.12)

≤
∑
γ

|x||γ| |z||γ|

γ!

∑
σ

|b(t)||σ| (1 + |z|)`|σ|

σ!

= en|x||z|eK|b(t)|(1+|z|)` ,

with convergence uniform when (x, t, z) is restricted to any compact subset of Rn×
I× Rn.

We also want to justify differentiating termwise the series (2.11), arbitrarily with
respect to x and once with respect to t. Given a multi-index τ in Rn, the formal
derivative ∂τx of the series is

∂τxG(x, t, z) =
∑
γ≥τ

∑
σ

xγ−τ b(t)σzγ+α·σ

(γ − τ)!σ!
= zτ

∑
ν

∑
σ

xνb(t)σzν+α·σ

ν!σ!
.

Obviously a bound similar to (2.12) applies to this series, so termwise differentiation
is justified. The formal derivative of (2.11) with respect to t is

∂

∂t
G(x, t, z) =

∑
γ

∑
σ

xγzγ+α·σ

γ!σ!
∂

∂t
b(t)σ , (2.13)

with
∂

∂t
b(t)σ =

∂

∂t
[b1(t)σ1b2(t)σ1 · · · bK(t)σK ] =

K∑
k=1

σkak(t)b(t)σ−ek ,

where ek represents the unit multi-index having 1 in the k-th position. With esti-
mates like those in (2.12) we find that (2.13) is majorized by

K∑
k=1

∑
γ

∑
σ≥ek

|x||γ| |z||γ| (1 + |z|)`|σ|

γ!σ!
σk |a(t)| |b(t)||σ−ek| ,
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where we may sum over σ ≥ ek since σk = 0 otherwise. When we substitute
σ = ν + ek this series becomes

K∑
k=1

∑
γ

∑
ν

|x||γ| |z||γ| (1 + |z|)`(|ν|+1)

γ!ν!
|a(t)| |b(t)||ν|

= K |a(t)| (1 + |z|)` en|x||z|eK|b(t)|(1+|z|)` ,

again with convergence uniform on compact subsets of Rn×I× Rn. Thus we may
differentiate termwise once with respect to t in (2.11).

By Fubini’s theorem for double series, we may rearrange the summation in (2.11),
summing on the outside over powers zβ , to rewrite the series as

G(x, t, z) =
∑
β

zβ
∑

γ,σ:γ+α·σ=β

xγb(t)σ

γ!σ!
=
∑
β

pβ(x, t)
zβ

β!
,

where the functions {pβ} are defined as

pβ(x, t) :=
∑

γ,σ:γ+α·σ=β

xγb(t)σ

γ!σ!
. (2.14)

(Recall that γ ranges over multi-indices in Rn and σ over multi-indices in RK .)
Now, the only way that γ+α ·σ = β is possible is that α ·σ ≤ β and γ = β−α ·σ,
and for any such σ there is only one corresponding γ. Thus we may rewrite (2.14)
as a sum over all multi-indices σ in RK , obtaining the alternative formulation

pβ(x, t) := β!
∑
α·σ≤β

xβ−α·σb(t)σ

σ! (β − α · σ)!
. (2.15)

Thus we have derived (2.7), and justified as well termwise differentiation in (2.8).
All series representations are valid for (x, t, z) ∈ Rn × I× Rn.

If the operator L of (2.1) contains a zero order term – that is, if aα appears
corresponding to α = (0, · · · , 0) – then the summation over σ in (2.15) will have
an infinite number of terms, as there will be an infinite number of multi-indices σ
in RK with α · σ ≤ β. However, if L has no zero order term then the number of
such σ is finite, and the summation in (2.15) is a finite one. In either case, each
pβ is a polynomial in x with coefficients depending on t, as there is a finite number
of powers xτ with τ ≤ β. Note that the leading term in (2.15), corresponding to
σ = (0, · · · , 0), is xβ ; thus the degree of pβ as a polynomial in x is |β|.

We summarize formally our deliberations thus far:
Theorem 1. Let L be the operator

L =
∂

∂t
−
∑
α

aα(t)∂αx =
∂

∂t
−

K∑
k=1

ak(t)∂α
k

x , (2.16)

where each aα is continuous on an interval I containing the origin. Set

a = (a1, a2, · · · , aK) , b(t) =
∫ t

0

a(s) ds .

