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A blowup result in a multidimensional semilinear

thermoelastic system ∗

Salim A. Messaoudi

Abstract

In this work, we consider a multidimensional semilinear system of ther-
moelasticity and show that the energy of any weak solution blows up in
finite time if the initial energy is negative. This work generalizes earlier
results in [5] and [8].

1 Introduction

In [8], we considered the one-dimensional Cauchy problem

utt(x, t) = auxx(x, t) + bθx(x, t) + |u(x, t)|α−1u(x, t)
cθt(x, t) = kθxx(x, t) + buxt(x, t), x ∈ R, t ≥ 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ(x), x ∈ R,

where a, c, k are strictly positive constants, b is a nonzero constant, and α
≥
√

1 + b2/ (ac). We showed that any weak solution with negative initial en-
ergy blows up in finite time if u0 and u1 are cooperative (

∫
u0u1 > 0). This

result was improved by Kirane and Tatar [5], where the authors studied a more
general system by allowing gradient terms in both equations. To overcome the
difficulty caused by these extra terms, they defined a functional which satisfies
the conditions of a theorem by Kalantarov and Ladyzhenskaya [4]. Their result,
when applied to the system in [8], omits the condition of cooperative initial
data, however the condition on α remained (see relation 13 of [5]).

In [17], Racke and Wang discussed the propagation of singularities for sys-
tems of homogeneous thermoelasticity in one spatial dimension. They consid-
ered some linear and semilinear Cauchy problems and described the propagation
of singularities, as well as, the distribution of regular domains if the initial data
have different regularity in different parts of the real line.

Concerning global existence and asymptotic behavior of weak solutions, it
is worth noting the work of Aassila [1], where a purely linear multidimensional
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system of inhomogeneous and anisotropic thermoelasticity, associated with non-
linear boundary conditions, has been studied. Under suitable requirements on
the nonlinear terms at the boundary, the author proved a decay result. As he
mentioned, his result extends the one in [14] to the nonlinear case. For results
regarding the matter of existence, regularity, controllability, and long-time be-
havior of systems of thermoelasticity, we refer the reader to articles [2], [3], [12],
[13], [15], [16], and [18].

In this paper we are concerned with the initial boundary value problem

utt(x, t) = div(A(x)∇u(x, t)) + b(x) · ∇θ(x, t) +D(x) · ∇u(x, t)
−m(x)ut(x, t) + eβtu(x, t)|u(x, t)|p−2, x ∈ Ω, t > 0

c(x)θt(x, t) = div[K(x)∇θ(x, t) + b(x)ut(x, t)] +R(x) · ∇u(x, t) (1.1)
u(x, t) = 0, θ(x, 0) = 0, x ∈ ∂Ω, t ≥ 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ(x), x ∈ Ω,

where b,D,R are “function entry” n-component real vectors; c,m are functions;
A, K are n × n “function entry” matrices such that A is symmetric; b 6= 0,
p > 2, β > 0; and Ω is a bounded domain of Rn (n ≥ 1), with a smooth
boundary ∂Ω. We will show that any weak solution, with negative “enough”
initial energy blows up in finite time. This work generalizes the result of Kirane
and Tatar [5] to the multidimensional setting and includes an earlier result by
the author [9] (see comments below).

To establish our result, we impose the following

H1) c,m ∈ L∞(Ω), b,D,R ∈ [L∞(Ω)]n, and for a, c , k > 0 the functions A, K
∈ [L∞(Ω)]n×n satisfy

c(x) ≥ c, m(x) ≥ m0 ≥ 0, ∀x ∈ Ω.
A(x)ξ · ξ ≥ a|ξ|2, K(x)ξ · ξ ≥ k|ξ|2, ∀x ∈ Ω, ∀ξ ∈ Rn .

H2) (u0, u1, θ0) ∈ H1
0 (Ω)× L2(Ω)×H1

0 (Ω)

H3) p ≤ 2(n− 1)/(n− 2) if n ≥ 3.

