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Periodic solutions for a class of non-coercive

Hamiltonian systems ∗

Morched Boughariou

Abstract

We prove the existence of non-constant T -periodic orbits of the Hamil-
tonian system

q̇ = Hp(t, p(t), q(t))

ṗ = −Hq(t, p(t), q(t)),

where H is a T -periodic function in t, non-convex and non-coercive in
(p, q), and has the form H(t, p, q) ∼ |q|α(|p|β − 1) with α > β > 1.

1 Introduction

We study the existence of T -periodic solutions of the Hamiltonian system

q̇ = Hp(t, p(t), q(t)) (1.1)
ṗ = −Hq(t, p(t), q(t)).

Here, H(t, p, q) : R×RN ×RN → R (N ≥ 3) is T -periodic in t and differentiable
in (p, q). We also assume that H,Hp,Hq are continuous.

Most of the existence results use coercivity (i.e., H(t, p, q)→∞ as |(p, q)| →
∞) or convexity assumptions in H(t, .); see [1, 2, 3, 4, 5] and references therein.
The purpose of this paper is to study non-coercive and non-convex Hamiltonians.
Typically,

H(t, p, q) ∼ |q|α(|p|β − 1); α > β > 1.

To state our existence result, we introduce the following hypotheses. For con-
stants α > β > 1, r > 0, a1, . . . , a8 > 0 and functions A, Ki ∈ C(RN ,R) with
Ki(0) = 0 (i = 1, 2, 3), we assume:

(H1) H(t+ T
2 , p, q) = H(t,−p,−q) for all t, p, q;

(H2) (i) H(t, p, q) ≤ a1|q|α|p|β for all t, p, q;
(ii) H(t, p, q) ≥ a2|q|α|p|β −K1(q) for all t, p, q;
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2 Periodic solutions EJDE–2001/38

(H3) −H(t, p, q) +Hp(t, p, q)p ≥ a3|q|α(|p|β + 1)− a4 for all t, p, q;

(H4) |Hp(t, p, q)| ≤ a5|q|α(|p|β−1 + 1) + a6|q| for all t, p, q;

(H5) |Hq(t, p, q)| ≤ A(q)(|p|β + 1) for all t, p, q;

(H6) (i) Hq(t, p, q)q −Hp(t, p, q)p ≥ a7H(t, p, q) +K2(q) for all t, p, |q| ≤ r;
(ii) |Hp(t, p, q)|

β
β−1 ≤ a8|q|

α
β−1
(
|q|α|p|β +K3(q)

)
for all t, p, |q| ≤ r.

Our main result is as follows.

Theorem 1.1 Under assumptions (H1)-(H6), System (1.1) has at least one
non-constant T -periodic solution (p(t), q(t)) with q(t) 6= 0 for all t.

Remark. If H(t, p, q) = a(t)|q|α(|p|β − 1) with α > β > 1 and a(t) ∈ C(R,R)
is a T

2 -periodic and positive function , then (H1)-(H6) hold.

Remark. The condition α > β is necessarily for the existence of non-constant
T -periodic solution. More precisely, in case

H(t, p, q) = |q|α(|p|β − 1),

if (p(t), q(t)) is a non-constant T -periodic solution of (1.1), then
(i) α > β;
(ii) there exists a constant C > 0 such that

|q(t)|α(|p(t)|β − 1) = C > 0 for all t ∈ R.

In particular, q(t) 6= 0 for all t ∈ R.
Indeed, by (1.1) we have∫ T

0

pq̇dt = β

∫ T

0

|q|α|p|βdt = α

∫ T

0

|q|α(|p|β − 1)dt.

Then

(α− β)
∫ T

0

|q|α|p|βdt = α

∫ T

0

|q|αdt.

Since (p, q) is non-constant, one can see that q 6= 0 and α > β. Also note that
(ii) follows from the conservation of the energy.

To show the existence of a T -periodic solution of (1.1), we use a variational
method; we introduce the functional

I(p, q) =
∫ T

0

[pq̇ −H(t, p, q)]dt

defined on the function space

E = {(p, q) ∈ Lγ(0, T ;RN )×W 1, γ
(γ−1) (0, T ;RN ); q(0) = q(T )}
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where γ = α + β. Critical points of I(p, q) on E correspond to T -periodic
solutions of (1.1). We remark that the correspondence is one-to-one.

Since it is difficult to verify the Palais-Smale compactness condition for
I(p, q), we introduce in the following section, modified functionals and a finite
dimensional approximation. We will use a minimax argument.

2 Modified functionals and other preliminaries

As stated in the introduction, we will find a critical point of the functional
I(p, q) on E = P ×Q where

P = Lγ(0, T ;RN ), Q = {q ∈W 1, γ
(γ−1) (0, T ;RN ); q(0) = q(T )}.

We set
Λ = {q ∈ Q; q(t) 6= 0 for all t}

and introduce the modified functionals

Iδ(p, q) =
∫ T

0

[pq̇ −H(t, p, q) +
δ

|q|γ
]dt,

Iδ,ε(p, q) =
∫ T

0

[pq̇ −H(t, p, q) +
δ

|q|γ
+ ε(|q|γ − |p|γ)]dt

for δ, ε ∈ [0, 1]. Since γ ≥ β > 1, by (H2), (H4), and (H5), we can see that
Iδ,ε ∈ C1(P × Λ;R).

