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Periodic solutions for a class of non-coercive
Hamiltonian systems *

Morched Boughariou

Abstract

‘We prove the existence of non-constant T-periodic orbits of the Hamil-
tonian system

q= Hp(t,p(t),q(t))
p = _HQ(t7p(t)7Q(t))7

where H is a T-periodic function in ¢, non-convex and non-coercive in
(p,q), and has the form H(t,p,q) ~ |q|*(|p|® — 1) with a > 3 > 1.

1 Introduction

We study the existence of T-periodic solutions of the Hamiltonian system

q = Hy(t,p(t),q(t)) (1.1)
p=—Hy(t,pt),q(t)).

Here, H(t,p,q) : RxRY xRN — R (N > 3) is T-periodic in ¢ and differentiable
in (p,q). We also assume that H, H,, H, are continuous.

Most of the existence results use coercivity (i.e., H(t,p,q) — oo as |(p,q)| —
00) or convexity assumptions in H(¢,.); see [1, 2, 3, 4, 5] and references therein.
The purpose of this paper is to study non-coercive and non-convex Hamiltonians.
Typically,

H(t,p,q) ~ lg|*(Ip” = 1); a>p8>1.

To state our existence result, we introduce the following hypotheses. For con-
stants « > 3> 1,7 > 0, ay,...,as > 0 and functions A, K; € C(RV R) with
K;(0) =0 (i = 1,2,3), we assume:

(H1) H(t+ %,p, q) = H(t,—p,—q) for all ¢,p, ¢;

(H2) (i) H(t,p,q) < a1lq|*|p|? for all t,p,q;
(ii) H(t,p,q) > a2|q|*p|® — K1(q) for all ¢, p, g;

* Mathematics Subject Classifications: 34C25, 37J45.

Key words: Hamiltonian systems, non-coercive, periodic solutions, minimax argument.
(©2001 Southwest Texas State University.

Submitted January 3, 2001. Published May 28, 2001.




2 Periodic solutions EJDE-2001/38

|Hy(t,p,q)| < aslqg|®(|p|°"~ + 1) + ag|q| for all ¢, p, g;
|Hy(t,p,q)| < A(q)(|p|® +1) for all ¢, p, g;

(1) Hq(tap7 q)q 76Hp(t7pa q)p 2 a7H(t7p7 Q) + KQ(q) for all tap7 ‘q| S T3
(i) |Hp(t,p,q)| 7T < aslg| 7= (la|*|p|” + K3(q)) for all t,p, |q| <.

Our main result is as follows.

Theorem 1.1 Under assumptions (H1)-(H6), System (1.1) has at least one
non-constant T-periodic solution (p(t), q(t)) with q(t) # 0 for all t.

Remark. If H(t,p,q) = a(t)|q|*(|p|® — 1) with a > 8 > 1 and a(t) € C(R,R)
is a Z-periodic and positive function , then (H1)-(H6) hold.

Remark. The condition o > [ is necessarily for the existence of non-constant
T-periodic solution. More precisely, in case

H(t,p,q) = lg|*(Ip|” = 1),
if (p(t), q(t)) is a non-constant T-periodic solution of (1.1), then
(i) a> B
(ii) there exists a constant C' > 0 such that
lg(®)|*(Ip(t)|® —1) = C > 0 for all t € R.

In particular, g(t) # 0 for all ¢t € R.
Indeed, by (1.1) we have

T T T
/'Mﬁ:@/ mwwﬁ:a/’M%manw
0 0 0

Then
T T
<a—m/ mwwﬁza/ lg|dt.
0 0

Since (p, q) is non-constant, one can see that ¢ # 0 and a > . Also note that
(ii) follows from the conservation of the energy.

To show the existence of a T-periodic solution of (1.1), we use a variational
method; we introduce the functional

T
I(p.q) =/ lpq — H(t,p, q)ldt
0
defined on the function space

E={(p,q) € L'(0,T;RY) x W"&D (0, T;RV); ¢(0) = ¢(T)}
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where v = a + (. Critical points of I(p,q) on E correspond to T-periodic
solutions of (1.1). We remark that the correspondence is one-to-one.

Since it is difficult to verify the Palais-Smale compactness condition for
I(p,q), we introduce in the following section, modified functionals and a finite
dimensional approximation. We will use a minimax argument.