Definition By a weak solution of (1.1), we mean a pair (u, θ) such that

u ∈ C
(
[0, T );H1

0 (Ω)
)
∩ C1

(
[0, T );L2(Ω)

)
(1.2)

θ ∈ L2
(
[0, T );H1

0 (Ω)
)
∩ C1

(
[0, T );L2(Ω)

)
and satisfying the system in the following sense [7]: For any (v, ϕ) ∈ [H1

0 (Ω)]2,

∂

∂t

∫
Ω

utv dx =
∫

Ω

A(x)∇u · ∇v dx+
∫

Ω

vb(x) · ∇θ dx (1.3)

+
∫

Ω

vD(x) · ∇u dx−
∫

Ω

vm(x)ut dx+
∫

Ω

veβtu|u|p−2 dx

∂

∂t

∫
Ω

c(x)θϕ dx =
∫

Ω

K(x)∇θ · ∇ϕdx+
∂

∂t

∫
Ω

ub(x) · ∇ϕdx
∫

Ω

ϕR(x) · ∇u dx

for almost every t ∈ [0, T ).



EJDE–2001/30 Salim A. Messaoudi 3

Remark. The condition on p in (H3) is imposed so that
∫

Ω
veβtu|u|p−2 dx

makes sense.

2 Main Result

In this section we prove our main result. For this purpose we set

E(t) :=
1
2

∫
Ω

[u2
t +A(x)∇u · ∇u+ c(x)θ2] dx− 1

p

∫
Ω

eβt|u|p dx . (2.1)

Lemma 2.1 If E(0) < 0 and

β ≥ 2

√
n(cd2 + r2)

4c
(2.2)

Then

E′(t) ≤ −
∫

Ω

K(x)∇θ · ∇θ dx ≤ −k
∫

Ω

|∇θ|2 dx ≤ 0. (2.3)

Proof. By taking a derivative of (2.1) and using the equations of (1.1) we get

E′(t) =
∫

Ω

[ututt +A(x)∇u · ∇ut + c(x)θθt] dx

−β
p

∫
Ω

eβt|u|p dx−
∫

Ω

eβt|u|p−2uut dx (2.4)

=
∫

Ω

utD(x) · ∇u−
∫

Ω

m(x)u2
t dx+

∫
Ω

θR(x) · ∇u(x, t)

−
∫

Ω

K(x)∇θ · ∇θ dx− β

p

∫
Ω

eβt|u|p dx

We then use Young’s inequality and (H1) to obtain

E′(t) ≤ −k
∫

Ω

|∇θ|2 dx−m0

∫
Ω

u2
t dx+ ε1

∫
Ω

u2
t dx+

nd2

4ε1

∫
Ω

|∇u|2 dx

+ε2

∫
Ω

θ2 dx+
nr2

4ε2

∫
Ω

|∇u|2 dx− β

p

∫
Ω

eβt|u|p dx (2.5)

where d := ‖D‖∞ and r := ‖R‖∞. By using (2.1) we obtain

E′(t) ≤ −k
∫

Ω

|∇θ|2 dx+ 2(ε1 −m0)E(t) + [ε2 − c(ε1 −m0)]
∫

Ω

θ2 dx

−[a(ε1 −m0)− n

4
(
d2

ε1
+
r2

ε2
)]
∫

Ω

|∇u|2 dx (2.6)

−1
p

[β − 2(ε1 −m0)]
∫

Ω

eβt|u|p dx
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At this point we take ε2 = c(ε1 −m0) and ε1 large enough so that

a(ε1 −m0)− n

4
(
d2

ε1
+

r2

c(ε1 −m0)
) ≥ 0.

It suffices in this case to have

a(ε1 −m0)− n

4
cd2 + r2

c(ε1 −m9)
≥ 0, (2.7)

which is equivalent to

ε1 ≥ m0 +

√
n(cd2 + r2)

4c
(2.8)

By combining all above and using (2.2) we arrive at

E′(t) ≤ −k
∫

Ω

|∇θ|2 dx+ 2(ε1 −m0)E(t).

Therefore (2.3) is established provided that E(t) ≤ 0. This is of course true
since E(0) ≤ 0.

Lemma 2.2 Suppose that (H3) holds. Then there exists a positive constant
C > 1 depending on n, p only such that

‖u‖sp ≤ C
(
‖∇u‖22 + ‖u‖pp

)
(2.9)

for any u ∈ H1
0 (Ω) and 2 ≤ s ≤ p.

Proof. If ‖u‖p ≤ 1 then ‖u‖sp ≤ ‖u‖2p ≤ C‖∇u‖22 by Sobolev embedding
theorems. If ‖u‖p > 1 then ‖u‖sp ≤ C‖u‖pp. Therefore (2.9) follows.