To get the existence of a T -periodic solution for a symmetric Hamiltonians,
we have to restrict our functionals to a subsets of E. We set

E0 = {(p, q) ∈ E; (p, q)(t+
T

2
) = −(p, q)(t)}

with norm
‖(p, q)‖E0 = ‖p‖γ + ‖q̇‖ γ

γ−1

where

‖u‖s = (
∫ T

0

|u(t)|sdt)1/s for all s ≥ 1.

For m ∈ N, we define

Pm = Qm

=
{
p(t) =

∑
|j|≤m

θje
2iπjt
T ; p(t+

T

2
) = −p(t), θj ∈ CN , θ−j = θ̄j , |j| ≤ m

}
,

Em = Pm ×Qm,
Λm = {q ∈ Qm; q(t) 6= 0 for all t},

∂Λm = {q ∈ Qm; q(t0) = 0 for some t0}
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and we consider the restriction of Iδ,ε(p, q) :

Iδ,ε,m = Iδ,ε/Pm×Λm : Pm × Λm → R.

The main reason for introducing such subspaces are the following Lemmas.

Lemma 2.1 For any u ∈ Q such that u(t+ T
2 ) = −u(t), we have

‖u‖∞ ≤
∫ T

0

|u̇|dt.

Proof. Let u ∈ Q such that u(t+ T
2 ) = −u(t). Then for all t ∈ [0, T ], we have

|u(t)| = 1
2
|u(t+

T

2
)− u(t)| = 1

2
|
∫ t+T

2

t

u̇ ds| ≤
∫ T

0

|u̇|ds.

Thus we obtain the desired result. ♦

Lemma 2.2 Suppose (p, q) ∈ Pm × Λm is such that

I ′δ,ε,m(p, q)(h, k) = 0 for all (h, k) ∈ Em. (2.1)

Then (p, q) is a critical point for Iδ,ε,m.

Proof. It is sufficient to remark that, by (H1), I ′δ,ε,m(p, q) ∈ Em. Since
I ′δ,ε,m(p, q) belongs also to E⊥m from 2.1, we have the conclusion. ♦

The proof of Theorem 1.1 will be done as follows: In section 3, we introduce a
minimax method to Iδ,ε,m. For δ, ε ∈]0, 1] and m ∈ N, we establish the existence
of a sequence (pδ,ε,m, qδ,ε,m) ∈ Pm × Λm such that

I ′δ,ε,m(pδ,ε,m, qδ,ε,m) = 0, (2.2)

Iδ,ε,m(pδ,ε,m, qδ,ε,m) ≤ c̄ (2.3)

where c̄ > 0 is a constant independent of δ, ε and m. From 2.2-2.3, we can
find uniform estimates for (pδ,ε,m, qδ,ε,m) and we can extract, in section 4, a
subsequence converging to (pδ,ε, qδ,ε) ∈ (P ×Λ)∩E0. Next in Section 5, we pass
to the limit as ε → 0 and obtain a critical points (pδ, qδ) ∈ (P × Λ) ∩ E0 of Iδ
such that

Iδ(pδ, qδ) ≤ c̄. (2.4)

Finally in Section 6, we pass to the limit as δ → 0. Lemma 2.1 plays a essential
role to obtain a non-constant T -periodic solution (p, q) = lim(pδ, qδ) of (1.1).

In the sequel, we use the projection operator

projm : Ls(0, T ;RN )→ span{e
2iπjt
T ; |j| ≤ m} ,

(projmu)(t) =
∑
|j|≤m

θje
2iπjt
T for u(t) =

∑
j∈Z

θje
2iπjt
T .
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Lemma 2.3 For any s ∈]1,+∞[, there exists a constant Ks > 0 independent
of m ∈ N such that

‖projmu‖s ≤ Ks‖u‖s for all u ∈ Ls(0, T ;RN ).

This lemma is a special case of Steckin’s theorem [6, Theorem 6.3.5]. In sections
3, 4, 5, and 6, we will assume (H1)-(H6).

3 A minimax method for Iδ,ε,m

In this part, we study the existence of critical points in Pm × Λm of Iδ,ε,m for
δ, ε ∈]0, 1] and m ∈ N. First, we give some a priori estimates and verify the
Palais-Smale condition (PS) for Iδ,ε,m.

Lemma 3.1 (i) For any M1 > 0, there exists a constant C0 = C0(M1) > 0
independent of δ, ε ∈]0, 1] and m ∈ N such that: If (p, q) ∈ Pm × Λm satisfies

Iδ,ε,m(p, q) ≤M1, (3.1)
I ′δ,ε,m(p, q) = 0, (3.2)

then ∫ T

0

|q|α|p|βdt+
∫ T

0

|q|αdt ≤ C0,

ε

∫ T

0

(
|q|γ + |p|γ

)
dt+ δ

∫ T

0

1
|q|γ

dt ≤ C0.

