Periodic solutions for a class of non-coercive Hamiltonian systems *

Morched Boughariou

Abstract

We prove the existence of non-constant T-periodic orbits of the Hamiltonian system $$
\begin{gathered} \dot{q}=H_{p}(t, p(t), q(t)) \\ \dot{p}=-H_{q}(t, p(t), q(t)), \end{gathered}
$$ where H is a T-periodic function in t, non-convex and non-coercive in (p, q), and has the form $H(t, p, q) \sim|q|^{\alpha}\left(|p|^{\beta}-1\right)$ with $\alpha>\beta>1$.

1 Introduction

We study the existence of T-periodic solutions of the Hamiltonian system

$$
\begin{gather*}
\dot{q}=H_{p}(t, p(t), q(t)) \tag{1.1}\\
\dot{p}=-H_{q}(t, p(t), q(t)) .
\end{gather*}
$$

Here, $H(t, p, q): \mathbb{R} \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}(N \geq 3)$ is T-periodic in t and differentiable in (p, q). We also assume that H, H_{p}, H_{q} are continuous.

Most of the existence results use coercivity (i.e., $H(t, p, q) \rightarrow \infty$ as $|(p, q)| \rightarrow$ $\infty)$ or convexity assumptions in $H(t,$.$) ; see [1,2,3,4,5]$ and references therein. The purpose of this paper is to study non-coercive and non-convex Hamiltonians. Typically,

$$
H(t, p, q) \sim|q|^{\alpha}\left(|p|^{\beta}-1\right) ; \quad \alpha>\beta>1 .
$$

To state our existence result, we introduce the following hypotheses. For constants $\alpha>\beta>1, r>0, a_{1}, \ldots, a_{8}>0$ and functions $A, K_{i} \in C\left(\mathbb{R}^{N}, \mathbb{R}\right)$ with $K_{i}(0)=0(i=1,2,3)$, we assume:
(H1) $H\left(t+\frac{T}{2}, p, q\right)=H(t,-p,-q)$ for all t, p, q;
(H2) (i) $H(t, p, q) \leq a_{1}|q|^{\alpha}|p|^{\beta}$ for all t, p, q;
(ii) $H(t, p, q) \geq a_{2}|q|^{\alpha}|p|^{\beta}-K_{1}(q)$ for all t, p, q;

[^0](H3) $-H(t, p, q)+H_{p}(t, p, q) p \geq a_{3}|q|^{\alpha}\left(|p|^{\beta}+1\right)-a_{4}$ for all t, p, q;
(H4) $\left|H_{p}(t, p, q)\right| \leq a_{5}|q|^{\alpha}\left(|p|^{\beta-1}+1\right)+a_{6}|q|$ for all t, p, q;
(H5) $\left|H_{q}(t, p, q)\right| \leq A(q)\left(|p|^{\beta}+1\right)$ for all t, p, q;
(H6) (i) $H_{q}(t, p, q) q-H_{p}(t, p, q) p \geq a_{7} H(t, p, q)+K_{2}(q)$ for all $t, p,|q| \leq r$;
(ii) $\left|H_{p}(t, p, q)\right|^{\frac{\beta}{\beta-1}} \leq a_{8}|q|^{\frac{\alpha}{\beta-1}}\left(|q|^{\alpha}|p|^{\beta}+K_{3}(q)\right)$ for all $t, p,|q| \leq r$.

Our main result is as follows.
Theorem 1.1 Under assumptions (H1)-(H6), System (1.1) has at least one non-constant T-periodic solution $(p(t), q(t))$ with $q(t) \neq 0$ for all t.

Remark. If $H(t, p, q)=a(t)|q|^{\alpha}\left(|p|^{\beta}-1\right)$ with $\alpha>\beta>1$ and $a(t) \in C(\mathbb{R}, \mathbb{R})$ is a $\frac{T}{2}$-periodic and positive function, then (H1)-(H6) hold.

