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Some observations on the first eigenvalue of the

p-Laplacian and its connections with asymmetry ∗

Tilak Bhattacharya

Abstract

In this work, we present a lower bound for the first eigenvalue of the
p-Laplacian on bounded domains in R2. Let λ1 be the first eigenvalue
and λ∗1 be the first eigenvalue for the ball of the same volume. Then we
show that λ1 ≥ λ∗1(1 + Cα(Ω)3), for some constant C, where α is the
asymmetry of the domain Ω. This provides a lower bound sharper than
the bound in Faber-Krahn inequality.

1 Introduction

Let Ω ⊂ Rn, be a bounded domain. For 1 < p <∞, let

λ1 = λ1(p,Ω) = inf

∫
Ω
|Du|p∫

Ω
|u|p

,

where the infimum is taken over all u ∈ W 1,p
0 (Ω), u 6= 0. It is well known

that λ1 = λ1(Ω, p) > 0 and a non-zero minimizer, which we continue to call as
u = u(p,Ω), exists and satisfies

div(|Du|p−2Du) + λ1|u|p−2u = 0, in Ω, (1.1)

where u ∈ W 1,p
0 (Ω). The operator div(|Du|p−2Du) is the p-Laplacian and this

is the usual Laplacian when p = 2. For p 6= 2, this is a quasi-linear and a
degenerate elliptic operator. The equation in (1.1) is to be interpreted in the
weak sense, i. e.,∫

Ω

|Du|p−2Du ·Dψ = λ1

∫
Ω

|u|p−2uψ, ∀ ψ ∈W 1,p
0 (Ω).

We refer to λ1 as the first eigenvalue and u as the first eigenfunction of the p-
Laplacian on Ω. It is well known that λ1 is simple and u has one sign [2, 10, 11].
The first eigenvalue is also known to be isolated [10]. Moreover, if Ω is a ball then
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2 The first eigenvalue of the p-Laplacian EJDE–2001/35

u is radial, decreasing and has only one critical point. It will be useful to note
that u is L∞(Ω) [11]. It is also quite well known that u is C1,α

loc in Ω [5, 12, 18].
See [2] for a more detailed discussion of matters related to the regularity of u.
It should also be pointed out that unlike the case of the Laplacian, i. e., p = 2,
a complete characterization of the set of critical points of u, when p 6= 2, is
still unknown. This fact or lack thereof becomes particularly important when
working with level sets of u. The boundaries of such sets need not be smooth
thus necessitating the use of the DeGiorgi perimeter. We discuss this further in
section 2. Also see [1, 2, 16, 17].

Let D∗ denote the symmetrized domain for an open set D, i .e., D∗ is the
ball, centered at the origin, with volume equal to that of D. Let λ∗1 = λ1(Ω∗);
then the Faber-Krahn inequality states that λ1 ≥ λ∗1, where equality holds if
and only if Ω is a ball [2]. Our attempt, in this work, will be to characterize
this lower bound for λ1, for 1 < p < ∞, in terms of asymmetry. The notion
of asymmetry, which was introduced in [9], is a measure of how close a set is
to being a ball. More precisely, if D is a compact set in Rn, n ≥ 2, then the
asymmetry of D, denoted by α(D), is defined to be

α(D) = inf
x

vol(D\B(x,R))
vol(D)

. (1.2)

Here vol stands for volume, B(x,R) is the ball centered at x, radius R, such
that the volume of B(x,R) is the same as that of D.

In [1, 7, 8, 9] lower bounds for capacities, for planar domains, were obtained
in terms of asymmetry while in [3], an analogous upper bound for the Green’s
function was derived. The works in [9, 13] address the issue of the first eigenvalue
of the Laplacian and present a sharper version of the Faber-krahn inequality in
terms of deficiencies. This work generalizes the estimate in [9] to the case of
the p-Laplacian on planar domains. We thank the referee whose comments have
helped improved the exposition of this work. We also thank Juan Manfredi for
his encouragement and interest in this work. We are also highly appreciative
of Tom Salisbury of Department of Mathematics, York University, who kindly
extended texing facilities to us.