As a result of (2.1), (2.9), and the lemma, we have

Corollary 2.3 Assume that (H3) holds. Then we have

‖u‖sp ≤ C
(
E(t) + ‖ut‖22 + eβt‖u‖pp + ‖θ‖22

)
(2.10)

for any u ∈ H1
0 (Ω) and 2 ≤ s ≤ p.

Theorem 2.4 Let (H1) and (H3) be fulfilled. Then given T > 0 there exists
λ > 0 such that, for any initial data satisfying (H2) and

E(0) < −λ, (2.11)

the solution (1.2) blows up in a time T ∗ ≤ T .
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Proof. Set H(t) = −E(t). Then, by virtue of (2.3), H ′(t) ≥ k
∫

Ω
|∇θ|2 dx ≥ 0;

hence
λ < −E(0) = H(0) ≤ H(t) ≤ b

p
eβt‖u‖pp. (2.12)

We then define

L(t) := H1−α(t) + ε

∫
Ω

uut(x, t) dx+
ε

2

∫
Ω

m(x)u2(x, t) dx (2.13)

for ε small to be chosen later and α = (p − 2)/2p. By taking a derivative of
(2.13) and using equation (1.1) we obtain

L′(t) = (1− α)H−α(t)H ′(t)− ε
∫

Ω

A(x)∇u · ∇u dx

+ε
∫

Ω

u2
t + εeβt

∫
Ω

|u|p dx+ ε

∫
Ω

ub(x) · ∇θ dx (2.14)

= (1− α)H−α(t)H ′(t) + ε

∫
Ω

u2
t − ε

∫
Ω

A(x)∇u · ∇u dx

+ε
∫

Ω

ub · ∇θ dx+ εp

[
H(t) +

1
2

∫
Ω

[u2
t +A(x)∇u · ∇u+ c(x)θ2] dx

]
Then use Young’s inequality to estimate

∫
Ω
ub · ∇θ dx in (2.14). For all δ > 0,

L′(t) ≥ k(1− α)H−α(t)‖∇θ‖22 + ε(
p

2
− 1)

∫
Ω

A(x)∇u · ∇u dx

+ε(
p

2
+ 1)

∫
Ω

u2
t dx+

pε

2

∫
Ω

c(x)θ2 dx+ pεH(t)

−Bε
[

1
4δ
‖∇θ‖22 + δ

∫
Ω

u2 dx

]
(2.15)

≥
[
k(1− α)H−α(t)− Bε

4δ

]
‖∇θ‖22 + ε(

p

2
− 1)

∫
Ω

A(x)∇u · ∇u dx

+ε(
p

2
+ 1)

∫
Ω

u2
t + pεH(t) +

pε

2

∫
Ω

c(x)θ2 dx−Bεδ‖u‖22,

where B = ‖b‖∞. We then take δ = Hα(t)/M , for large M to be specified later.
Substitute in (2.15) to arrive at

L′(t) (2.16)

≥
[
k(1− α)− M

4
εB

]
H−α(t)‖∇θ‖22 + ε(

p

2
− 1)

∫
Ω

A(x)∇u · ∇u dx

+ε(
p

2
+ 1)

∫
Ω

u2
t +

pε

2

∫
Ω

c(x)θ2 dx+ ε

[
pH(t)− B

M
Hα(t)‖u‖22

]
.

By (2.10) and the inequality ‖u‖22 ≤ C‖u‖2p, we obtain

Hα(t)‖u‖22 ≤ C
(
b

p

)α
eαβt‖u‖2+αp

p ≤ CT ‖u‖2+αp
p ;
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where CT = C
(
b
p

)α
eαβT ; consequently (2.16) yields

L′(t) (2.17)

≥
[
k(1− α)− M

4
εB

]
H−α(t)‖∇θ‖22 + ε(

p

2
− 1)

∫
Ω

A(x)∇u · ∇u dx

+ε(
p

2
+ 1)

∫
Ω

ρ(x)u2
t +

pε

2

∫
Ω

c(x)θ2 dx+ ε

[
pH(t)− B

M
CT ‖u‖2+αp

p

]
.

We then use corollary 2.3, for s = 2 + αp < p, to deduce from (2.17) that

L′(t) ≥
[
k(1− α)− M

4
εB

]
H−α(t)‖∇θ‖22 + ε(

p

2
− 1)

∫
Ω

A(x)∇u · ∇u dx

+ε(
p

2
+ 1)

∫
Ω

u2
t +

pε

2

∫
Ω

c(x)θ2 dx (2.18)

+ε
[
pH(t)− B

M
CT
{
H(t) + ‖ut‖22 + ‖u‖pp + ‖θ‖22

}]
.