2 Modified functionals and other preliminaries

As stated in the introduction, we will find a critical point of the functional
I(p,q) on E = P x @ where

P=L0,T;RY), Q={qeW" &5 (0,T;R");q(0) = (T)}.
We set
A={qeQ; q(t) #0for all ¢t}
and introduce the modified functionals

O,

T
Is5(p, q) =/0 [pg — H(t,p,q) + IR

T
. 1)
Tscp.a) = [ o= Ht.p.0) + o+ (P = o)
0

for §, € € [0,1]. Since v > § > 1, by (H2), (H4), and (H5), we can see that
Is. € CY(P x A;R).

To get the existence of a T-periodic solution for a symmetric Hamiltonians,
we have to restrict our functionals to a subsets of E. We set

B = {(0.9) € B: (p.0)(t + 3) = ~(p.0)(0)

with norm
(2 )l 2o = llplly + lldll =

where

T
lulls = (/ lu(t)[*dt)"/* for all s > 1.
0

For m € N, we define

Pm :Qm
2imjt T ~ .
={p(t)= D O T plt+5) = —p(t).0; € CV,0_; =0, [j| < m},
[7]<m
Em = Pm X Qma

A ={q € Qm; q(t) # 0 for all t},
0Ny, = {q € Qum; q(to) = 0 for some o}
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and we consider the restriction of I .(p, q) :
Ié,a,m = I&,E/meAm Py x Ay, — R
The main reason for introducing such subspaces are the following Lemmas.

Lemma 2.1 For any u € Q such that u(t + L) = —u(t), we have

T
lulloo < / i dt.
0

Proof. Let u € @ such that u(t+ Z) = —u(t). Then for all ¢ € [0,7], we have

1 T 1, [1HE T
u(®)] = glute+ 5) o = 5| [ aasi< [ s
2 2 2' J, o
Thus we obtain the desired result. &

Lemma 2.2 Suppose (p,q) € P, X Ay, is such that
I(';,E’m(p, q)(h,k) =0 for all (h, k) € E,. (2.1)

Then (p,q) is a critical point for Is . m.

Proof. It is sufficient to remark that, by (H1), I3y_ . (p,q) € En. Since
I . m(p, q) belongs also to E:- from 2.1, we have the conclusion. &

The proof of Theorem 1.1 will be done as follows: In section 3, we introduce a
minimax method to Is ¢ ,,,. For d,e €]0, 1] and m € N, we establish the existence
of a sequence (Ps.e.mss,e,m) € Pm X Ay, such that

Itg,e,m(pls,E,TR?(I(s,E,m) =0, (2.2)

IzS,E,m(p&,s,mv QS,s,m) <c (23)

where ¢ > 0 is a constant independent of §,¢ and m. From 2.2-2.3, we can
find uniform estimates for (psem,¢sem) and we can extract, in section 4, a
subsequence converging to (ps.e,¢sc) € (P x A)NEp. Next in Section 5, we pass
to the limit as € — 0 and obtain a critical points (ps,gs) € (P x A) N Ey of I5
such that

Is(ps,qs) < c. (2.4)

Finally in Section 6, we pass to the limit as § — 0. Lemma 2.1 plays a essential
role to obtain a non-constant T-periodic solution (p,q) = lim(ps, ¢s) of (1.1).
In the sequel, we use the projection operator
proj,, : L*(0, TsRN) — span{e T3 |j| < m},
(proj,,u)(t) = Z Hje@ for wu(t) = Zﬂje%;jt

l7l<m JEL
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Lemma 2.3 For any s €]|1,+00], there exists a constant Ks > 0 independent
of m € N such that

Iproj,,ulls < Killulls for all w e L*(0,T;RY).

This lemma is a special case of Steckin’s theorem [6, Theorem 6.3.5]. In sections
3, 4, 5, and 6, we will assume (H1)-(H6).

3 A minimax method for ;. ,,

In this part, we study the existence of critical points in P, x Ay, of I5. ., for
d,e €]0,1] and m € N. First, we give some a priori estimates and verify the
Palais-Smale condition (PS) for Is ¢ .

Lemma 3.1 (i) For any M; > 0, there exists a constant Cy = Co(My) > 0
independent of 6,¢ €]0,1] and m € N such that: If (p,q) € Py, X Ay, satisfies

Iscm(p,q) < My, (3.1)
I m(pa) =0, (3.2)

then
T T
/ IQI“\pIﬁdtJr/ lq|*dt < Co,
0 0

T T 4
5/ (lg]" + |p\7)dt+6/ ——dt < Cy.