2 Statement of the main result

For D ⊂ R2, let |D| denote the area of a set D and ∂D denote its boundary.
Let L(∂D) denote the length i.e. L is the Hausdorff 1-dimensional measure if
∂D is smooth and the De Giorgi perimeter otherwise. From here on Ω will
be a bounded domain in R2 with ∂Ω a finite union of rectifiable curves. Let
α = α(Ω) denote the asymmetry of Ω, u = u(p,Ω) be the first eigenfunction of
the p-Laplacian, 1 < p < ∞, and λ1 be the first eigenvalue. We will take the
first eigenfunction u > 0, we will also assume throughout that∫

Ω

up = 1.
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For 0 ≤ t ≤ supu, set

Ωt = {x ∈ Ω : u(x) > t}, and µ(t) = |Ωt|.

Note that µ(t) is decreasing and right continuous. It is easy to show that µ(t)
is continuous if and only if |{u = t}| = 0. Clearly, µ(t) has at most countably
many discontinuities. Since u is only known to be C1,α

loc , it is not clear that µ(t)
is continuous every where when p 6= 2 [1, 2, 16]. Let u∗ be the non-increasing
rearrangement (Schwarz symmetrization) of u, defined as follows. First set
u#(a) = inf{t > 0;µ(t) < a}. Let (x, y) denote the coordinate of a point in Ω∗.
For such a point define u∗(x, y) = u#(π(x2 +y2)) = u∗(r), where r =

√
x2 + y2.

By λ∗1 we will mean λ1(Ω∗), lastly set M = supΩu.
We now state the main theorem of the paper.

Theorem 2.1 Let Ω ⊂ R2 be a bounded domain and α = α(Ω) be its asymme-
try, then there exists a constant C > 0, independent of Ω, such that

λ1(Ω) ≥ λ1(Ω∗)(1 + Cα3). (2.1)

We adapt the method developed in [1, 3, 7] to achieve our goal, i. e., we
characterize the propagation of asymmetry α via the level sets of u. This is
expressed in terms of the isoperimetric inequality. See Lemmas 3.3 and 3.5 for a
more precise statement. Our result relies on several lemmas proven in Section 3
and the proof of the Theorem appears in Section 4. We mention that we make
considerable use of the co-area formula in our work. In this context we refer
to [4, 6]. The reader may find some overlap between this work and [9] however
we believe some aspects of our work may be of independent interest. Lastly,
we are unable to determine whether or not the third power appearing in (2.2)
is optimal. However, in the case of the Laplacian it has been conjectured that
the above Theorem holds with the second power and if true, it would then be
optimal [3, 13].

3 Preliminaries

In this section we present five lemmas which will lead to the proof of Theorem
2.1. For compactness of our presentation, we take |Ω| = 1.

Lemma 3.1 Let u(x) be a solution of (1.1); set h(t) =
∫

Ωt
|Du|p. Then h(t) is

convex in t and for 0 < t < M ,

λ1

(
1− t

∫
Ω

up−1
)
≤ h(t) ≤ λ1 (1− t/M)

∫
Ωt

up. (3.1)

Proof. A proof of this lemma can be worked by using the co-area formula.
However, we will provide a proof which uses appropriate test functions (also see
[2]). Recall the weak formulation in Section 1, i. e.,∫

Ω

|Du|p−2Du ·Dψ = λ1

∫
Ω

up−1ψ (3.2)
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where ψ ∈W 1,p
0 (Ω). Using the test function (u− t)+ in (3.2), we find that

h(t) = λ1

∫
Ωt

up−1(u− t).

We now make some observations which will prove useful later.
For δ > 0, t ≤ u < t+ δ in Ωt\Ωt+δ. Then

h(t+ δ)− h(t) = λ1

{∫
Ωt+δ

up − (t+ δ)up−1 −
∫

Ωt

(up − tup−1)
}

= λ1

{
−
∫

Ωt\Ωt+δ
up + t

∫
Ωt\Ωt+δ

up−1 − δ
∫

Ωt+δ

up−1
}
.

= λ1

{∫
Ωt\Ωt+δ

up−1(t− u)− δ
∫

Ωt+δ

up−1
}
.