Then the functions pβ, indexed over multi-indices β in Rn and defined by (2.15),
are polynomials in x of degree |β|, and satisfy on Rn × I the equation Lpβ = 0
as well as the initial condition pβ(x, 0) = xβ. Moreover, the series (2.15) for pβ
is uniformly absolutely convergent on any compact subset of Rn × I, as are the
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differentiated series ∂tpβ and ∂τxpβ for all τ . If L has no zero order term, then the
summation in (2.15) is over only a finite number of indices σ, and so the sum has
a finite number of terms.

If the coefficients aα are constant – that is, independent of t – then Q(t, z) and
R(t, z) simplify to

Q(t, z) = Q(z) =
∑
α

aαz
α , R(t, z) = tQ(z) = t

∑
α

aαz
α ,

while the formula (2.6) for the generating function becomes

G(x, t, z) = ex·zetQ(z) . (2.17)

Moreover, in this case we have

b(t) =
∫ t

0

a ds = at , b(t)σ = aσt|σ| ,

so that (2.15) becomes

pβ(x, t) := β!
∑
α·σ≤β

aσxβ−α·σt|σ|

σ! (β − α · σ)!
. (2.18)

If furthermore L has no zero order term, then this sum is over a finite number of
indices σ and consequently pβ is a polynomial in both x and t. In this situation
the degree of pβ as a polynomial in (x, t) is again |β|, as the degree of the general
term in (2.18) will have the upper bound

degree
(
xβ−α·σt|σ|

)
= |β| − |α · σ|+ |σ| = |β| −

K∑
k=1

∣∣αk∣∣σk + |σ|

≤ |β| −
K∑
k=1

σk + |σ| = |β| .

Corollary 1. If the coefficients aα are constant, so that

L =
∂

∂t
−
∑
α

aα∂
α
x ,

then the formula for pβ reduces to (2.18). In particular, if L has constant coeffi-
cients and no zero order term, then each function pβ is a polynomial in x and t, of
degree |β|.
Example 1. Consider the heat operator in n space variables,

H =
∂

∂t
−∆x =

∂

∂t
−

n∑
k=1

∂2

∂x2
k

=
∂

∂t
−Q (∂x) ,

where in this instance

Q(t, z) = Q(z) =
n∑
i=1

z2
i =

n∑
i=1

z2ei ,

with ei the i-th unit multi-index. For σ = (σ1, · · · , σn) we have

α · σ = 2σ1e1 + · · ·+ 2σnen = 2σ ,
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while aσ = (1, · · · , 1)σ = 1. Thus formula (2.18) simplifies to

pβ(x, t) = β!
∑

2σ≤β

xβ−2σt|σ|

σ! (β − 2σ)!
.

These are the classical heat polynomials of Rosenbloom and Widder [18]. (These
authors used a less compact notation for these polynomials – see [14] for a transition
to the multi-index notation.)
Example 2. Kemnitz [16] introduced an analog of heat polynomials for a higher
order version of the one-dimensional heat equation,

∂u

∂t
− ∂ru

∂xr
= 0 ,

where r is an integer, r ≥ 2. In this situation there is only one space derivative ∂α,
with α = re1 and corresponding coefficient aα = 1. The multi-index σ reduces to a
scalar, with α · σ = rσ and aσ = 1. Formula (2.14) for the polynomials {pβ}, with
b(t) = t, becomes the formula of Kemnitz,

pβ(x, t) :=
∑

γ+rσ=β

xγtσ

γ!σ!
,

where now β, γ, and σ nonnegative integers.
Example 3. Polynomial solutions of the so-called “higher-order heat equation”,

∂u

∂t
= (−1)m+1 ∂

2mu

∂x2m
,

with u = u(x, t) a function of time t and one space variable x, were studied by
Haimo and Markett in [12, 13]. Our formula (2.18) yields the same polynomials.
The operator of interest is

Hm,1 :=
∂

∂t
− (−1)m+1 ∂2m

∂x2m
. (2.19)

Again there is only one space derivative ∂α, with α = 2me1 and corresponding
coefficient aα = (−1)m+1. The multi-index σ is a scalar, with α · σ = 2mσ and
aσ = (−1)(m+1)σ. Formula (2.18) becomes the Haimo-Markett formula

pβ(x, t) = β!
∑

2mσ≤β

(−1)(m+1)σ xβ−2mσtσ

σ! (β − 2mσ)!
,

where now β and σ are nonnegative integers.
Example 4. The analog in n space dimensions of the operator (2.19) is

Hm,n =
∂

∂t
− (−1)m+1 ∆m , (2.20)

with ∆ the Laplace operator in Rn. (The factor (−1)m+1 makes the operator para-
bolic.) The corresponding function Q of (2.2) becomes

Q(t, z) = Q(z) = (−1)m+1 |z|2m = (−1)m+1 (
z2

1 + · · ·+ z2
n

)m
.