0 o lal

(ii) For any d,¢ €]0,1] and m € N, if (pj,¢;)521 C Pm x Ay, satisfies
(P> 45) — (Po,q0) € Pm x O\,

then Ié,s,m,(pja QJ) — ~+o00.
(iii) For any 6, €]0,1] and m € N, Is.., satisfies the condition (PS) on
Pp X Apy;ie, if (pj,q5)jen C Pm X Ay, satisfies I5 o m(pj,q) — ¢ > 0 and

(Is.e.m) (pj,q;) — 0, then (pj,q;) possesses a subsequence converging in E,, to
some (p,q) € P X Apy.

Proof. (i) Let 6, €]0,1] and m € N. We assume (p, q) € P, x A, satisfies
3.1 and 3.2 for M; > 0. We have

T
I c (D, @) (p,0) = / [pq — Hy(t,p,q)p — ev|p|7]dL.
0
Hence,
I(S,E,m(p7 q) - Ig,a,m<p’ q)(p7 0) (33)

T
5
= / [=H(t,p,q) + Hp(t,p, q)p + ot elgl™ +e(y — 1) |p[7]dt.
0



6 Periodic solutions EJDE-2001/38

By the assumptions 3.1 and 3.2, we get

T
é
| 00 + Hypap + o+ el e = 1)l < M.
0

From (H3), it follows that

T

1)

| falal*ol? 1) = -+ o el ot~ Dl < M
0

Thus we obtained (i).
(if) By (H2)(i), we have for all (p,q) € Py, X Ay,

T T
. « (e} 1
o) = [ pi— bl +ol” ~ Pt +6 [ can (3a)
0 0

Since § foT ﬁdt — 00, we get the conclusion easily.

J
(iii) Let (pj,q5)(jen)y € Pm X Ay, be a sequence satisfying the assumptions of
the condition (PS).We may assume that

I(S,e,m(pjvqj) —C, (35)

||I(/5,s,m(pjaQJ)||E,’;q, — 0. (36)

We prove that (pj,q;) possesses a convergent subsequence to some (p,q) €
P,, X Ay,. By (H3) and 3.3-3.6, for large j,

T T 1
[ sl 1)~ ande+5 [
0 o gl
T T
ve [ ot vet-n [ pld < 2 ol
0 0

Thus, for some constant C; > 0 independent of j,

T T
/ |qj\adt,/ Ip;["dt < Gy for all j € N.
0 0

Since dim E,,, < oo, we can extract a subsequence - still indexed by (p;,¢;) -,
such that (p;,q;) — (p,q) € E. By (ii), we necessarily have g € A,,.

Next, we apply to Is. ,, a minimax argument related to the one in [7]. This
argument will play an important role in obtaining a critical points (ps.,m, 45.c.m) €
P,, x A, with uniform upper bound of critical values. We define

T ={A(p,¢) € C(Pm x SN=2 P, x Am); A(p, &) = (p7 ao(f))for large ||p|ls}

where

N—-1
ag - SN72 = {§ = (flw-wa—l) S RN71 : Z |§j|2 = 1} - Qm

j=1
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is given by

27t

a0(&)(t) = cos— (&1, -+, En-1,0) —&-sin?(o, ...0,1).

We remark that Ag(p,&) = (p,00(§)) € Ty and Ty, # 0. Then we define the
minimax values of I5 ., as follows

c = inf S I A .
M T Aer, (za,&)eP:,pstf2 sem(A(p:8))

Proposition 3.1 For anyd,e €]0,1] and m € N, there exists a constant ¢(d,e) >
0 such that
Csem > c(0,6) > 0.

To prove this proposition, we need the following result.
Lemma 3.2 For any A € T',, and X\ > 0, we have
AP, x SN ") N Dy £ 0

where )
Dyx = {(p,q) € Py x An; p = Aproj,, (|d|7-74)}.

The proof of this lemma will be given in the appendix.

Lemma 3.3 For sufficiently small A\c > 0, there exists a constant ¢(d,€) > 0
such that

Isem(p,q) > c(6,6) >0 for all (p,q) € DA,

where Dy, ». 15 given in Lemma 3.2.