(ii) For any δ, ε ∈]0, 1] and m ∈ N, if (pj , qj)∞j=1 ⊂ Pm × Λm satisfies

(pj , qj)→ (p0, q0) ∈ Pm × ∂Λm,

then Iδ,ε,m(pj , qj)→ +∞.
(iii) For any δ, ε ∈]0, 1] and m ∈ N, Iδ,ε,m satisfies the condition (PS) on
Pm × Λm; i.e., if (pj , qj)j∈N ⊂ Pm × Λm satisfies Iδ,ε,m(pj , qj) → c > 0 and
(Iδ,ε,m)′(pj , qj) → 0, then (pj , qj) possesses a subsequence converging in Em to
some (p, q) ∈ Pm × Λm.

Proof. (i) Let δ, ε ∈]0, 1] and m ∈ N. We assume (p, q) ∈ Pm × Λm satisfies
3.1 and 3.2 for M1 > 0. We have

I ′δ,ε,m(p, q)(p, 0) =
∫ T

0

[pq̇ −Hp(t, p, q)p− εγ|p|γ ]dt.

Hence,

Iδ,ε,m(p, q)− I ′δ,ε,m(p, q)(p, 0) (3.3)

=
∫ T

0

[−H(t, p, q) +Hp(t, p, q)p+
δ

|q|γ
+ ε|q|γ + ε(γ − 1)|p|γ ]dt.
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By the assumptions 3.1 and 3.2, we get∫ T

0

[−H(t, p, q) +Hp(t, p, q)p+
δ

|q|γ
+ ε|q|γ + ε(γ − 1)|p|γ ]dt ≤M1.

From (H3), it follows that∫ T

0

[a3|q|α(|p|β + 1)− a4 +
δ

|q|γ
+ ε|q|γ + ε(γ − 1)|p|γ ]dt ≤M1.

Thus we obtained (i).
(ii) By (H2)(i), we have for all (p, q) ∈ Pm × Λm

Iδ,ε,m(p, q) ≥
∫ T

0

[pq̇ − a1|q|α|p|β + ε(|q|α − |p|γ)]dt+ δ

∫ T

0

1
|q|γ

dt. (3.4)

Since δ
∫ T

0
1
|qj |γ dt→∞, we get the conclusion easily.

(iii) Let (pj , qj)(j∈N) ⊂ Pm × Λm be a sequence satisfying the assumptions of
the condition (PS).We may assume that

Iδ,ε,m(pj , qj)→ c, (3.5)

‖I ′δ,ε,m(pj , qj)‖E?m → 0. (3.6)

We prove that (pj , qj) possesses a convergent subsequence to some (p, q) ∈
Pm × Λm. By (H3) and 3.3-3.6, for large j,∫ T

0

[a3|qj |α(|pj |β + 1)− a4]dt+ δ

∫ T

0

1
|qj |γ

dt

+ε
∫ T

0

|qj |γdt+ ε(γ − 1)
∫ T

0

|pj |γdt ≤ 2c+ ‖pj‖γ .

Thus, for some constant C1 > 0 independent of j,∫ T

0

|qj |αdt,
∫ T

0

|pj |γdt ≤ C1 for all j ∈ N.

Since dimEm < ∞, we can extract a subsequence - still indexed by (pj , qj) -,
such that (pj , qj)→ (p, q) ∈ Em. By (ii), we necessarily have q ∈ Λm.

Next, we apply to Iδ,ε,m a minimax argument related to the one in [7]. This
argument will play an important role in obtaining a critical points (pδ,ε,m, qδ,ε,m) ∈
Pm × Λm with uniform upper bound of critical values. We define

Γm = {A(p, ξ) ∈ C
(
Pm × SN−2, Pm × Λm

)
; A(p, ξ) =

(
p, σ0(ξ)

)
for large ‖p‖β}

where

σ0 : SN−2 = {ξ = (ξ1, . . . , ξN−1) ∈ RN−1 :
N−1∑
j=1

|ξj |2 = 1} → Qm
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is given by

σ0(ξ)(t) = cos
2πt
T

(ξ1, . . . , ξN−1, 0) + sin
2πt
T

(0, . . . 0, 1).

We remark that A0(p, ξ) = (p, σ0(ξ)) ∈ Γm and Γm 6= ∅. Then we define the
minimax values of Iδ,ε,m as follows

cδ,ε,m = inf
A∈Γm

sup
(p,ξ)∈Pm×SN−2

Iδ,ε,m(A(p, ξ)).

Proposition 3.1 For any δ, ε ∈]0, 1] and m ∈ N, there exists a constant c(δ, ε) >
0 such that

cδ,ε,m ≥ c(δ, ε) > 0.

To prove this proposition, we need the following result.

Lemma 3.2 For any A ∈ Γm and λ > 0, we have

A(Pm × SN−2) ∩ Dm,λ 6= ∅

where
Dm,λ = {(p, q) ∈ Pm × Λm; p = λprojm(|q̇|

1
γ−1−1q̇)}.