Instead of substituting directly into (2.18) to determine the formula for pβ, it is a
little cleaner and more efficient to begin again from the expansion (2.9). Since the
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coefficients of this operator are constant, we have R(t, z) = tQ(z), and thus (2.9)
becomes

G(x, t, z) =

(∑
γ

xγzγ

γ!

) ∞∑
j=0

tjQ(z)j

j!

 ,

with

Q(z)j = (−1)(m+1)j (
z2

1 + · · ·+ z2
n

)mj
= (−1)(m+1)j

∑
|σ|=mj

(mj)!
σ!

(
z2

1

)σ1 (
z2

2

)σ2 · · ·
(
z2
n

)σn
= (−1)(m+1)j

∑
|σ|=mj

|σ|!
σ!
z2σ ,

where in this situation σ represents a multi-index in Rn. Thus we have

G(x, t, z) =
∑
γ

xγzγ

γ!

∞∑
j=0

tj

j!
(−1)(m+1)j

∑
|σ|=mj

|σ|!
σ!
z2σ

=
∑
γ

xγ

γ!

∑
m||σ|

(−1)(m+1)|σ|/m |σ|!zγ+2σt|σ|/m

(|σ| /m)!σ!
.

(The notation m | |σ| means m divides |σ| evenly.) Summing first over powers zβ,
as in our derivation of (2.15), we rewrite this double sum as

G(x, t, z) =
∑
β

pβ(x, t)
zβ

β!
,

where

pβ(x, t) = β!
∑

2σ≤β,m||σ|

(−1)(m+1)|σ|/m |σ|!xβ−2σt|σ|/m

(|σ| /m)!σ! (β − 2σ)!
.

These polynomials satisfy Hm,npβ = 0, with pβ(x, 0) = xβ.
Example 5. We consider a modified heat operator in n space dimensions,

L =
∂u(x, t)
∂t

−

[
f(t)u(x, t) +

n∑
i=1

gi(t)
∂2u(x, t)
∂x2

i

]
,

where the functions f and {gi} are real valued and continuous on an interval con-
taining the origin. The function Q for this operator is

Q(t, z) = f(t) +
n∑
i=1

gi(t)z2
i = f(t)z0 +

n∑
i=1

gi(t)z2ei .

For σ = (σ0, σ1, · · · , σn) we have

α · σ = σ0(0) + 2σ1e1 + 2σ2e2 + · · ·+ 2σnen = 2σ̃ ,

where σ̃ = (σ1, · · · , σn). We set

F (t) :=
∫ t

0

f(s) ds , Gi(t) :=
∫ t

0

gi(s) ds (i = 1, · · · , n) ,

and G := (G1, · · · , Gn), so that

b(t)σ = F (t)σ0G(t)σ̃ .
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The formula (2.15) for pβ becomes

pβ(x, t) = β!
∑

σ:2σ̃≤β

xβ−2σ̃F (t)σ0G(t)σ̃

σ! (β − 2σ̃)!
=
∞∑

σ0=0

F (t)σ0

σ0!
β!
∑

2σ̃≤β

xβ−2σ̃G(t)σ̃

σ̃! (β − 2σ̃)!

= eF (t)β!
∑

2τ≤β

xβ−2τG(t)τ

τ ! (β − 2τ)!
,

where the last summation, a finite one, is over multi-indices τ in Rn.
We return to the general operator (1.1), with generating function (2.6) and

expansion (2.7). Given any multi-index τ in Rn, from (2.6) and (2.7) we have

∂τxG(x, t, z) = zτG(x, t, z) =
∑
ν

pν(x, t)
zν+τ

ν!
=
∑
β≥τ

pβ−τ
zβ

(β − τ)!
. (2.21)

On the other hand, differentiation of (2.7) gives

∂τxG(x, t, z) =
∑
β

∂τxpβ(x, t)
zβ

β!
. (2.22)

Equating coefficients of powers of z in (2.21) and (2.22 ), we infer that

∂τxpβ(x, t) =
{ β!