Remark. The condition $\alpha>\beta$ is necessarily for the existence of non-constant T-periodic solution. More precisely, in case

$$
H(t, p, q)=|q|^{\alpha}\left(|p|^{\beta}-1\right)
$$

if $(p(t), q(t))$ is a non-constant T-periodic solution of (1.1), then
(i) $\alpha>\beta$;
(ii) there exists a constant $C>0$ such that

$$
|q(t)|^{\alpha}\left(|p(t)|^{\beta}-1\right)=C>0 \text { for all } t \in \mathbb{R} .
$$

In particular, $q(t) \neq 0$ for all $t \in \mathbb{R}$.
Indeed, by (1.1) we have

$$
\int_{0}^{T} p \dot{q} d t=\beta \int_{0}^{T}|q|^{\alpha}|p|^{\beta} d t=\alpha \int_{0}^{T}|q|^{\alpha}\left(|p|^{\beta}-1\right) d t
$$

Then

$$
(\alpha-\beta) \int_{0}^{T}|q|^{\alpha}|p|^{\beta} d t=\alpha \int_{0}^{T}|q|^{\alpha} d t
$$

Since (p, q) is non-constant, one can see that $q \neq 0$ and $\alpha>\beta$. Also note that (ii) follows from the conservation of the energy.

To show the existence of a T-periodic solution of (1.1), we use a variational method; we introduce the functional

$$
I(p, q)=\int_{0}^{T}[p \dot{q}-H(t, p, q)] d t
$$

defined on the function space

$$
E=\left\{(p, q) \in L^{\gamma}\left(0, T ; \mathbb{R}^{N}\right) \times W^{1, \frac{\gamma}{(\gamma-1)}}\left(0, T ; \mathbb{R}^{N}\right) ; q(0)=q(T)\right\}
$$

where $\gamma=\alpha+\beta$. Critical points of $I(p, q)$ on E correspond to T-periodic solutions of (1.1). We remark that the correspondence is one-to-one.

Since it is difficult to verify the Palais-Smale compactness condition for $I(p, q)$, we introduce in the following section, modified functionals and a finite dimensional approximation. We will use a minimax argument.

2 Modified functionals and other preliminaries

As stated in the introduction, we will find a critical point of the functional $I(p, q)$ on $E=P \times Q$ where

$$
P=L^{\gamma}\left(0, T ; \mathbb{R}^{N}\right), \quad Q=\left\{q \in W^{1, \frac{\gamma}{(\gamma-1)}}\left(0, T ; \mathbb{R}^{N}\right) ; q(0)=q(T)\right\}
$$

We set

$$
\Lambda=\{q \in Q ; q(t) \neq 0 \text { for all } t\}
$$

and introduce the modified functionals

$$
\begin{gathered}
I_{\delta}(p, q)=\int_{0}^{T}\left[p \dot{q}-H(t, p, q)+\frac{\delta}{|q|^{\gamma}}\right] d t, \\
I_{\delta, \varepsilon}(p, q)=\int_{0}^{T}\left[p \dot{q}-H(t, p, q)+\frac{\delta}{|q|^{\gamma}}+\varepsilon\left(|q|^{\gamma}-|p|^{\gamma}\right)\right] d t
\end{gathered}
$$

for $\delta, \varepsilon \in[0,1]$. Since $\gamma \geq \beta>1$, by (H2), (H4), and (H5), we can see that $I_{\delta, \varepsilon} \in C^{1}(P \times \Lambda ; \mathbb{R})$.

To get the existence of a T-periodic solution for a symmetric Hamiltonians, we have to restrict our functionals to a subsets of E. We set

$$
E_{0}=\left\{(p, q) \in E ;(p, q)\left(t+\frac{T}{2}\right)=-(p, q)(t)\right\}
$$

with norm

$$
\|(p, q)\|_{E_{0}}=\|p\|_{\gamma}+\|\dot{q}\|_{\frac{\gamma}{\gamma-1}}
$$

where

$$
\|u\|_{s}=\left(\int_{0}^{T}|u(t)|^{s} d t\right)^{1 / s} \text { for all } s \geq 1
$$

For $m \in \mathbb{N}$, we define

$$
\begin{gathered}
P_{m}=Q_{m} \\
=\left\{p(t)=\sum_{|j| \leq m} \theta_{j} e^{\frac{2 i \pi j t}{T}} ; p\left(t+\frac{T}{2}\right)=-p(t), \theta_{j} \in \mathbb{C}^{N}, \theta_{-j}=\overline{\theta_{j}},|j| \leq m\right\}, \\
E_{m}=P_{m} \times Q_{m}, \\
\Lambda_{m}=\left\{q \in Q_{m} ; q(t) \neq 0 \text { for all } t\right\}, \\
\partial \Lambda_{m}=\left\{q \in Q_{m} ; q\left(t_{0}\right)=0 \text { for some } t_{0}\right\}
\end{gathered}
$$

and we consider the restriction of $I_{\delta, \varepsilon}(p, q)$:

$$
I_{\delta, \varepsilon, m}=I_{\delta, \varepsilon} / P_{m} \times \Lambda_{m}: P_{m} \times \Lambda_{m} \rightarrow \mathbb{R}
$$