The proof of this lemma will be given in the appendix.

Lemma 3.3 For sufficiently small λε > 0, there exists a constant c(δ, ε) > 0
such that

Iδ,ε,m(p, q) ≥ c(δ, ε) > 0 for all (p, q) ∈ Dm,λε
where Dm,λε is given in Lemma 3.2.

Proof. Let (p, q) ∈ Dm,λ. We recall that γ = α+β. By the Young’s inequality,

a1

∫ T

0

|q|α|p|βdt ≤ α

γ
ε

∫ T

0

|q|γdt+
β

γ
(
a1

ε
α
γ

)
γ
β

∫ T

0

|p|γdt.

Thus, from 3.4,

Iδ,ε,m(p, q) ≥
∫ T

0

pq̇dt− a(ε)
∫ T

0

|p|γdt+ δ

∫ T

0

1
|q|γ

dt

where a(ε) = ε+ β
γ ( a1

ε
α
γ

)
γ
β > 0. Since (p, q) ∈ Dm,λ,

∫ T

0

pq̇dt = λ

∫ T

0

|q̇|
γ
γ−1 dt. (3.7)

Moreover, by Lemma 2.1 and Lemma 2.3

T
1
γ ‖q̇‖ γ

γ−1
≥
∫ T

0

|q̇|dt ≥ ‖q‖∞, (3.8)
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∫ T

0

|p|γdt = λγ‖projm(|q̇|
1

γ−1−1q̇)‖γγ ≤ λγKγ
γ ‖q̇‖

γ
γ−1
γ
γ−1

. (3.9)

By 3.7 and 3.9, we get

Iδ,ε,m(p, q) ≥ (λ− a(ε)Kγ
γλ

γ)‖q̇‖
γ
γ−1
γ
γ−1

+ δ

∫ T

0

1
|q|γ

dt.

Taking λε small enough so that Aε = λε − a(ε)Kγ
γλ

γ
ε > 0, from 3.8, for all

(p, q) ∈ Dm,λε , we have

Iδ,ε,m(p, q) ≥ inf
q∈Λ

( Aε

T
1

γ−1
‖q‖

γ
γ−1
∞ +

δT

‖q‖γ∞
)

= c(δ, ε) > 0 .

Proof of Proposition 3.1 Let λε > 0 be as in Lemma 3.3. By Lemma 3.2,
we have

A(Pm × SN−2) ∩ Dm,λε 6= ∅ for all A ∈ Γm.

Thus, we find that

cδ,ε,m = inf
A∈Γm

sup
(p,ξ)∈Pm×SN−2

Iδ,ε,m(A(p, ξ))

≥ inf
(p,q)∈Dm,λε

Iδ,ε,m(p, q)

≥ c(δ, ε) > 0.

We choose c(δ, ε) = c(δ, ε), we get the desired result. ♦

Now, we prove an existence result

Proposition 3.2 For any δ, ε ∈]0, 1] and m ∈ N, we have
(i)

0 < c(δ, ε) ≤ cδ,ε,m ≤ c̄

where c̄ is independent of δ, ε and m.
(ii) If ‖p‖β is sufficiently large, then for all ξ ∈ SN−2,

Iδ,ε,m(A0(p, ξ)) ≤ 0 .

(iii) There exists a critical point (pδ,ε,m, qδ,ε,m) ∈ Pm × Λm of Iδ,ε,m such that

Iδ,ε,m(pδ,ε,m, qδ,ε,m) = cδ,ε,m.

Proof. (i) By (H2)(ii), we have

Iδ,ε,m(A0(p, ξ)) ≤
∫ T

0

|p|| d
dt
σ0(ξ)|dt− a2

∫ T

0

|σ0(ξ)|α|p|βdt

+
∫ T

0

K1(σ0(ξ))dt+
∫ T

0

(
1

|σ0(ξ)|γ
+ |σ0(ξ)|γ)dt

≤ k1‖p‖β − k2‖p‖ββ + k3 (3.10)
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for some positive constants k1, k2, k3 independent of δ, ε and m. Since β > 1,
there exists a constant c̄ > 0 independent of δ, ε and m such that

cδ,ε,m ≤ sup
(p,ξ)∈Pm×SN−2

Iδ,ε,m(A0(p, ξ)) ≤ c̄.

(ii) follows clearly from 3.10.
(iii) Since Iδ,ε,m satisfies the (PS) condition and property (ii) of Lemma 3.1,
then by a standard argument using the deformation theorem and (ii), we can
see that cδ,ε,m > 0 is a critical value of Iδ,ε,m. By Lemma 2.2, we get (iii). ♦

As a corollary to (i) of Lemma 3.1 and the uniform estimates of cδ,ε,m, we
have the following statements.

Corollary 3.1 Let (pδ,ε,m, qδ,ε,m) ∈ Pm × Λm be a critical point of Iδ,ε,m ob-
tained by Proposition 3.2.Then, there exists a constant C2 > 0 independent of
δ, ε and m, such that for all δ, ε ∈]0, 1] and m ∈ N, we have

(i)
∫ T

0

|qδ,ε,m|α|pδ,ε,m|βdt+
∫ T

0

|qδ,ε,m|αdt ≤ C2,

(ii) ε

∫ T

0

(
|qδ,ε,m|γ + |pδ,ε,m|γ

)
dt ≤ C2,

(iii) δ

∫ T

0

1
|qδ,ε,m|γ

dt ≤ C2.