(β−τ)!pβ−τ (x, t) , if β ≥ τ ,
0 , otherwise.

(2.23)

When we combine (2.23) with the equation

0 = Lpβ(x, t) = ∂tpβ(x, t)−
∑
α

aα(t)∂αx pβ(x, t) ,

we acquire the additional formula

∂tpβ(x, t) = β!
∑
α≤β

aα(t)
(β − α)!

pβ−α(x, t) , (2.24)

with the summation over only those α appearing in L for which α ≤ β.
The next result presents a recursion formula for the polynomials {pβ}, useful in

constructing one such polynomial from lower order ones.
Theorem 2. Let L be the operator (1.1), with associated polynomials {pβ}. Then
for any pβ and for 1 ≤ i ≤ n (with ei the unit multi-index in the i-th direction),

βipβ(x, t) = βixipβ−ei(x, t) + β!
∑
α≤β

αibα(t)
(β − α)!

pβ−α(x, t) , (2.25)

where the summation is taken over multi-indices α appearing in L such that α ≤ β.
(If there are no such multi-indices, the summation is vacuous.)

Proof. If βi = 0 then both sides of (2.25) vanish; thus we assume βi > 0. Beginning
with (2.15), we compute

xipβ−ei(x, t) = xi (β − ei)!
∑

α·σ≤β−ei

xβ−ei−α·σb(t)σ

σ! (β − ei − α · σ)!

= (β − ei)!
∑

α·σ≤β−ei

xβ−α·σb(t)σ (βi − (α · σ)i)
σ! (β − α · σ)!

.
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Now, if α·σ ≤ β then either βi−(α · σ)i = 0 or α·σ ≤ β−ei; thus the last summation
may be taken over all σ with α · σ ≤ β. Then, subtracting this expression from
(2.15), we find that

pβ(x, t)− xipβ−ei(x, t)

= β!
∑
α·σ≤β

xβ−α·σb(t)σ

σ! (β − α · σ)!
− (β − ei)!

∑
α·σ≤β

xβ−α·σb(t)σ (βi − (α · σ)i)
σ! (β − α · σ)!

= (β − ei)!
∑
α·σ≤β

xβ−α·σb(t)σ (α · σ)i
σ! (β − α · σ)!

= (β − ei)!
K∑
k=1

(
αk
)
i

∑
α·σ≤β

xβ−α·σb(t)σσk
σ! (β − α · σ)!

.

As the summand in the last expression vanishes if σk = 0, we may sum over only
those σ such that σk > 0, in which case we may write σ = τ + ek for some other
multi-index τ . With this substitution we have

α · σ = α · τ + α · ek = α · τ + αk ,

and thus

pβ(x, t)− xipβ−ei(x, t) = (β − ei)!
K∑
k=1

(
αk
)
i

∑
α·τ+αk≤β

xβ−α·τ−α
k

b(t)τ bk(t)
τ ! (β − α · τ − αk)!

.

In the last summation we may sum over only those k for which αk ≤ β, as otherwise
the sum is vacuous. Thus we finally arrive at

pβ(x, t)− xipβ−ei(x, t) = (β − ei)!
∑
α≤β

αibα(t)
∑

α·τ≤β−α

xβ−α−α·τ b(t)τ

τ ! (β − α− α · τ)!

= (β − ei)!
∑
α≤β

αibα(t)
(β − α)!

pβ−α(x, t) ,

and thereby (2.25). �

Finally, if we substitute (2.23) into (2.25) we obtain for pβ the differential equa-
tion

βipβ(x, t) = xi
∂

∂xi
pβ(x, t) +

∑
α

αibα(t)∂αx pβ(x, t) . (2.26)

(We may sum over all α appearing in L since ∂αx pβ = 0 whenever α ≤ β does not
hold.)

3. Homogeneous Parabolic Operators

We specialize to parabolic partial differential operators having constant co-
efficients, and involving space derivatives only of the highest order `. The general
form is

Lu(x, t) = ut(x, t)−
∑
|α|=`

aα∂
α
x u(x, t) = ut(x, t)−Q(∂x)u(x, t) , (3.1)
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where Q is the polynomial
Q(z) =

∑
|α|=`

aαz
α . (3.2)

The parabolicity condition requires that, for all z ∈ Rn and some δ > 0,

Re Q(iz) = Re
∑
|α|=`

aα (iz)α ≤ −δ |z|` . (3.3)

This condition dictates that the order ` of the operator be an even number, as
otherwise Re Q(−iz) = −Re Q(iz).