Proof. Let (p,q) € Dy, x. Werecall that v = a+6. By the Young’s inequality,

T T T
0% a ok
al/ lq|*|p|Pdt < —E/ Iql”dt+§(—i)5/ Ip|7dt.
0 Y Jo Y oen 0

Thus, from 3.4,
T T T
Ls,e,m(p,q)Z/ pddt—a(é)/ Ipl”dt+5/ Todt
0 0 o lal”

where a(e) =&+ g( L)% > 0. Since (p,q) € Dina,

T T .
/p(jdt:)\/ )75 dt. (3.7)
0 0

Moreover, by Lemma 2.1 and Lemma 2.3

m
4\Q|g

T
T4l 2 = [ laldt > ol (3.8)
0
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T ol
/ Ip[7dt = X"[[proj,, (1417 I3 < MK ] 75 (3.9)
0 7=

By 3.7 and 3.9, we get

T
72 1
Lsem(p,q) 2 (A — ale) KIAM)Il4]| 2 +5/ —dt.
y—1 0 |q"¥

Taking A. small enough so that A. = A, — a(E)K:;)\g > 0, from 3.8, for all
(P, q) € Dp,x., We have

oT

gl

. A 2
Ié,s,m(pa Q) > ;Ielf\ (Tf;”llngo ! ) = 6(57 6) >0.

Proof of Proposition 3.1 Let A\. > 0 be as in Lemma 3.3. By Lemma 3.2,
we have

APy x SN N Dy, #0 forall A€T,,.
Thus, we find that
Csem = inf sup Isem(Ap, €
: ACTn (pe)ePxsN—2 (A-£)

= inf L; 5
(p7Q)EDnL,AE ’Eﬂn(p q)

> c(d,e) > 0.

\

We choose ¢(6,¢) = ¢(d, ), we get the desired result. O
Now, we prove an existence result
Proposition 3.2 For any d,¢ €]0,1] and m € N, we have

(1)

0< 9(57 5) < Cs,e,m § c

where € is independent of §,e and m.
(ii) If ||pl|s is sufficiently large, then for all £ € SN=2,

I6,5,m(A0(p7 5)) S 0.
(111) There exists a critical point (Ds.em,qsem) € Pm X A of Is e m such that

IS,E,m(pzS,e,ma qd,s,m) = Cs,e,m-

Proof. (i) By (H2)(ii), we have

T

rod
Tem(Aop.€) < [ pllGoo©ldt = ax [ (@) ol

T T 1 S
; / Ky (o0(€))dt + / (i e

< allplls — Kallpl§ + ks (3.10)



EJDE-2001/38 Morched Boughariou 9

for some positive constants ki, ko, k3 independent of §, ¢ and m. Since 8 > 1,
there exists a constant ¢ > 0 independent of §,¢ and m such that

Cs,e,m < sup I(S,s,m(AO(pa E)) <ec
(p,€)E Py x SN -2

(ii) follows clearly from 3.10.

(iii) Since Is ., satisfies the (PS) condition and property (ii) of Lemma 3.1,
then by a standard argument using the deformation theorem and (ii), we can
see that ¢s. ., > 0 is a critical value of I5 ,,. By Lemma 2.2, we get (iii). ¢

As a corollary to (i) of Lemma 3.1 and the uniform estimates of ¢5 ¢ m, we
have the following statements.

Corollary 3.1 Let (Ds.em,qs.e,m) € P X Ay, be a critical point of Is . m 0b-
tained by Proposition 3.2.Then, there exists a constant Cs > 0 independent of
d,e and m, such that for all §,e €]0,1] and m € N, we have

T T
(1) / |q6,€’m|a|p6a5=m|ﬁdt +/ |q615’m|adt S 027
0 0
T
(i) £ / (195,,m|” + |Ps.em|”)dt < Co,
0
T
(iif) 5/ ———dt < Cy.
0 |q5,67m|7

4 Limiting process as m — o0

Proposition 4.1 For any d,e €]0,1], (Ps,c,msqs,e,m) Dossesses a subsequence
converging in E to (pse,qs5:) € (P x A) N Ey. Moreover,

Ié,s(pé,saq&s) < 57 (41)
I5-(psergse) = 0. (4.2)

Proof. By (ii) of Corollary 3.1, we can extract a subsequence - still indexed
by m- such that

(pzs,a,mv q5,€,m) - (pé,sv q5,€) Weakly in LY (07 T; RN)