4 Limiting process as m→∞
Proposition 4.1 For any δ, ε ∈]0, 1], (pδ,ε,m, qδ,ε,m) possesses a subsequence
converging in E to (pδ,ε, qδ,ε) ∈ (P × Λ) ∩ E0. Moreover,

Iδ,ε(pδ,ε, qδ,ε) ≤ c̄, (4.1)
I ′δ,ε(pδ,ε, qδ,ε) = 0 . (4.2)

Proof. By (ii) of Corollary 3.1, we can extract a subsequence - still indexed
by m- such that

(pδ,ε,m, qδ,ε,m) ⇀ (pδ,ε, qδ,ε) weakly in Lγ(0, T ;RN ).

We remark that I ′δ,ε,m(pδ,ε,m, qδ,ε,m) = 0 is equivalent to

q̇δ,ε,m = projm[Hp(t, pδ,ε,m, qδ,ε,m) + εγ|pδ,ε,m|γ−2pδ,ε,m], (4.3)

ṗδ,ε,m = -projm[Hq(t, pδ,ε,m, qδ,ε,m)+δγ
qδ,ε,m

|qδ,ε,m|γ+2
−εγ|qδ,ε,m|γ−2qδ,ε,m]. (4.4)

By (H4) and Lemma 2.3, we have from 4.3

‖q̇δ,ε,m‖ γ
γ−1

≤ K γ
γ−1

[a5‖(|qδ,ε,m|α|pδ,ε,m|(β−1))‖ γ
γ−1

+ a5‖qδ,ε,m‖αα γ
γ−1

+a6‖qδ,ε,m‖ γ
γ−1

+ εγ‖pδ,ε,m‖γ−1
γ ].
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Using a Hölder’s inequality and (i)-(ii) of Corollary 3.1, we can find a constant
C3 > 0 independent of m ∈ N, such that

‖qδ,ε,m‖
W

1, γ
γ−1 (0,T ;RN )

≤ C3.

Thus we can see from (iii) of Corollary 3.1 that

qδ,ε,m → qδ,ε ∈ Λ uniformly in [0, T ]. (4.5)

On the other hand, by (H5) and Lemma 2.3, we have from 4.4

‖ṗδ,ε,m‖ γ
γ−1

≤ K γ
γ−1

[‖A(qδ,ε,m)|pδ,ε,m|β‖ γ
γ−1

+ ‖A(qδ,ε,m)‖ γ
γ−1

+γ‖δ qδ,ε,m
|qδ,ε,m|γ+2

− ε|qδ,ε,m|γ−2qδ,ε,m‖ γ
γ−1

].

Using 4.5, we find
‖pδ,ε,m‖

W
1, γ
γ−1 (0,T ;RN )

≤ C4

where C4 > 0 is a constant independent of m. The injection W 1, γ
γ−1 (0, T ;RN ) ⊂

Lγ(0, T ;RN ) is compact, thus we have

pδ,ε,m → pδ,ε strongly in Lγ(0, T ;RN ) and uniformly in [0, T ]. (4.6)

By (i) and (iii) of Proposition 3.2, we deduce that

Iδ,ε(pδ,ε, qδ,ε) = lim
m→∞

Iδ,ε,m(pδ,ε,m, qδ,ε,m) ≤ c̄,

I ′δ,ε(pδ,ε,, qδ,ε)(h, k) = lim
m→∞

I ′δ,ε,m(pδ,ε,m, qδ,ε,m)(h, k) = 0

for all sums

h =
∑
|j|≤n

θje
2iπjt
T , k =

∑
|j|≤n

ψje
2iπjt
T (θj , ψj ∈ CN ).

Therefore, I ′δ,ε(pδ,ε, qδ,ε)(h, k) = 0 for all (h, k) ∈ E.

5 Limiting process as ε→ 0

We take the limit as ε→ 0 to obtain a critical point (pδ, qδ) ∈ (P × Λ) ∩ E0 of
Iδ with uniform upper bound for critical values. As a consequence to Corollary
3.1, and 4.5, 4.6 we have the following lemma.

Lemma 5.1 For any δ, ε ∈]0, 1],
(
pδ,ε, qδ,ε) ∈ (P × Λ) ∩ E0 satisfies

(i)
∫ T

0

|qδ,ε|α|pδ,ε|βdt+
∫ T

0

|qδ,ε|αdt ≤ C2,

(ii) ε

∫ T

0

(
|qδ,ε|γ + |pδ,ε|γ

)
dt ≤ C2,

(iii) δ

∫ T

0

1
|qδ,ε|γ

dt ≤ C2.
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Proposition 5.1 For any δ ∈]0, 1], (pδ,ε, qδ,ε) possesses a subsequence converg-
ing in E to (pδ, qδ) ∈ (P × Λ) ∩ E0. Moreover,

I ′δ(pδ, qδ) = 0,

Iδ(pδ, qδ) ≤ c̄.