According to chapter 9 of the book of Friedman [4], a fundamental solution for
L is given for x ∈ Rn and t > 0 as the function

K(x, t) := (2π)−n
∫
Rn

eix·zetQ(iz) dz . (3.4)

Condition (3.3) ensures that this integral converges absolutely, and that K can
be differentiated under the integral arbitrarily with respect to x and t. From the
formulas

∂αxK(x, t) = (2π)−n
∫
Rn

eix·z (iz)α etQ(iz) dz ,

∂tK(x, t) = (2π)−n
∫
Rn

eix·zQ(iz)etQ(iz) dz

it follows that LK = 0 in the upper half-space where t > 0. Since ` is even we have
Q(−z) = Q(z), and consequently from (3.4) that

K(−x, t) = K(x, t) . (3.5)

As also demonstrated in [4], for any multi-index α we have a bound

|∂αxK(x, t)| ≤ Cα
t(n+|α|)/` exp

−Cα( |x|`
t

)1/(`−1)
 , (3.6)

where Cα is a constant depending on α, the coefficients of L, and the modulus of
parabolicity δ. From this estimate and the differential equation Kt = Q (∂x)K it
follows that, for all derivatives ∂αx ∂

j
tK,

lim
t→0+

∂αx ∂
j
tK(x, t) = 0 (x 6= 0) .

Therefore, if we extend the definition of K to all of Rn × R by setting

K(x, t) ≡ 0 , for x ∈ Rn and t ≤ 0 ,

then K is of class C∞ in the region (Rn × R)− {(0, 0)}, and LK = 0 there.
As we have seen, since L has constant coefficients and no zero order derivative,

the solutions

pβ(x, t) := β!
∑
α·σ≤β

aσxβ−α·σt|σ|

σ! (β − α · σ)!
(3.7)

are polynomials in x and t. By the theory in [4] (see in particular Theorems 3 and
6 of chapter 9), each solution pβ , of polynomial growth with respect to x, can be
represented in any region of the form R

n × (s,∞), s ∈ R, by the integral

pβ(x, t) =
∫
Rn

K(x− y, t− s) pβ(y, s) dy . (3.8)
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(In fact, it is shown in [4] that this representation is valid when pβ is replaced
by more general solutions u(x, t), of certain restricted exponential growth in the x
variable.) Taking in particular s = 0, and recalling that pβ(x, 0) = xβ , we have for
x ∈ Rn and t > 0 the formula

pβ(x, t) =
∫
Rn

K(x− y, t) yβ dy . (3.9)

When β is the zero multi-index we have p0 ≡ 1 and thus

x ∈ Rn, t > 0 =⇒
∫
Rn

K(x− y, t) dy = 1 . (3.10)

Following the example of Rosenbloom and Widder [18], as well as of other au-
thors, we introduce functions {qβ} associated with the polynomials {pβ}, defined in
R
n × R according to

qβ(x, t) := (−1)|β| ∂βxK(x, t) , (3.11)
or more precisely,

qβ(x, t) = (−1)|β| (2π)−n
∫
Rn

eix·z (iz)β etQ(iz) dz , if t > 0 , (3.12)

qβ(x, t) = 0 , if t ≤ 0 .

As a space derivative of the fundamental solution K, each qβ is of class C∞ in
(Rn × R)− {(0, 0)} and solves there

Lqβ(x, t) = 0 .

Also, (3.11) implies immediately that

∂αx qβ = (−1)|α| qα+β . (3.13)

Remark 1. Rosenberg and Widder [18] defined associate functions – which they call
{wβ} – slightly differently, setting wβ = (−2)|β| ∂βxK, so that the associate functions
turn out to be the Appell transforms of the polynomials {pβ}. Haimo and Markett
[12] followed this convention as well. However, for higher order operators there is
no apparent analog of the Appell transform, and we have found that omitting this
now meaningless extra factor of 2 much simplifies later expansion formulas. We
use the notation qβ instead of wβ to point out this subtle distinction between our
associate functions and those of [18] and [12].