It follows that
h(t+ δ)− h(t)

δ
≤ −λ1

∫
Ωt+ delta

up−1. (3.3)

Now rearranging the above expression on the right hand side, we also see that

h(t+ δ)− h(t) (3.4)

= λ1

{
−
∫

Ωt\Ωt+δ
up + t

∫
Ωt\Ωt+δ

up−1 − δ
∫

Ωt

up−1 + δ

∫
Ωt\Ωt+δ

up−1
}

= λ1

{∫
Ωt\Ωt+δ

up−1(δ + t− u)− δ
∫

Ωt

up−1
}

≥ −λ1δ

∫
Ωt

up−1.

Clearly
h(t+ δ)− h(t)

δ
≥ −λ1

∫
Ωt

up−1. (3.5)

A similar argument also yields

−λ1

∫
Ωt−δ

up−1 ≤ h(t)− h(t− δ)
δ

≤ −λ1

∫
Ωt

up−1.

Clearly, (3.3), (3.4) and the foregoing imply that

h′(t) = −λ1

∫
Ωt

up−1 a. e. t.

Equality will hold at every value of t iff |{u = t}| = 0, i. e., iff µ(t) is continuous
for all t. However, this is not known for p 6= 2. In this context also see [2, 16, 17].
But since µ(t) is decreasing, equality holds except on a countable ( possibly
finite) set. Note that the right continuity of µ(t) does show that right hand
derivative of h exists at every t and equals −λ1

∫
Ωt
up−1.
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Now the inequalities (3.3) and (3.4) clearly imply that h(t) is a convex func-
tion. If θ1 < θ < θ2; then the following two inequalities hold, namely,

h(θ)− h(θ1)
θ − θ1

≤ −λ1

∫
Ωθ

up−1 ≤ h(θ2)− h(θ)
θ2 − θ

. (3.6)

Using the convexity of h(t), we may now find lower and upper bounds for h.
Noting that h(0) = λ1 and µ(t) is right continuous, we see that (3.5) yields

h(t) ≤ h(0)− λ1t

∫
Ωt

up−1 = λ1

(
1− t

∫
Ωt

up−1

)
,

and

h(t) ≥ λ1

(
1− t

∫
Ω

up−1

)
. (3.7)

Clearly, convexity of h(t) on [0,M ], its continuity at t = 0 and the facts h(0) =
λ1 and h(M) = 0 imply the easy inequality

h(t) ≤ λ1(1− t/M) (3.8)

However, a simple argument provides us with a better upper bound for h(t).
Notice that

t

M

∫
Ωt

up ≤ t
∫

Ωt

up−1 u

M
≤ t
∫

Ωt

up−1.

Thus ∫
Ωt

up−1(u− t) =
∫

Ωt

up − t
∫

Ωt

up−1 ≤ (1− t/M)
∫

Ωt

up.

Clearly,

h(t) ≤ λ1(1− t/M)
∫

Ωt

up. (3.9)

Putting together (3.6) and (3.8), we get the statement of the lemma. ♦

We now provide a simple upper bound for u.

Lemma 3.2 Let u solve (1.1) and µ(t) be as defined before, then

t ≤
(

λ1

(4π)p/2

)1/(p−1) (
1− µ(t)(p2−2p+2)/(2p(p−1))

)(p2 − 2p+ 2
2p(p− 1)

)
. (3.10)

In particular, M(p) = supΩ u ≤
(

λ1
(4π)p/2

)1/(p−1) (
2p(p−1)
p2−2p+2

)
.
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Proof. We will use Talenti’s inequality [16]. Recall that
∫

Ω
up = 1. Then for

a. e. t,

(4πµ(t))p/2(p−1) ≤ −µ(t)′
(
− d

dt

∫
Ωt

|Du|p
)1/(p−1)

(3.11)

= −µ(t)′
(
−λ1

d

dt

∫
Ωt

up−1(u− t)
)1/(p−1)

Using Holder’s inequality and the fact that
∫

Ω
up = 1, (3.10) yields( (4πµ(t))p/2

λ1

)1/(p−1)

≤ −µ(t)′
(∫

Ωt

up−1
)1/(p−1)

≤ −µ(t)′
(∫

Ωt

up
)1/p

µ(t)1/p(p−1)

≤ −µ(t)′µ(t)1/p(p−1)

Thus (
(4π)p/2/λ1

)1/(p−1)

µ(t)(p2−2)/(2p(p−1)) ≤ −µ(t)′.

Hence, (
(4π)p/2

λ1

)1/(p−1)

≤
(
−µ(t)(p2−2p+2)/(2p(p−1))

)′( 2p(p− 1)
p2 − 2p+ 2

)
.