Proof. Since I ′δ,ε(pδε, qδ,ε) = 0, we have

q̇δ,ε = Hp(t, pδ,ε, qδ,ε) + εγ|pδ,ε|γ−2pδ,ε, (5.1)

ṗδ,ε = −[Hq(t, pδ,ε, qδ,ε) + δγ
qδ,ε

|qδ,ε|γ+2
− εγ|qδ,ε|γ−2qδ,ε]. (5.2)

By (H4) and 5.1, we can see from (i)-(ii) of Lemma 5.1 that∫ T

0

|q̇δ,ε|dt ≤ a5[
∫ T

0

|qδ,ε|α|pδ,ε|β−1dt+
∫ T

0

|qδ,ε|αdt] + a6

∫ T

0

|qδ,ε|dt

+εγ
∫ T

0

|pδ,ε|γ−1dt

≤ C5

where C5 > 0 is a constant independent of ε. Thus, we deduce that (qδ,ε)ε is
bounded in L∞(0, T ;RN ).
By (H4) and (5.1) again, we have

||q̇δ,ε|| γ
γ−1

≤ a5||(|qδ,ε|α|pδ,ε|β−1)|| γ
γ−1

+ a5||qδ,ε||αα γ
γ−1

+a6||qδ,ε|| γ
γ−1

+ εγ||pδ,ε||γ−1
γ .

Here we will apply the Hölder’s inequality

||fg||s ≤ ||f ||sµ||g||sν

with f(t) = |qδ,ε|
α
β , g(t) = (|qδ,ε|α|pδ,ε|β)

β−1
β , s = γ

γ−1 , µ = (γ−1)β
α and ν =

(γ−1)β
(β−1)γ .
We verify that 1

µ + 1
ν = 1. Then we have

||(|qδ,ε|α|pδ,ε|β−1)|| γ
γ−1

= ||(|qδ,ε|
α
β )(|qδ,ε|α|pδ,ε|β)

β−1
β || γ

γ−1

≤ ||(|qδ,ε|
α
β )|| γβ

α
||(|qδ,ε|α|pδ,ε|β)

β−1
β || β

β−1

= ||qδ,ε||
α
β
γ ||(|qδ,ε|α|pδ,ε|β)||

β−1
β

1

≤ C6

where C6 > 0 is a constant independent of ε.
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Finally (qδ,ε)ε is bounded in W 1, γ
γ−1 (0, T ; RN ). That is we can extract a sub-

sequence -still indexed by ε- such that

qδ,ε → qδ ∈ Λ uniformly in [0, T ]. (5.3)

Since
∫ T

0
|qδ,ε|α|pδ,ε|βdt ≤ C2, we get∫ T

0

|pδ,ε|βdt ≤ C7 (5.4)

for some constant C7 > 0 independent of ε. By (H5) and 5.2-5.4, there exists a
constant C8 > 0 independent of ε such that∫ T

0

|ṗδ,ε|dt ≤
∫ T

0

A(qδ,ε)
(
|pδ,ε|β + 1

)
dt+ γ

∫ T

0

( 1
|qδ,ε|γ+1

+ |qδ,ε|γ−1
)
dt

≤ C8

and ∫ T

0

|ṗδ,ε|γdt ≤ C8.

So we can extract a subsequence -still indexed by ε- such that

pδ,ε → pδ strongly in Lγ(0, T ;R) and uniformly in [0, T ]. (5.5)

By 5.3 and 5.5, a passage to the limit on 4.1-4.2 similar as in Section 4 completes
the proof.

6 Proof of Theorem 1.1

We take a limit as δ → 0 to obtain a T -periodic solution of (1.1). Let (pδ, qδ) ∈
(P × Λ) ∩ E0 be a critical point of Iδ(p, q) obtained by Proposition 5.1. By
Lemma 5.1, 5.3 and 5.5, we have

Lemma 6.1 For any δ ∈]0, 1],

(i)
∫ T

0

|qδ|α|pδ|βdt+
∫ T

0

|qδ|αdt ≤ C2,

(ii) δ

∫ T

0

1
|qδ|γ

dt ≤ C2.

By (i) of Lemma 6.1, we can extract a subsequence -still indexed by δ- such that

qδ ⇀ q weakly in Lα(0, T ;RN ).

We also remark that I ′δ(pδ, qδ) = 0 is equivalent to

q̇δ = Hp(t, pδ, qδ), (6.1)

ṗδ = −[Hq(t, pδ, qδ) + δγ
qδ

|qδ|γ+2
]. (6.2)

Lemma 6.2 qδ → q ∈ Λ uniformly in [0, T ].
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Proof. By (H4) and 6.1, we have∫ T

0

|q̇δ|dt ≤ a5

∫ T

0

|qδ|α|pδ|β−1dt+ a5

∫ T

0

|qδ|αdt+ a6

∫ T

0

|qδ|dt.