The next several results are analogous to results of [18]; they will be useful in
developing a theory of expansion of general solutions of Lu = 0 in terms of the
polynomials {pβ}.
Proposition 1. For the parabolic operator L of (3.1), and for x, y ∈ Rn and t ∈ R,

K(x− y, t) =
∑
β

qβ(x, t)
yβ

β!
. (3.14)

Proof. If t ≤ 0 then both sides vanish; thus we need only consider t > 0, in which
case (3.4) gives

K(x− y, t) = (2π)−n
∫
Rn

eix·ze−iy·zetQ(iz) dz

= (2π)−n
∫
Rn

eix·z
∑
β

(−y)β (iz)β

β!
etQ(iz) dz .
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Condition (3.3), along with∑
β

∣∣∣∣yβzββ!

∣∣∣∣ ≤∑
β

|y||β| |z||β|

β!
= en|y||z| ,

confirms that we may interchange integration with summation to obtain

K(x− y, t) =
∑
β

yβ

β!
(−1)|β| (2π)−n

∫
Rn

eix·z (iz)β etQ(iz) dz ,

and thus (3.14) by use of (3.12). �

Theorem 3. For the parabolic operator L of (3.1), with polynomial solutions {pβ}
and associated functions {qβ}, we have for t > 0 the biorthogonality relations∫

Rn

pβ(x,−t)qα(x, t) dx = β! δα,β =
{

0 , if α 6= β,
α! , if α = β.

(3.15)

Proof. Integration by parts, as justified by the bound (3.6), gives∫
Rn

pβ(x,−t)qα(x, t) dx = (−1)|α|
∫
Rn

pβ(x,−t)∂αxK(x, t) dx

=
∫
Rn

∂αx pβ(x,−t)K(x, t) dx .

If αi > βi for some i, then (2.23) shows that ∂αx pβ ≡ 0 and hence the integral
vanishes. If α = β then (2.23) gives ∂αx pβ = α!, and then use of (3.5) and (3.10)
leads to ∫

Rn

pα(x,−t)qα(x, t) dx = α!
∫
Rn

K(0− x, t) dx = α! .

The only case left to consider is α ≤ β with αi < βi for some i. Then (2.23) and
the above integration by parts formula give∫

Rn

pβ(x,−t)qα(x, t) dx =
β!

(β − α)!

∫
Rn

pβ−α(x,−t)K(x, t) dx .

We apply (3.8) to the polynomial pβ−α, setting x = 0, t = 0, s = −t, and use the
fact that K is an even function in x to find that

pβ−α(0, 0) =
∫
Rn

K(−y, t) pβ−α(y,−t) dy =
∫
Rn

pβ−α(x,−t)K(x, t) dx .

But (3.7) shows that pβ−α(0, 0) = 0 if β > α. �

Theorem 4. The functions {qβ} solve the differential equations

(βk + 1) qβ(x, t) + xk
∂

∂xk
qβ(x, t) + t

∑
|α|=`

αkaα∂
α
x qβ(x, t) = 0 , (3.16)

as well as the algebraic equations

(βk + 1) qβ(x, t)− xkqβ+ek(x, t) + (−1)` t
∑
|α|=`

αkaαqβ+α(x, t) = 0 . (3.17)
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Proof. Since qβ(x, t) ≡ 0 if t ≤ 0, we need only verify (3.16) for t > 0. It is sufficient
to show that the functions

ψβ(x, t) := (−1)|β| (2π)n qβ(x, t) =
∫
Rn

eix·z (iz)β etQ(iz) dz

solve the same equation. Condition (3.3) ensures that we may differentiate under
the integral and then integrate by parts to obtain

(βk + 1)ψβ(x, t) + xk
∂

∂xk
ψβ(x, t)

= (βk + 1)ψβ(x, t)− i
∫
Rn

(
∂

∂zk
eix·z

)
(iz)β+ek etQ(iz) dz

= i

∫
Rn

eix·z (iz)β+ek etQ(iz)t
∂

∂zk
Q(iz) dz

= i

∫
Rn

eix·z (iz)β+ek etQ(iz)t
∑
|α|=`

iαkaα (iz)α−ek dz

= −t
∑
|α|=`

αkaα∂
α
xψβ(x, t) .

Equation (3.17) follows immediately from (3.16) and (3.13). �

Formulas (3.16) and (3.17) are analogous to (4.11) and (4.22), respectively, of
[12].