But for all p > 1 it is clear that p2 − 2p+ 2 > 0 and −µ(t)(p2−2p+2)/(2p(p−1)) is
increasing and right continuous. Integrating from 0 to t, we find that

t ≤
(

2p(p− 1)
p2 − 2p+ 2

)(
λ1

(4π)p/2

)1/(p−1) (
1− µ(t)(p2−2p+2)/(2p(p−1))

)
Thus we get the estimate in the statement of the lemma. ♦

Remark. Lemma 3.2 leads to an upper bound under the assumption λ1 ≤ 2λ∗1.

The next three lemmas are crucial to proving the Theorem, they indicate
how asymmetry enters into the calculations. In Lemmas 3.3 and 3.5, k stands for
a positive constant in (0, 1/100), whose exact value will determined in Section
4. The basic approach to proving the Theorem is along the lines of [1, 3, 7] and
this motivates the following lemma.

Lemma 3.3 Let u solve (2.1), α be the asymmetry of Ω. Assume that there
exists a T with 0 < T < M such that for a. e. t ∈ [0, T ], there exists a constant
k, 0 < k < 1/100, with the property that

L(∂Ωt)2 ≥ 4π(1 + kα2)µ(t).

Then

λ1(Ω) ≥ λ1(Ω∗)
(

1 +
Tp

8M
kα2

)
. (3.12)
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Proof. Our starting point will be Lemma 2 in [16] and the outline of the proof
is quite similar to the method used in Lemma 1 in [17]. From [16, Lemma 2]
for a. e. t,

L(∂Ωt)p/(p−1) ≤ −µ(t)′
(
− d

dt

∫
Ωt

|Du|p
)1/(p−1)

,

where L(∂Ωt) is the De Giorgi perimeter. Employing the isoperimetric inequal-
ity,

(4πµ(t))p/2(p−1) ≤ −µ(t)′
(
− d

dt

∫
Ωt

|Du|p
)1/(p−1)

a. e. t.

Employing the hypothesis of the lemma, we get for a. e. t,

(
4π(1 + kα2)µ(t)

)p/2(p−1) ≤ −µ(t)′
(
− d

dt

∫
Ωt

|Du|p
)1/(p−1)

Therefore,

− d

dt

∫
Ωt

|Du|p ≥ (4π(1 + kα2)µ(t))p/2

(−µ(t)′)p−1
. (3.13)

Recall that from Lemma 3.1,
∫

Ωt
|Du|p is convex and hence continuous on [0,M ].

Since −
∫

Ωt
|Du|p is non-decreasing integrating (3.12) from 0 to T , we obtain∫

Ω

|Du|p −
∫

ΩT

|Du|p ≥ (1 + kα2)p/2
∫ T

0

4πµ(s))p/2

(−µ(s)′)p−1
ds

Rewriting and using that p-Dirichlet integrals diminish under symmetrization,
we obtain

λ1(Ω) ≥
∫

Ω∗T

|Du∗|p + (1 + kα2)p/2
∫ T

0

(4πµ(s))p/2

(−µ(s)′)p−1
ds (3.14)

where u∗ is the Schwartz non-increasing radial rearrangement of u. Recall that
u is C1,α

loc (Ω), hence u∗ is locally Lipschitz continuous. Since u∗(x) = u∗(|x|), we
define r(t) =

√
µ(t)/π. Clearly, u∗(r(t)) = t where r = |x|. Thus the co-area

formula yields∫
Ω∗t

|Du∗|p =
∫ ∞
t

(∫
∂Ω∗s

|Du∗|p−1

)
ds =

∫ ∞
t

|Du∗|p−1(r(s))L(∂Ω∗s)ds,

(3.15)
where r(s) =

√
µ(s)/π. Thus for a. e. t,

d

dt

∫
Ω∗t

|Du∗|p = −|Du∗|p−1(r(t))L(∂Ω∗t ), (3.16)

where r =
√
|Ω∗t |/π =

√
µ(t)π. Note that the above also shows that

∫
Ω∗t
|Du∗|p

is Lipschtiz continuous in t. However, using polar coordinates we may express∫
Ω∗t

|Du∗|p = 2π
∫ √µ(t)/π

0

|Du∗|pr dr.
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Differentiating the above and using (3.15)

d

dt

∫
Ω∗t

|Du∗|p =
√
π|Du∗|p(t)r(t)µ(t)′/

√
µ(t)

= |Du∗|pµ(t)′ = −|Du∗|p−1L(∂Ω∗t ).