We remark that I§_ . (Ps.e.m,qs5.e,m) = 0 is equivalent to

q.é,a,m = projm[Hp<t7p6,E,m7 q5,5,m) + 57‘p5,5,m|’y_2p6,5,m]7 (43>
. . 4s,e, -
DPse,m = 'pro.]m[Hq(tvpé,E,ma Q6,8,1n) +57% - 6’7‘Q§,8,m|ﬂy 2q&,a,m]~ (44)
|¢5,e,m |7

By (H4) and Lemma 2.3, we have from 4.3

|(5—1))

lds.comll 2 < K 2 [as]|(1g5.c.m||ps.c.m Iz + asllgsemlla

+a6||q5,s,m|| 711 + 5’Y||P5,s,m||$1]-
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Using a Holder’s inequality and (i)-(ii) of Corollary 3.1, we can find a constant
C3 > 0 independent of m € N, such that

v < (Cs.
Wb AT (0,T5RN) = 3

[15,,m
Thus we can see from (iii) of Corollary 3.1 that
gs.e.m — ¢s,e € A uniformly in [0, T7. (4.5)
On the other hand, by (H5) and Lemma 2.3, we have from 4.4

Bsemll 2y < K [I1AG5em)P5em)” | 2y + 1 A(5,,m) | 2,

5 4s,e,m

+’YH |Q6 |,y+2 _€|q5,s,m|772q5,s,m”ﬁ]'
£y

Using 4.5, we find

<Oy

||p6,a,m||wly%(0’T;RN) =

where Cy > 0is a constant independent of m. The injection wht (0,T;RN)
L7(0,T;RY) is compact, thus we have

Ds,e,m — Ds,e strongly in L7(0,T; R™) and uniformly in [0, T]. (4.6)
By (i) and (iii) of Proposition 3.2, we deduce that
Ise(Pse g5e) = 1 Tsem(Psemsds.em) <&
Ty (e @3 (k) = 1T (P @) () = 0

for all sums

h=3"0;e 7 k=Y et (0,1, €CV).

l7l<n l7l<n

Therefore, I§ _(pse; gs.e)(h, k) = 0 for all (h, k) € E.

5 Limiting process as ¢ — (
We take the limit as € — 0 to obtain a critical point (ps,qs) € (P x A) N Ey of

Is with uniform upper bound for critical values. As a consequence to Corollary
3.1, and 4.5, 4.6 we have the following lemma.

Lemma 5.1 For any é,¢ €]0,1], (pse,qs,c) € (P x A) N Ey satisfies
T T
() | lasellpselPat + [ aselvae <
0 0
T
(i) = [ llase
0

|
iii 0 dt < Cs.
( ) /0 |Q6,5|’Y =2

T+ |pse|7)dt < Co,
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Proposition 5.1 For any § €]0,1], (ps.c, gse) possesses a subsequence converg-
ing in E to (ps,qs) € (P x A) N Ey. Moreover,
I5(ps, 45) = 0,

Is(ps,qs) < c.

Proof. Since I§ _(pse;gs,c) = 0, we have

q&,s = Hp(tvpé,s, q&,e) + 57‘p5,6|’Y72p5,67 (5'1)
. s, _
Po,e = —[Hqy(t, psc. qse) + Mrs |j+2 — eY]5,el" 25,2 (5.2)
€

By (H4) and 5.1, we can see from (i)-(ii) of Lemma 5.1 that

T T T T
/ ldo.cldt < GS[/ g5.c| s P~ Ldt + / lg5.c|dt] + ag / gs.c|dt
0 0 0 0

T
+€fy/ Ips.c|"tdt
0
< Cs
where C5 > 0 is a constant independent of e. Thus, we deduce that (gs.e)e is
bounded in L>(0, T;RY).
By (H4) and (5.1) again, we have

el

lgsell = < asll(lg5.|ps.c 2 T asllasella 2

+agllgs.ell =, + eYllps,ell .