The main reason for introducing such subspaces are the following Lemmas.
Lemma 2.1 For any $u \in Q$ such that $u\left(t+\frac{T}{2}\right)=-u(t)$, we have

$$
\|u\|_{\infty} \leq \int_{0}^{T}|\dot{u}| d t
$$

Proof. Let $u \in Q$ such that $u\left(t+\frac{T}{2}\right)=-u(t)$. Then for all $t \in[0, T]$, we have

$$
|u(t)|=\frac{1}{2}\left|u\left(t+\frac{T}{2}\right)-u(t)\right|=\frac{1}{2}\left|\int_{t}^{t+\frac{T}{2}} \dot{u} d s\right| \leq \int_{0}^{T}|\dot{u}| d s
$$

Thus we obtain the desired result.
Lemma 2.2 Suppose $(p, q) \in P_{m} \times \Lambda_{m}$ is such that

$$
\begin{equation*}
I_{\delta, \varepsilon, m}^{\prime}(p, q)(h, k)=0 \quad \text { for all }(h, k) \in E_{m} \tag{2.1}
\end{equation*}
$$

Then (p, q) is a critical point for $I_{\delta, \varepsilon, m}$.
Proof. It is sufficient to remark that, by (H1), $I_{\delta, \varepsilon, m}^{\prime}(p, q) \in E_{m}$. Since $I_{\delta, \varepsilon, m}^{\prime}(p, q)$ belongs also to E_{m}^{\perp} from 2.1, we have the conclusion.

The proof of Theorem 1.1 will be done as follows: In section 3 , we introduce a minimax method to $I_{\delta, \varepsilon, m}$. For $\left.\left.\delta, \varepsilon \in\right] 0,1\right]$ and $m \in \mathbb{N}$, we establish the existence of a sequence $\left(p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}\right) \in P_{m} \times \Lambda_{m}$ such that

$$
\begin{align*}
& I_{\delta, \varepsilon, m}^{\prime}\left(p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}\right)=0 \tag{2.2}\\
& I_{\delta, \varepsilon, m}\left(p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}\right) \leq \bar{c} \tag{2.3}
\end{align*}
$$

where $\bar{c}>0$ is a constant independent of δ, ε and m. From 2.2-2.3, we can find uniform estimates for ($p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}$) and we can extract, in section 4 , a subsequence converging to $\left(p_{\delta, \varepsilon}, q_{\delta, \varepsilon}\right) \in(P \times \Lambda) \cap E_{0}$. Next in Section 5, we pass to the limit as $\varepsilon \rightarrow 0$ and obtain a critical points $\left(p_{\delta}, q_{\delta}\right) \in(P \times \Lambda) \cap E_{0}$ of I_{δ} such that

$$
\begin{equation*}
I_{\delta}\left(p_{\delta}, q_{\delta}\right) \leq \bar{c} \tag{2.4}
\end{equation*}
$$

Finally in Section 6, we pass to the limit as $\delta \rightarrow 0$. Lemma 2.1 plays a essential role to obtain a non-constant T-periodic solution $(p, q)=\lim \left(p_{\delta}, q_{\delta}\right)$ of (1.1).

In the sequel, we use the projection operator

$$
\begin{gathered}
\operatorname{proj}_{m}: L^{s}\left(0, T ; \mathbb{R}^{N}\right) \rightarrow \operatorname{span}\left\{e^{\frac{2 i \pi j t}{T}} ;|j| \leq m\right\}, \\
\left(\operatorname{proj}_{m} u\right)(t)=\sum_{|j| \leq m} \theta_{j} e^{\frac{2 i \pi j t}{T}} \text { for } u(t)=\sum_{j \in \mathbb{Z}} \theta_{j} e^{\frac{2 i \pi j t}{T}} .
\end{gathered}
$$

Lemma 2.3 For any $s \in] 1,+\infty\left[\right.$, there exists a constant $K_{s}>0$ independent of $m \in \mathbb{N}$ such that

$$
\left\|\operatorname{proj}_{m} u\right\|_{s} \leq K_{s}\|u\|_{s} \quad \text { for all } \quad u \in L^{s}\left(0, T ; \mathbb{R}^{N}\right)
$$

This lemma is a special case of Steckin's theorem [6, Theorem 6.3.5]. In sections $3,4,5$, and 6 , we will assume (H1)-(H6).