Simplifying we obtain for a. e. t that

|Du∗| = −L(Ω∗t )
µ(t)′

. (3.17)

Employing (3.16) in the co-area formula (3.14) results in∫
Ω∗t

|Du∗|p =
∫ ∞
t

(4πµ(s))p/2

(−µ(s)′)p−1
ds. (3.18)

Now since k < 1/100 and α ≤ 1, clearly (1 + kα2)p/2 ≥ 1 + kpα2/4, for all
1 < p <∞. Using Lemmas 3.1, 3.2, (3.13), (3.17), we see that

λ1(Ω) ≥
∫

Ω∗T

|Du∗|p + (1 + kα2)p/2
∫

Ω∗\Ω∗T
|Du∗|p

≥
∫

Ω∗T

|Du∗|p + (1 + kpα2/4)
∫

Ω∗\Ω∗T
|Du∗|p

= (1 + kpα2/4)
∫

Ω∗
|Du∗|p − (kpα2/4)

∫
Ω∗T

|Du∗|p

≥ λ1(Ω∗)(1 + kpα2/4)− (kpα2/4)
∫

ΩT

|Du|p

≥ λ1(Ω∗)(1 + kpα2/4)− λ1(Ω)kpα2(1− T/M)/4. (3.19)

Simplifying (3.18), we get the statement of the lemma, namely,
λ1(Ω) ≥ λ1(Ω∗)

(
1 + kpα2T/8M

)
. ♦

Next we prove a relationship between λ1 and the level set Ωt.

Lemma 3.4 With u as before, t ≥ 0 and |Ω| = 1, we have

λ1(Ω) ≥ λ1(Ω∗)(1− t)p−1

|Ωt|(p−1)/2
.

Proof. We start with the weak formulation for u i.e.,∫
Ω

|Du|p−2Du ·Dφ = λ1(Ω)
∫
up−1φ, ∀ φ ∈W 1,p

0 (Ω). (3.20)

Let Ωt =
⋃∞
i=1Ci, where Ci’s are pairwise disjoint components of Ωt. In Remark

3.2 we will show that there can only be finitely many components of Ωt. Thus
Ωt =

⋃nt
i=1Ci. Setting φi = (u− t)+ in Ci and zero elsewhere, (3.19) yields∫

Ci

|Du|p = λ1(Ω)
∫
Ci

up−1(u− t)+, ∀ i = 1, 2, (3.21)



EJDE–2001/35 Tilak Bhattacharya 9

Also, for each i = 1, 2, . . . , φi is a trial function for the minimum problem (i.e.,
the variational formulation of the eigenvalue problem) on Ci. Thus∫

Ci

|Du|p ≥ λ1(Ci)
∫
Ci

(u− t)p+. (3.22)

Employing Hölder’s inequality, (3.20) together with (3.21) yields∫
Ci

|Du|p ≤ λ1(Ω)
(∫

Ci

up
)(p−1)/p(∫

Ci

(u− t)p+
)1/p

≤ λ1(Ω)
(∫

Ci

up
)(p−1)/p( 1

λ1(Ci)

∫
Ci

|Du|p
)1/p

.

Thus ∫
Ci

|Du|p ≤ λ1(Ω)p/(p−1)

λ1(Ci)1/(p−1)

∫
Ci

up.

Summing over i,∫
Ωt

|Du|p ≤ λp/(p−1)
1 (Ω)

∑
i

1
λ1(Ci)1/(p−1)

∫
Ci

up. (3.23)

Let L = inf {λ1(C1), λ1(C2), . . .}. Let C be an appropriate set in {Ci} such
that λ1(C) = L. Then, (3.22) yields∫

Ωt

|Du|p ≤ λ
p/(p−1)
1 (Ω)

λ1(C)1/(p−1)

∫
Ωt

up.