At this point, we choose M large enough so that (2.18) becomes

L′(t) ≥
[
k(1− α)− M

4
εB
]
H−α(t)‖∇θ‖22 + εΓ1

[
H(t) + ‖ut‖22 + ‖u‖pp + ‖θ‖22

]
,

(2.19)
where Γ1 > 0 is a constant depending on CT (hence on T ). Once M is chosen
we then pick ε small enough so that k(1− α)− εBM/4 ≥ 0 and

L(0) = H1−α(0) + ε

∫
Ω

u0u1(x) dx+
ε

2

∫
Ω

m(x)u2
0(x) dx >

λ

2
; (2.20)

therefore (2.19) takes the form

L′(t) ≥ Γ
[
H(t) + ‖ut‖22 + ‖u‖pp + ‖θ‖22

]
, (2.21)

where Γ = Γ1ε > 0; hence L(t) ≥ L(0) > λ
2 for all t ≥ 0. Now the estimate

|
∫

Ω

uut dx| ≤ ‖u‖2‖ut‖2 ≤ C‖u‖p‖ut‖2; (2.22)

implies ∣∣∣ ∫
Ω

uut dx
∣∣∣1/(1−α)

≤ C‖u‖1/(1−α)
p ‖ut‖1/(1−α)

2 .

Again Young’s inequality, by virtue of corollary 2.3, yields∣∣∣ ∫
Ω

uut dx
∣∣∣1/(1−α)

≤ C
[
‖u‖pp + ‖ut‖22

]
(2.23)

≤ CT
[
H(t) + ‖u‖pp + ‖ut‖22 + ‖θ‖22

]
.
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Now we have the estimate

|
∫

Ω

m(x)u2 dx|1/(1−α) ≤ C‖u‖2/(1−α)
p ≤ CT

[
H(t) + ‖u‖pp + ‖ut‖22 + ‖θ‖22

]
,

(2.24)
since 2/(1− α) < p. Finally by noting that

L1/(1−α)(t) ≤ 21/(1−α)
(
H(t) + |

∫
Ω

uut dx|1/(1−α)|
∫

Ω

m(x)u2 dx|1/(1−α)
)

and combining it with (2.21), (2.23) and (2.24) we arrive at

L′(t) ≥ γL1/(1−α)(t),∀t ≥ 0, (2.25)

where γ is a positive constant depending on all above constants and Ω. A simple
integration of (2.25) over (0, t) then yields

L(p−2)/(p+2)(t) ≥ 1
L(p−2)/(p+2)(0)− γt(p− 2)/(p+ 2)

Therefore by choosing λ, the constant in (2.11), large enough L(t) blows up in
a time T ∗ ≤ T .

Remarks

1. If d = r ≡ 0, the system (1.1) reduces to the one in [9] and the blow up
occurs for any initial data satisfying E(0) < 0 even if m 6= 0 and β = 0.
Such a result cannot be obtained with the method used in [5].

2. We do not require that u0 and u1 to be cooperative as in (17) of [5] but
instead we take initial conditions with negative ’enough’ initial energy.
Such initial data can be easily constructed using a lemma by Levine and
Sacks [6].

3. It appears from the calculations above and the ones in [5] that, in the
general case, a forcing term of the form |u|p−2u is not enough to make the
blow up occurs unless some extra conditions on the initial data are added
(see paragraph 5 of [5]).

4. Note that condition (13) of [5], namely uf(t, u) ≥ (2 + 4γ)F (t, u) for
γ ≥ γ0, is omitted. Our forcing term only satisfies uf(t, u) = pF (t, u), for
any p however close to 2. In fact looking carefully to the calculations we
easily see that condition (13) of [5] is dictated by the method itself (see
also [10], [11] ).

5. The above blow up result remains valid for more general forcing term
F (t, u) instead of eβt|u|p−2u. The choice of the latter one is only for
simplicity.

6. Our method seems to be natural for systems with variable coefficients. In
fact if m is not constant (even if d = r = 0) the use of the theorem by
Kalantarov and Ladyzhenskaya [4] to establish the blow up seems to be
difficult. One needs, at least, to reformulate condition (17) of [5]
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