3 A minimax method for $I_{\delta, \varepsilon, m}$

In this part, we study the existence of critical points in $P_{m} \times \Lambda_{m}$ of $I_{\delta, \varepsilon, m}$ for $\delta, \varepsilon \in] 0,1]$ and $m \in \mathbb{N}$. First, we give some a priori estimates and verify the Palais-Smale condition (PS) for $I_{\delta, \varepsilon, m}$.

Lemma 3.1 (i) For any $M_{1}>0$, there exists a constant $C_{0}=C_{0}\left(M_{1}\right)>0$ independent of $\delta, \varepsilon \in] 0,1]$ and $m \in \mathbb{N}$ such that: If $(p, q) \in P_{m} \times \Lambda_{m}$ satisfies

$$
\begin{gather*}
I_{\delta, \varepsilon, m}(p, q) \leq M_{1} \tag{3.1}\\
I_{\delta, \varepsilon, m}^{\prime}(p, q)=0 \tag{3.2}
\end{gather*}
$$

then

$$
\begin{gathered}
\int_{0}^{T}|q|^{\alpha}|p|^{\beta} d t+\int_{0}^{T}|q|^{\alpha} d t \leq C_{0} \\
\varepsilon \int_{0}^{T}\left(|q|^{\gamma}+|p|^{\gamma}\right) d t+\delta \int_{0}^{T} \frac{1}{|q|^{\gamma}} d t \leq C_{0}
\end{gathered}
$$

(ii) For any $\delta, \varepsilon \in] 0,1]$ and $m \in \mathbb{N}$, if $\left(p_{j}, q_{j}\right)_{j=1}^{\infty} \subset P_{m} \times \Lambda_{m}$ satisfies

$$
\left(p_{j}, q_{j}\right) \rightarrow\left(p_{0}, q_{0}\right) \in P_{m} \times \partial \Lambda_{m}
$$

then $I_{\delta, \varepsilon, m}\left(p_{j}, q_{j}\right) \rightarrow+\infty$.
(iii) For any $\delta, \varepsilon \in] 0,1]$ and $m \in \mathbb{N}, I_{\delta, \varepsilon, m}$ satisfies the condition (PS) on $P_{m} \times \Lambda_{m}$; i.e., if $\left(p_{j}, q_{j}\right)_{j \in \mathbb{N}} \subset P_{m} \times \Lambda_{m}$ satisfies $I_{\delta, \varepsilon, m}\left(p_{j}, q_{j}\right) \rightarrow c>0$ and $\left(I_{\delta, \varepsilon, m}\right)^{\prime}\left(p_{j}, q_{j}\right) \rightarrow 0$, then $\left(p_{j}, q_{j}\right)$ possesses a subsequence converging in E_{m} to some $(p, q) \in P_{m} \times \Lambda_{m}$.

Proof. (i) Let $\delta, \varepsilon \in] 0,1]$ and $m \in \mathbb{N}$. We assume $(p, q) \in P_{m} \times \Lambda_{m}$ satisfies 3.1 and 3.2 for $M_{1}>0$. We have

$$
I_{\delta, \varepsilon, m}^{\prime}(p, q)(p, 0)=\int_{0}^{T}\left[p \dot{q}-H_{p}(t, p, q) p-\varepsilon \gamma|p|^{\gamma}\right] d t
$$

Hence,

$$
\begin{align*}
& I_{\delta, \varepsilon, m}(p, q)-I_{\delta, \varepsilon, m}^{\prime}(p, q)(p, 0) \tag{3.3}\\
& \quad=\int_{0}^{T}\left[-H(t, p, q)+H_{p}(t, p, q) p+\frac{\delta}{|q|^{\gamma}}+\varepsilon|q|^{\gamma}+\varepsilon(\gamma-1)|p|^{\gamma}\right] d t .
\end{align*}
$$