Rearranging terms and employing Lemma 3.1,

λ1(Ω)p/(p−1) ≥ λ1(C)1/(p−1)

(∫
Ωt

|Du|p
)(∫

Ωt

up
)−1

≥ λ1(C)1/(p−1)λ1(Ω)
(

1− t
∫

Ω

up−1

)(∫
Ωt

up
)−1

.(3.24)

Now observe that∫
Ω

up−1 ≤
(∫

Ω

up
)(p−1)/p

|Ω|1/p ≤
(∫

Ω

up
)(p−1)/p

= 1.

Clearly (3.23) yields,

λ1(Ω) ≥ λ1(C)(1− t)p−1

(∫
Ωt

up
)−(p−1)

. (3.25)

Now λ1(C) ≥ λ1(C∗) = λ1(Ω∗)/|C|p/2. The latter follows from a scaling ar-
gument ( noting that |Ω∗| = 1 and Ω ⊂ R

2); also observe that |C| ≤ |Ωt|.
Replacing λ1(C), in (3.24), by this lower bound and |C| by |Ωt| one is lead to

λ1(Ω) ≥ λ1(Ω∗)

[
(1− t)

(∫
Ωt
up
)−1 ]p−1

|Ωt|p/2
≥ λ1(Ω∗)

(1− t)p−1

|Ωt|p/2
.

We will apply Lemma 3.4 in the case when t << 1. See Section 4. ♦
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Remark 3.2 For every 0 < t < M , let Ωt =
⋃
i Ci where Ci = Ci(t) is a

component of Ωt. Then {Ci} is a finite family.
Proof. Suppose that this family is infinite. Let xMi

∈ Ci be such that
u(xMi

) = M . Let xi ∈ ∂Ci be such that |xi − xMi
| = dist(xMi

, ∂Ci). Clearly,
u(xi) = t. Since Ω̄t is compact, the local regularity results in [5, 12, 18] imply
that supΩt |Du| ≤ K(t) <∞. Thus

|u(xi)− u(xMi
)| = |M − t| ≤ K(t)|xi − xMi

|.

Since Ci’s are infinite and
∑
i |Ci| = |Ωt| <∞, |Ci| → 0 as i→∞. This means

that the right side of the above inequality goes to zero leading to a contradiction.
♦

We now study the situation when Lemma 3.3 fails to hold, namely, that for
some t, L(∂Ωt)2 < 4π(1 + kα2)|Ωt|. Our effort in the next lemma is to estimate
the size of such an Ωt in terms of α and k.

Lemma 3.5 Let 0 < t < M be such that L(∂Ωt)2 < 4π(1 + kα2)|Ωt|, where k
is the constant in Lemma 3.3. Then

|Ωt| ≤ (1− α)/(1− 5α
√
k/2). (3.26)

Proof. Clearly, Ωt is a set of finite perimeter. We first recall the definition of
perimeter L(∂Ωt); we refer to [4]. We define

L(∂Ωt) = inf(lim inf
i→∞

L(∂Si)),

where the infimum is taken over all sequences of polyhedra Si’s ( polygonal
regions in R2) with boundary ∂Si and satisfying

lim
i→∞

∫
Q

|χSi − χΩt | = 0,

for every compact Q ⊂ R2. Here χD is the characteristic of a set D. Clearly then
we may choose a sequence of polygonal regions Si such that L(∂Si) → L(∂Ωt)
with |(Si\Ωt) ∪ (Ωt\Si)| → 0 as i → ∞. Moreover, the sequence may be so
chosen that L(∂Si) < 4π(1 + kα2)|Si|. We will continue to work with Ωt but
with the understanding that the estimates to follow hold for Si and the final
statement for Ωt comes from taking the limit. The proof is carried out in three
steps.
(A) Let Ωt =

⋃∞
i=1Ci, where Ci’s are disjoint components ( while, in our case,

there can only be finitely many Ci’s, the proof we provide here applies to the
infinite case as well). Let Hj , j = 1, 2, . . . denote the holes in Ωt, i.e., the set
Ωt∪(

⋃∞
j=1Hj) consists of simply connected components, say Fi, i = 1, 2, . . . Here

Fi denotes the simply connected component obtained by plugging the holes of
Ci. We first prove an estimate for the total area of the holes Hj . Clearly,
L(∂Fi) ≤ L(∂Ci), and via the isoperimetric inequality,