Using (i) of Lemma 6.1, we can see that ‖qδ‖W 1,1(0,T ;RN ) is bounded. Thus we
can find a constant C9 > 0 independent of δ, such that∫ T

0

|q̇δ|
β
β−1 dt ≤ C9.

Consequently, we obtain qδ → q uniformly in [0, T ].
We now argue indirectly and suppose that

q(t0) = 0 for some t0 ∈ [0, T ].

We may assume t0 = 0. By 6.1, for any t ∈]0, T ] we have

| log |qδ(t)| − log |qδ(0)‖ ≤
∫ t

0

|q̇δ(s)|
|qδ(s)|

ds =
∫ t

0

|Hp(s, pδ, qδ)|
|qδ|

ds. (6.3)

By (H4),∫ t

0

|Hp(s, pδ, qδ)|
|qδ|

ds ≤ a5

∫ t

0

|qδ|α−1|pδ|β−1ds+ a5

∫ t

0

|qδ|α−1ds+ a6T.

Since α > β > 1 and
∫ T

0
|qδ|α|pδ|βdt ≤ C2, there exists a constant C10 > 0

independent of δ, such that∫ t

0

|Hp(s, pδ, qδ)|
|qδ|

ds ≤ C10. (6.4)

Passing to the limit in 6.3, we see that qδ → 0 uniformly in [0, T ]. By 6.1-6.2,
we have

Iδ(pδ, qδ) =
∫ T

0

Hp(t, pδ, qδ)pδdt−
∫ T

0

H(t, pδ, qδ)dt+ δ

∫ T

0

1
|qδ|γ

dt

=
∫ T

0

Hq(t, pδ, qδ)qδdt−
∫ T

0

H(t, pδ, qδ)dt+ δ(γ + 1)
∫ T

0

1
|qδ|γ

dt.

Hence ∫ T

0

[Hq(t, pδ, qδ)qδ −Hp(t, pδ, qδ)pδ]dt+ δγ

∫ T

0

1
|qδ|

dt = 0.

From (H6)(i) and (H2)(ii), it follows that

a7a2

∫ T

0

|qδ|α|pδ|βdt− a7

∫ T

0

K1(qδ)dt+
∫ T

0

K2(qδ)dt+ δγ

∫ T

0

1
|qδ|γ

dt ≤ 0
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for small δ. Since qδ → 0 uniformly in [0, T ], we find∫ T

0

|qδ|α|pδ|βdt→ 0 as δ → 0. (6.5)

Thus we can see from 6.1, 6.5 and (H6)(ii),∫ T

0

|q̇δ|
β
β−1

|qδ|
α
β−1

dt =
∫ T

0

|Hp(t, pδ, qδ)|
β
β−1

|qδ|
α
β−1

dt

≤ a8

∫ T

0

[|qδ|α|pδ|β +K3(qδ)]dt

→ 0 as δ → 0. (6.6)

In other hand, we have from Lemma 2.1∫ T

0

|q̇δ|
β
β−1

|qδ|
α
β−1

dt ≥
( ∫ T

0
|q̇δ|dt

) β
β−1

T
1

β−1 ‖qδ‖
α
β−1
∞

≥ 1

T
1

β−1 ‖qδ‖
α−β
β−1
∞

→ +∞ as δ → 0.

This is a contradiction to 6.6 which proves the Lemma 6.2.

Lemma 6.3 There exists a constant C11 independent of δ ∈]0, 1] such that

‖pδ‖W 1,γ(0,T ;RN ) ≤ C11.

Proof. Since qδ → q ∈ Λ uniformly in [0, T ] and
∫ T

0
|qδ|α|pδ|βdt ≤ C2, there

exists a constant C12 > 0 independent of δ ∈]0, 1] such that∫ T

0

|pδ|βdt ≤ C12.

By (H5) and 6.2, one deduce that
∫ T

0
|ṗδ|dt is bounded. Thus we can see for

some constant C11 > 0 independent of δ ∈]0, 1]

‖pδ‖W 1,γ(0,T ;RN ) ≤ C11.

We complete the proof of Theorem 1.1 as follows: By Lemmas 6.2 and 6.3, we
can extract a subsequence -still indexed by δ- such that pδ → p strongly in
Lγ(0, T ;RN ) and (pδ, qδ) → (p, q) ∈ (P × Λ) ∩ E0 uniformly in [0, T ]. Since
I ′δ(pδ, qδ) = 0, we get

I ′(p, q)(h, k) = 0 for all (h, k) ∈ E.