By the assumptions 3.1 and 3.2, we get

$$
\int_{0}^{T}\left[-H(t, p, q)+H_{p}(t, p, q) p+\frac{\delta}{|q|^{\gamma}}+\varepsilon|q|^{\gamma}+\varepsilon(\gamma-1)|p|^{\gamma}\right] d t \leq M_{1}
$$

From (H3), it follows that

$$
\int_{0}^{T}\left[a_{3}|q|^{\alpha}\left(|p|^{\beta}+1\right)-a_{4}+\frac{\delta}{|q|^{\gamma}}+\varepsilon|q|^{\gamma}+\varepsilon(\gamma-1)|p|^{\gamma}\right] d t \leq M_{1}
$$

Thus we obtained (i).
(ii) By (H2)(i), we have for all $(p, q) \in P_{m} \times \Lambda_{m}$

$$
\begin{equation*}
I_{\delta, \varepsilon, m}(p, q) \geq \int_{0}^{T}\left[p \dot{q}-a_{1}|q|^{\alpha}|p|^{\beta}+\varepsilon\left(|q|^{\alpha}-|p|^{\gamma}\right)\right] d t+\delta \int_{0}^{T} \frac{1}{|q|^{\gamma}} d t \tag{3.4}
\end{equation*}
$$

Since $\delta \int_{0}^{T} \frac{1}{\left|q_{j}\right|^{\gamma}} d t \rightarrow \infty$, we get the conclusion easily.
(iii) Let $\left(p_{j}, q_{j}\right)_{(j \in \mathbb{N})} \subset P_{m} \times \Lambda_{m}$ be a sequence satisfying the assumptions of the condition (PS).We may assume that

$$
\begin{gather*}
I_{\delta, \varepsilon, m}\left(p_{j}, q_{j}\right) \rightarrow c \tag{3.5}\\
\left\|I_{\delta, \varepsilon, m}^{\prime}\left(p_{j}, q_{j}\right)\right\|_{E_{m}^{\star}} \rightarrow 0 . \tag{3.6}
\end{gather*}
$$

We prove that $\left(p_{j}, q_{j}\right)$ possesses a convergent subsequence to some $(p, q) \in$ $P_{m} \times \Lambda_{m}$. By (H3) and 3.3-3.6, for large j,

$$
\begin{aligned}
& \int_{0}^{T}\left[a_{3}\left|q_{j}\right|^{\alpha}\left(\left|p_{j}\right|^{\beta}+1\right)-a_{4}\right] d t+\delta \int_{0}^{T} \frac{1}{\left|q_{j}\right|^{\gamma}} d t \\
& \quad+\varepsilon \int_{0}^{T}\left|q_{j}\right|^{\gamma} d t+\varepsilon(\gamma-1) \int_{0}^{T}\left|p_{j}\right|^{\gamma} d t \leq 2 c+\left\|p_{j}\right\|_{\gamma}
\end{aligned}
$$

Thus, for some constant $C_{1}>0$ independent of j,

$$
\int_{0}^{T}\left|q_{j}\right|^{\alpha} d t, \int_{0}^{T}\left|p_{j}\right|^{\gamma} d t \leq C_{1} \quad \text { for all } j \in \mathbb{N}
$$

Since $\operatorname{dim} E_{m}<\infty$, we can extract a subsequence - still indexed by $\left(p_{j}, q_{j}\right)$-, such that $\left(p_{j}, q_{j}\right) \rightarrow(p, q) \in E_{m}$. By (ii), we necessarily have $q \in \Lambda_{m}$.

Next, we apply to $I_{\delta, \varepsilon, m}$ a minimax argument related to the one in [7]. This argument will play an important role in obtaining a critical points $\left(p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}\right) \in$ $P_{m} \times \Lambda_{m}$ with uniform upper bound of critical values. We define $\Gamma_{m}=\left\{A(p, \xi) \in C\left(P_{m} \times S^{N-2}, P_{m} \times \Lambda_{m}\right) ; A(p, \xi)=\left(p, \sigma_{0}(\xi)\right)\right.$ for large $\left.\|p\|_{\beta}\right\}$ where

$$
\sigma_{0}: S^{N-2}=\left\{\xi=\left(\xi_{1}, \ldots, \xi_{N-1}\right) \in \mathbb{R}^{N-1}: \sum_{j=1}^{N-1}\left|\xi_{j}\right|^{2}=1\right\} \rightarrow Q_{m}
$$

is given by

$$
\sigma_{0}(\xi)(t)=\cos \frac{2 \pi t}{T}\left(\xi_{1}, \ldots, \xi_{N-1}, 0\right)+\sin \frac{2 \pi t}{T}(0, \ldots 0,1)
$$