4π(Σi|Fi|) ≤ ΣiL(∂Fi)2 ≤ ΣiL(∂Ci)2 ≤ (ΣiL(∂Ci))
2 = L(Ωt)2

< 4π(1 + kα2)|Ωt| = 4π(1 + kα2)(Σi|Ci|).
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The latter follows via the assumption made in the statement of the lemma.
While this leads to an estimate for the area of the holes, the argument we
present next will gives us a much better estimate. Set H =

⋃
jHj , then the

usual isoperimetric inequality implies

L(Ωt)2 = (ΣiL(∂Ci))2 = (ΣL(∂Fi) + ΣL(∂Hj))2

≥ 4π
(

Σi|Fi|1/2 + Σj |Hj |1/2
)2

≥ 4π
(
|F |1/2 + |H|1/2

)2

,

where F =
⋃
iFi. By our assumption on Ωt,

4π
(
|F |1/2 + |H|1/2

)2

≤ L(∂Ωt)2 < 4π(1 + kα2)|Ωt|.

Recalling that |F | = |Ωt|+ |H|, and expanding the left side, we have

4π(1 + kα2)|Ωt| > 4π
{
|F |+ |H|+ 2{|F ||H|}1/2

}
= 4π

{
|Ωt|+ 2|H|+ 2[(|Ωt|+ |H|)|H|]1/2

}
.

Simplifying,

2
{
|H|(|Ωt|+ |H|)

}1/2

≤ kα2|Ωt|.

One then easily obtains

|H| ≤ k2α4

4
|Ωt|. (3.27)

(B) Our second step is to show that of the Ci’s all but one have small areas.
In order to simplify our computations, we set Ri =

√
|Ci|/π, i = 1, 2, . . . .

Label Ri’s such that R1 = sup{Ri, i = 1, . . .}. This supremum is attained since
Σ|Ci| = πΣR2

i = |Ωt| <∞. Also note that L(∂Ci) ≥ 2πRi, ∀ i. Thus

4π2(ΣRi)2 ≤ (ΣL(∂Ci))2 = (L(∂Ωt))2 < 4π2(1 + kα2)(ΣR2
i ).

Set εi = Ri/R1, i = 1, 2, . . ., then(
1 +

∑
i>1

εi

)2

≤ (1 + kα2)
(

1 +
∑
i>1

ε2
i

)
.

Thus,
1 + 2

∑
i>1

εi +
∑
i>1

ε2
i ≤ (1 + kα2)(1 +

∑
i>1

ε2
i ),

hence,
2
∑
i>1

εi ≤ kα2(1 +
∑
i>1

ε2
i );

now, together with the fact
∑
i>1ε

2
i ≤

∑
i>1εi, we get∑

i>1

εi ≤
kα2

2− kα2
≤ kα2.
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Thus, ∑
i>1

ε2
i ≤ (

∑
i>1

εi)2 ≤ k2α4,

implying that ∑
i>1

|Ci| ≤ k2α4|C1| ≤ k2α4|Ωt|.

It n easy to see that

|C1| ≥
|Ωt|

1 + k2α4
≥ |Ωt|(1− k2α4). (3.28)

(C) We now work with F1; by hypothesis of the lemma and (3.27)

L(∂F1)2 ≤ L(∂C1)2 ≤ L(∂Ωt)2 ≤ 4π(1 + kα2)(1 + k2α4)|C1|

≤ 4π
(

1 +
10
9
kα2

)
|F1|. (3.29)

The last inequality follows from noting that k < 1/100. Since F1 is simply
connected, we may calculate the inradius I (see [14]) using (3.28),

I ≥
L(∂F1)−

√
L(∂F1)2 − 4π|F1|
2π

≥

√
4π|F1| −

√
4π(1 + 10

9 kα
2)|F1| − 4π|F1|

2π

≥
√
|F1|
π

(
1− 11

10

√
kα

)
≥
√
|Ωt|
π

(
1− 11

10

√
k α
)

√
1 + k2α4

≥
√
|Ωt|
π

(
1− 12

10

√
kα

)
= R.