That is (p, q) ∈ (P × Λ) ∩ E0 is a non-constant T -periodic solution of (1.1).
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7 Remarks on the prescribed energy problem

If H(t, p, q) does not depend on t, then the energy surface

Sh = H−1(h) = {(p, q) ∈ RN × RN ; H(p, q) = h} (h > 0)

is not compact for such Hamiltonian functions. Moreover, Sh is equal to

H̃−1(1) = {(p, q) ∈ RN × RN \ {0}; H̃(p, q) = 1}

where

H̃(p, q) =
H(p, q)− h
|q|α

+ 1. (7.1)

It is clear that, if H(p, q) ∼ |q|α(|p|β − 1), then

H̃(p, q) ∼ |p|β − h

|q|α
. (7.2)

In the last few years, the existence of periodic solutions of singular Hamiltonian
systems has been studied via variational methods under the situation related
to two-body problem in celestial mechanics. That is, situation H̃(p, q) is of the
form

H̃(p, q) =
1
2
|p|2 + V (q)

where V (q) ∈ C1(RN \ {0},R) and V (q) → −∞ as q → 0. See [8, 9, 10] and
references therein. Results dealing with more general singular Hamiltonians of
the form (7.2) can be found in [7, 11] for fixed period problems, and in [12, 13]
for fixed energy problems.

According to the fundamental lemma of Rabinowitz ( see [1] and [14, lemma
3.1]), it follows that the Hamiltonian system (1.1) has, for H and H̃ which are
related by 7.1, the same orbits on Sh. Therefore, under suitable conditions
on H including |q|α(|p|β − 1) with α > β > 1, the theorem of [12] carries a
non-collision orbit of the singular Hamiltonian system

q̇ = H̃p(p(t), q(t))

ṗ = −H̃q(p(t), q(t))

H̃(p, q) = 1,

which corresponds to a non-constant periodic solution of (1.1) with energy h.

Appendix: Proof of Lemma 3.2

The proof of Lemma 3.2 is a special case of [7, lemma 3.1]. We fix A ∈ Γm and
take R > 0 such that

R > λ max
ξ∈SN−2

‖projm|
d

dt
(σ0(ξ))(t)|

1
γ−1−1 d

dt
(σ0(ξ))(t)‖β ,
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A(p, ξ) = (p, σ0(ξ)) if ‖p‖β ≥ R.

We note that

A(p, ξ) =
(
x(p, ξ), y(p, ξ)

)
, (A.1)

B(ρ) = {p ∈ Pm; ‖p‖β ≤ ρ}, ρ > 0.

Then we define the function φ(ρ) ∈ C(R, [0, 1]) such that

φ(ρ) =
{

1, ρ ≤ R,
0, ρ ≥ 2R.

Using the notation (A.1), we define a mapping

F : Pm × SN−2 × [0, T ]/{0, T} ∼ Pm × SN−2 × S1 → Pm × SN−1

by

F (p, ξ, t) =
(
x(p, ξ)− λφ(‖p‖β)projm(|ẏ(p, ξ)|

1
γ−1−1ẏ(p, ξ)), σ̃(ξ)(t)

)
where σ̃(ξ)(t) = σ(ξ)(t)

|σ(ξ)(t)| and

σ(ξ)(t) = (3 + cos
2πt
T

)(ξ1, . . . , ξN−1, 0)− (3, 0, . . . , 0) + (0, . . . , 0, sin
2πt
T

).

We remark that F (p, ξ, t) = (p, σ̃(ξ)(t)) for ‖p‖β ≥ 2R and the degree of the
map σ̃ : SN−2 × S1 → SN−1 is not equal to zero.
Thus, there exists R′ ≥ 2R such that the degree of the mapping

F :
(
B(R′)×SN−2×S1; ∂B(R′)×SN−2×S1

)
→
(
B(R′)×SN−1; ∂B(R′)×SN−1

)
is not equal to zero. Then it follows the existence of (p, ξ) such that

x(p, ξ)− λφ(‖p‖β)projm
(
|ẏ(p, ξ)|

1
γ−1−1ẏ(p, ξ)

)
= 0.

By the definition of R, we have necessarily ‖p‖β ≤ R. That is

x(p, ξ) = λprojm
(
|ẏ(p, ξ)|

1
γ−1−1ẏ(p, ξ)

)
and then

A(Pm × SN−2)
⋂
Dm,λ 6= ∅.
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Bourbaki (603), 1983.

[6] R. E. Edwards and G. I. Gandry, “Littlewood-Paleyand multiplier theory”,
Springer-Verlag, Berlin, Heidelberg, NewYork,1977.

[7] K. Tanaka, Periodic solutions of first order singular Hamiltonian systems,
Nonlinear Analysis: T.M.A. 26, (1996) 691-704.

[8] C. Greco, Periodic solutions of a class of singular Hamiltonian systems,
Nonlinear Analysis; T.M.A. 12 (1988), 259-269.

[9] A. Bahri and P. H. Rabinowitz, A minimax method for a class of Hamil-
tonian systems with singular potentials, Journal of functional analysis, 82,
412-428 (1989).

[10] A. Ambrosetti and V. Coti Zelati, “Periodic solutions of singular La-
grangian systems”, Birkhauser, Boston, Basel, Berlin, 1993.

[11] M. Boughariou, Generalized solutions of first order singular Hamiltonian
systems, Nonlinear Analysis: T.M.A. 31, (1998) 431-444.

[12] K. Tanaka, E. Sere and C. Carminati, A prescribed energy problem for first
order singular Hamiltonian systems, preprint.

[13] M. Boughariou, Solutions périodiques généralisées à énergie fixée pour un
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Département de Mathématiques
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