We remark that $A_{0}(p, \xi)=\left(p, \sigma_{0}(\xi)\right) \in \Gamma_{m}$ and $\Gamma_{m} \neq \emptyset$. Then we define the minimax values of $I_{\delta, \varepsilon, m}$ as follows

$$
c_{\delta, \varepsilon, m}=\inf _{A \in \Gamma_{m}} \sup _{(p, \xi) \in P_{m} \times S^{N-2}} I_{\delta, \varepsilon, m}(A(p, \xi))
$$

Proposition 3.1 For any $\delta, \varepsilon \in] 0,1]$ and $m \in \mathbb{N}$, there exists a constant $\underline{c}(\delta, \varepsilon)>$ 0 such that

$$
c_{\delta, \varepsilon, m} \geq \underline{c}(\delta, \varepsilon)>0
$$

To prove this proposition, we need the following result.
Lemma 3.2 For any $A \in \Gamma_{m}$ and $\lambda>0$, we have

$$
A\left(P_{m} \times S^{N-2}\right) \cap \mathcal{D}_{m, \lambda} \neq \emptyset
$$

where

$$
\mathcal{D}_{m, \lambda}=\left\{(p, q) \in P_{m} \times \Lambda_{m} ; p=\lambda \operatorname{proj}_{m}\left(|\dot{q}|^{\frac{1}{\gamma-1}-1} \dot{q}\right)\right\} .
$$

The proof of this lemma will be given in the appendix.
Lemma 3.3 For sufficiently small $\lambda_{\varepsilon}>0$, there exists a constant $c(\delta, \varepsilon)>0$ such that

$$
I_{\delta, \varepsilon, m}(p, q) \geq c(\delta, \varepsilon)>0 \quad \text { for all }(p, q) \in \mathcal{D}_{m, \lambda_{\varepsilon}}
$$

where $\mathcal{D}_{m, \lambda_{\varepsilon}}$ is given in Lemma 3.2.
Proof. Let $(p, q) \in \mathcal{D}_{m, \lambda}$. We recall that $\gamma=\alpha+\beta$. By the Young's inequality,

$$
a_{1} \int_{0}^{T}|q|^{\alpha}|p|^{\beta} d t \leq \frac{\alpha}{\gamma} \varepsilon \int_{0}^{T}|q|^{\gamma} d t+\frac{\beta}{\gamma}\left(\frac{a_{1}}{\varepsilon^{\frac{\alpha}{\gamma}}}\right)^{\frac{\gamma}{\beta}} \int_{0}^{T}|p|^{\gamma} d t .
$$

Thus, from 3.4,

$$
I_{\delta, \varepsilon, m}(p, q) \geq \int_{0}^{T} p \dot{q} d t-a(\varepsilon) \int_{0}^{T}|p|^{\gamma} d t+\delta \int_{0}^{T} \frac{1}{|q|^{\gamma}} d t
$$

where $a(\varepsilon)=\varepsilon+\frac{\beta}{\gamma}\left(\frac{a_{1}}{\varepsilon^{\frac{\alpha}{\gamma}}}\right)^{\frac{\gamma}{\beta}}>0$. Since $(p, q) \in \mathcal{D}_{m, \lambda}$,

$$
\begin{equation*}
\int_{0}^{T} p \dot{q} d t=\lambda \int_{0}^{T}|\dot{q}|^{\frac{\gamma}{\gamma-1}} d t \tag{3.7}
\end{equation*}
$$