Clearly the ball BR with an appropriate center lies in F1, and so BR\H lies in
C1. We now estimate Ωt by using the properties of the in-ball, the definition of
asymmetry α (see (1.2)) and (3.26),

α|Ω| ≤ |Ω\(BR\H)| = |Ω| − |BR\H|

≤ 1−
[(

1− 12
10

√
kα
)2 − k2α4

4

]
|Ωt|

≤ 1−
(

1− 5
2

√
kα
)
|Ωt|

Thus,

|Ωt| ≤
1− α

1− 5
√
kα/2

. (3.30)

We now recall the discussion at the beginning of our proof. The inequality in
(3.29) is derived for Si with α = αi = α(Si). As pointed out, taking the limit
i→∞ provides justification for validity of (3.29) for Ωt. ♦
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Remark 3.3 If t satisfies the conditions of Lemma 3.5, thenLemma 3.4 implies

λ1(Ω) ≥ λ1(Ω∗)

(
1− 5

√
kα/2

1− α

)p/2
(1− t)p−1. (3.31)

4 Proof of the main result

We take k = 1/625; we recapitulate the above results as follows:
(a) If asymmetry propagates over a “t” interval [0, T ], i.e., L(∂Ωt)2 ≥ 4π(1 +
kα2)|Ωt| a. e. t ∈ [0, T ], then

λ1(Ω) ≥ λ1(Ω∗)
(

1 +
kT

8M
α2

)
. (∗)

This follows from Lemma 3.3, and Remark 3.1. Note that it is enough toassume
that λ1 ≤ 2λ∗1, for otherwise the theorem follows.
(b) If not, i.e., for some t in [0, T ], we have L(∂Ωt)2 < 4π(1 +kα2)|Ωt|, then via
Lemma 3.4, and Remark 3.3 with k = 1/625, we have

λ1(Ω) ≥ λ1(Ω∗)
(1− 5

√
k α/2

1− α

)p/2
(1− t)p−1 (4.1)

≥ λ1(Ω∗)
(

1 +
9α
10

)p/2
(1− t)p−1

We make the following simple observations keeping in mind that 0 ≤ α ≤ 1.
Firstly

(1 + 9α/10)p/2 ≥ 1 + 9pα/40 when 1 < p. (4.2)

Also

(1− t)p−1 ≥


1− (p− 1)t if p ≥ 2 and 0 < t ≤ 1/p.
1− p(p− 1)t if 1 < p < 2 and

0 < t ≤ (p−1)
p < 1− (1/p)1/(2−p).

(4.3)

To achieve the proof of the Theorem we will adapt a technique taken from [9].
Case 1 Let p ≥ 2. We start by observing that, using (4.32) and (4.33), the left
side of (4.31) may be written as(

1 +
9α
10

)p/2
(1− t)p−1 ≥

(
1 +

9pα
40

)
(1− (p− 1)t)

= 1 + p

(
9α
40
− (p− 1)

p
t− 9(p− 1)αt

40

)
. (4.4)

We now reason as follows.
(i) Either asymmetry propagates over the ” t” interval [0, α/10p] (in a. e. sense),
in which case (∗) implies

λ1(Ω) ≥ λ1(Ω∗)
(

1 + k
α3

80pM

)
;
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or (ii) it does not, i.e., for some t ∈ [0, α/10p], (b) holds. Employing (4.34) and
noting that α ≤ 1, 2 ≤ p and (p− 1)/p ≤ 1, we find that

λ1(Ω) ≥ λ1(Ω∗)
[
1 + p

(
9α
40
− (p− 1)α

10p2
− 9(p− 1)α2

400p

)]
= λ1(Ω∗)

(
1 +

61p
400

α

)
.

Case 2 Now take 1 < p < 2. Thus (4.31), (4.32) and (4.33) for 0 < t < (p−1)/p,
give us(

1 +
9α
10

)p/2
(1− t)p−1 ≥

(
1 +

9pα
40

)
(1− p(p− 1)t)

= 1 + p

(
9α
40
− (p− 1)t− 9p(p− 1)αt

40

)
. (4.5)

Again, if (i) asymmetry propagates over the “t” interval [0, (p− 1)α/10p], then
(*) implies

λ1(Ω) ≥ λ1(Ω∗)
(

1 + k
(p− 1)α3

80pM

)
.

(ii) If not, then (4.35) together with the fact that 1 < p < 2 implies that

λ1(Ω) ≥ λ1(Ω∗)
(

1 +
41pα
400

)
.

The statement of the Theorem follows from the conclusions in Cases 1 and 2.
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