Here we will apply the Holder’s inequality

fglls < 1A Nspllgllsw

. a B—1 _
with f(t) = lgsc|?, 9(t) = (g5.[*lpscl®) ™, s = 225, p =22 and v =
(=18
(B-=1)v"
We verify that i + % = 1. Then we have

asel1psc* D2y = MllaselF)aselpsel®) 1l 2,
< 0lasel )l Nl (gse | sl TN s,
a B-1
= llasel 7 1(asl*lpsl )],
< GCs

where Cs > 0 is a constant independent of e.
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Finally (gs,¢)e is bounded in Wl’%(O,T; RY). That is we can extract a sub-
sequence -still indexed by e- such that

g5 — ¢s € A uniformly in [0, T]. (5.3)
Since fOT |gs.c|%|ps.c|Pdt < Oy, we get

T
/ Ipscl?dt < C (5.4)
0

for some constant C; > 0 independent of e. By (H5) and 5.2-5.4, there exists a
constant Cg > 0 independent of £ such that

T
/ [Pt
0

and

IA

T T
1
Ags e 585+1dt+/ g5t
/0 (45.¢) (Ips.cl” + 1) i (|q676|7+1 las.c1" )

Cs

IN

T
/ |p5,5"ydt S CS~
0

So we can extract a subsequence -still indexed by e- such that
Ps,e — ps strongly in L7(0,T;R) and uniformly in [0, 7). (5.5)

By 5.3 and 5.5, a passage to the limit on 4.1-4.2 similar as in Section 4 completes
the proof.

6 Proof of Theorem 1.1

We take a limit as 6 — 0 to obtain a T-periodic solution of (1.1). Let (ps, gs) €
(P x A) N Ey be a critical point of I5(p,q) obtained by Proposition 5.1. By
Lemma 5.1, 5.3 and 5.5, we have

Lemma 6.1 For any 6 €]0,1],

T T
(i) / \qalalpa\ﬁdw/ lgs|*dt < Cs,
0 0
L |
i 5/ L dt < Oy
() o las|” ?

By (i) of Lemma 6.1, we can extract a subsequence -still indexed by d- such that
gs — q weakly in L(0,T;RY).
We also remark that I§(ps, ¢s) = 0 is equivalent to

(j(; = Hp<t7p57q5)a (61)

L a5
ps = —[Hq(t,ps, qs) + 57w]' (6.2)

Lemma 6.2 g5 — q € A uniformly in [0,T].
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Proof. By (H4) and 6.1, we have

T T T T
/ mwﬁga{/|%m@ﬂwﬁﬁ+a{/|%wm+a§/|%mt
0 0 0 0

Using (i) of Lemma 6.1, we can see that ||gs|lyw1.1(0,7;rv) is bounded. Thus we
can find a constant Cy > 0 independent of J, such that

T B
/\Mﬁﬁg@
0

Consequently, we obtain g5 — ¢ uniformly in [0, 7.
We now argue indirectly and suppose that

q(to) =0 for some ¢ € [0,T].

We may assume to = 0. By 6.1, for any ¢ €0, 7] we have

gs(s) H,(s,ps,qs
log as(t)] — log las (@) < [ 185! ' Nas.  (63)
o las(s)| el
By
H S , t _ B t 3
' |qff (595,45 4, / g5 ps|®~ds + as / g5 ds + agT.
0 0

Since & > § > 1 and fOT lgs|*|ps|Pdt < Ca, there exists a constant Cyg > 0
independent of §, such that

|H 5,05,45)|

R 200 ds < Ch. 6.4
P < Cio (6.4)

Passing to the limit in 6.3, we see that g5 — 0 uniformly in [0,7]. By 6.1-6.2,
we have

T T
Is(ps,qs) = /()Hp(f,pa,%)padt—/o H(t,ps,qs) dt+5/ g dt
T T T 1
= /Hq(t,pa,qs)qadt—/ H(t,p57q5)dt+5(v+1)/ Tt
0 0 0 |Q5|
Hence

T T
1
/ [Hqy(t, s, 45) 45 —Hp(tps,qa)p&]dtJrM/ 2l 5|dt_0
0 0

From (H6)(i) and (H2)(ii), it follows that

T T T T 1
aras / lgs1Ipsldt — ar / Ky (gs)dt + / Ko (gs)dt + 6 / L <o
0 0 0 o las]”
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for small 6. Since g5 — 0 uniformly in [0, T], we find

T
/ lgs|“|ps|Pdt — 0 as § — 0.
0

Thus we can see from 6.1, 6.5 and (H6)(ii),

sl 7= T\ H,(t 5T
0 0 lgs|7-T

IN

T

GS/ (las|“Ips|® + K3(gs))dt
0

—0asd— 0.

In other hand, we have from Lemma 2.1

B T,. e

/T a5 77 o o ldsldt) ™

N i
1

Y

1 s=£
T77|gs |

— 400 as 6 — 0.
This is a contradiction to 6.6 which proves the Lemma 6.2.