4. Analogs of Hermite Polynomials

We let L remain the parabolic operator of the previous section,

Lu(x, t) = ut(x, t)−
∑
|α|=`

aα∂
α
x u(x, t) , (4.1)

with constant coefficients and only highest order terms. We take advantage of the
homogeneity of the equation to make some further observations. First we note that
solutions of Lu = 0 are preserved under a change of variables (x, t) −→

(
λx, λ`t

)
, –

that is, if Lu = 0 and v(x, t) = u
(
λx, λ`t

)
with λ ∈ R, then also Lv = 0. Moreover,

(3.2) gives for Q the identity

Q(λz) = λ`Q(z) ,

and then formula (3.4) for the fundamental solution yields

K(λx, λ`t) = λ−nK(x, t) . (4.2)

From (3.7) we find that

pβ(λx, λ`t) = β!
∑
α·σ≤β

aσλ|β|−|α·σ|xβ−α·σλ`|σ|t|σ|

σ! (β − α · σ)!
.

But since |α| = ` for each α in (4.1 ), in the summation we have

|α · σ| =

∣∣∣∣∣∣
∑
|α|=`

ασα

∣∣∣∣∣∣ =
∑
|α|=`

|α|σα = `
∑
|α|=`

σα = ` |σ| ,
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and thus
pβ(λx, λ`t) = λ|β|pβ(x, t) . (4.3)

Finally, from (3.11) and (4.2) we derive

qβ
(
λx, λ`t

)
= λ−n−|β|qβ(x, t) . (4.4)

For multi-indices β in Rn we introduce functions

hβ(x) := pβ(x,−1) , kβ(x) := qβ(x, 1) . (4.5)

Obviously each hβ is a polynomial in x of degree |β|. For t < 0 we take λ = (−t)1/`

in (4.3) to obtain

pβ(x, t) = pβ
(
λ(x/λ), λ` · (−1)

)
= λ|β|pβ (x/λ,−1) ,

and thus

pβ(x, t) = (−t)|β|/` hβ

(
x

(−t)1/`

)
(t < 0) . (4.6)

In a similar manner for t > 0 we take λ = t1/` in (4.4) and derive

qβ(x, t) = t−(n+|β|)/`kβ

( x

t1/`

)
(t > 0) . (4.7)

The orthogonality relation (3.15) for pβ and qα specializes when t = 1 to∫
Rn

hβ(x)kα(x) dx = β! δα,β . (4.8)

Remark 2. For the special case of the one-dimensional heat equation, when ` = 2
and each β is a nonnegative integer, it turns out (see [18, 21]) that the classical
Hermite polynomials Hβ are related to the one-dimensional heat polynomials by the
equation

pβ(x, t) = (−t)β/2Hβ

(
x

(−4t)1/2

)
. (4.9)

Comparing this equation with (4.6), we see that in the case of the one-dimensional
heat equation our polynomials {hβ} are related to the Hermite polynomials accord-
ing to Hβ(x) = hβ(2x). We choose to work with the functions {hβ} because the
extra factor 2, of no particular use for higher order equations, adds unnecessary
complications to subsequent calculations. In the case of the higher-dimensional
heat equation of order q = 2`, Haimo and Markett [12] chose to use (4.9) to define
higher order Hermite polynomials based on the relation

pβ(x, t) = (−t)β/`Hβ

(
x

(−4t)1/`

)
.

The relation between our polynomials and those of Haimo-Markett is

Hβ(x) = hβ

(
41/`x

)
= pβ

(
41/`x,−1

)
.

It is perhaps this formula that would be the most direct generalization of the Hermite
polynomials to higher order parabolic equations in arbitrary space dimensions.
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We see from (2.17) and (2.7) that a generating function for the polynomials {hβ}
is

G(x,−1, z) = ex·ze−Q(z) =
∑
β

pβ(x,−1)
zβ

β!
=
∑
β

hβ(x)
zβ

β!
.

From (2.26) with bα = taα, and from (2.25) and (4.5), it can be checked that the
functions {hβ} solve the differential equation

βihβ(x) = xi
∂

∂xi
hβ(x)−

∑
|α|=`

αiaα∂
α
xhβ(x) , (4.10)

as well as the recursion formula

βihβ(x) = βixihβ−ei(x)− β!
∑

|α|=`,α≤β

αiaα
(β − α)!

hβ−α(x) . (4.11)

Likewise, from (3.16), (3.17), and (4.5) we derive

(βi + 1) kβ(x) + xi
∂

∂xi
kβ(x) +

∑
|α|=`

αiaα∂
α
x kβ(x) = 0 , (4.12)

(βi + 1) kβ(x)− xikβ+ei(x) + (−1)`
∑
|α|=`

αiaαkβ+α(x) = 0 . (4.13)
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