Lemma 6.3 There exists a constant Cy; independent of § €]0,

sl 0,rmyy < Cha.

EJDE-2001/38

1] such that

Proof. Since g5 — ¢ € A uniformly in [0, 7] and fOT lgs|*|ps|Pdt < Cs, there

exists a constant Cy5 > 0 independent of § €]0, 1] such that

T
/ Ips|Pdt < Cya.
0

By (H5) and 6.2, one deduce that fOT |ps|dt is bounded. Thus
some constant C1; > 0 independent of ¢ €]0, 1]

s llw0,rmyy < Cra.

We complete the proof of Theorem 1.1 as follows: By Lemmas

we can see for

6.2 and 6.3, we

can extract a subsequence -still indexed by é- such that ps — p strongly in
LY(0,T;RYN) and (ps,qs) — (p,q) € (P x A) N Ey uniformly in [0,7]. Since

I5(ps,qs) = 0, we get
I'(p,q)(h,k) =0 forall (h,k)e E.

That is (p,q) € (P x A) N Ep is a non-constant T-periodic solut

ion of (1.1).
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7 Remarks on the prescribed energy problem
If H(t,p,q) does not depend on ¢, then the energy surface
Sw=H '(h) ={(p,q) € RY xR"Y; H(p,q) = h} (h > 0)

is not compact for such Hamiltonian functions. Moreover, S}, is equal to

H7'(1) = {(p,q) e RN x RN\ {0}; H(p,q) =1}

where
r] H(p7 q) —h
It is clear that, if H(p,q) ~ |q|*(|p|® — 1), then
~ h
H(p,q) ~ |pl” — I (7.2)

In the last few years, the existence of periodic solutions of singular Hamiltonian
systems has been studied via variational methods under the situation related
to two-body problem in celestial mechanics. That is, situation H(p, q) is of the
form

H(p,q) = %Ipl2 +V(q)

where V(q) € CYH(RY \ {0},R) and V(gq) — —oo0 as ¢ — 0. See [8, 9, 10] and
references therein. Results dealing with more general singular Hamiltonians of
the form (7.2) can be found in [7, 11] for fixed period problems, and in [12, 13]
for fixed energy problems.

According to the fundamental lemma of Rabinowitz ( see [1] and [14, lemma
3.1]), it follows that the Hamiltonian system (1.1) has, for H and H which are
related by 7.1, the same orbits on Sj,. Therefore, under suitable conditions
on H including |q|*(|p|® — 1) with & > 8 > 1, the theorem of [12] carries a
non-collision orbit of the singular Hamiltonian system

which corresponds to a non-constant periodic solution of (1.1) with energy h.

Appendix: Proof of Lemma 3.2

The proof of Lemma 3.2 is a special case of [7, lemma 3.1]. We fix A € T, and
take R > 0 such that

. d a4, d
R > A max  [proj, |5 (@0(©) 0171 Z(n(O) ()]s
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A(p,§) = (p,00(§)) if [Iplls = R.

We note that
A(p, &) = (2(p,€),y(p,€)), (A.1)

B(p) ={p € Pu; lplls <p}, p>0.

Then we define the function ¢(p) € C(R, [0, 1]) such that

_J 1 p<R

Using the notation (A.1), we define a mapping

F:P, xSN"2x[0,T]/{0,T} ~ P, x SN2 x ' — P, x SN~!

F(p,&,1) = (2(p,€) — Aol 5)proj,, (|50, €)1 77 (. €)), 5(6) (1))

where &()(t) = 29U and

A1) = (34 con )€1 Ev-1.0) = (3.0.....0) + (0.....0.sin ),

We remark that F(p,&,t) = (p,6(£)(t)) for |pllg > 2R and the degree of the
map & : SV 72 x ST — SN~1 s not equal to zero.

Thus, there exists R’ > 2R such that the degree of the mapping

F: (B(R)xSN2xSY0B(R)x SN 2xS') — (B(R')x SN "1 0B(R)x SN 1)
is not equal to zero. Then it follows the existence of (p, &) such that

2(p, &) — A(|[pl p)proj,, (9(p, )17 " §(p,€)) = 0.

By the definition of R, we have necessarily ||p|/g < R. That is
. . _1__q.
#(p,§) = Aproj, ([9(p: )17 "4(p,€))
and then

APy x SN72) (D # 0.
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