Moreover, by Lemma 2.1 and Lemma 2.3

$$
\begin{equation*}
T^{\frac{1}{\gamma}}\|\dot{q}\|_{\frac{\gamma}{\gamma-1}} \geq \int_{0}^{T}|\dot{q}| d t \geq\|q\|_{\infty} \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{T}|p|^{\gamma} d t=\lambda^{\gamma}\left\|\operatorname{proj}_{m}\left(|\dot{q}|^{\frac{1}{\gamma-1}-1} \dot{q}\right)\right\|_{\gamma}^{\gamma} \leq \lambda^{\gamma} K_{\gamma}^{\gamma}\|\dot{q}\|_{\frac{\gamma}{\gamma-1}}^{\frac{\gamma}{\gamma-1}} . \tag{3.9}
\end{equation*}
$$

By 3.7 and 3.9, we get

$$
I_{\delta, \varepsilon, m}(p, q) \geq\left(\lambda-a(\varepsilon) K_{\gamma}^{\gamma} \lambda^{\gamma}\right)\|\dot{q}\|_{\frac{\gamma}{\gamma-1}}^{\frac{\gamma}{\gamma-1}}+\delta \int_{0}^{T} \frac{1}{|q|^{\gamma}} d t .
$$

Taking λ_{ε} small enough so that $A_{\varepsilon}=\lambda_{\varepsilon}-a(\varepsilon) K_{\gamma}^{\gamma} \lambda_{\varepsilon}^{\gamma}>0$, from 3.8, for all $(p, q) \in \mathcal{D}_{m, \lambda_{\varepsilon}}$, we have

$$
I_{\delta, \varepsilon, m}(p, q) \geq \inf _{q \in \Lambda}\left(\frac{A_{\varepsilon}}{T^{\frac{1}{\gamma-1}}}\|q\|_{\infty}^{\frac{\gamma}{\gamma-1}}+\frac{\delta T}{\|q\|_{\infty}^{\gamma}}\right)=c(\delta, \varepsilon)>0
$$

Proof of Proposition 3.1 Let $\lambda_{\varepsilon}>0$ be as in Lemma 3.3. By Lemma 3.2, we have

$$
A\left(P_{m} \times S^{N-2}\right) \cap \mathcal{D}_{m, \lambda_{\varepsilon}} \neq \emptyset \quad \text { for all } A \in \Gamma_{m}
$$

Thus, we find that

$$
\begin{aligned}
c_{\delta, \varepsilon, m} & =\inf _{A \in \Gamma_{m}} \sup _{(p, \xi) \in P_{m} \times S^{N-2}} I_{\delta, \varepsilon, m}(A(p, \xi)) \\
& \geq \inf _{(p, q) \in \mathcal{D}_{m, \lambda_{\varepsilon}}} I_{\delta, \varepsilon, m}(p, q) \\
& \geq c(\delta, \varepsilon)>0 .
\end{aligned}
$$

We choose $\underline{c}(\delta, \varepsilon)=c(\delta, \varepsilon)$, we get the desired result.
Now, we prove an existence result
Proposition 3.2 For any $\delta, \varepsilon \in] 0,1]$ and $m \in \mathbb{N}$, we have (i)

$$
0<\underline{c}(\delta, \varepsilon) \leq c_{\delta, \varepsilon, m} \leq \bar{c}
$$

where \bar{c} is independent of δ, ε and m.
(ii) If $\|p\|_{\beta}$ is sufficiently large, then for all $\xi \in S^{N-2}$,

$$
I_{\delta, \varepsilon, m}\left(A_{0}(p, \xi)\right) \leq 0
$$

(iii) There exists a critical point $\left(p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}\right) \in P_{m} \times \Lambda_{m}$ of $I_{\delta, \varepsilon, m}$ such that

$$
I_{\delta, \varepsilon, m}\left(p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}\right)=c_{\delta, \varepsilon, m}
$$

Proof. (i) By (H2)(ii), we have

$$
\begin{align*}
I_{\delta, \varepsilon, m}\left(A_{0}(p, \xi)\right) \leq & \int_{0}^{T}|p|\left|\frac{d}{d t} \sigma_{0}(\xi)\right| d t-a_{2} \int_{0}^{T}\left|\sigma_{0}(\xi)\right|^{\alpha}|p|^{\beta} d t \\
& +\int_{0}^{T} K_{1}\left(\sigma_{0}(\xi)\right) d t+\int_{0}^{T}\left(\frac{1}{\left|\sigma_{0}(\xi)\right|^{\gamma}}+\left|\sigma_{0}(\xi)\right|^{\gamma}\right) d t \\
\leq & k_{1}\|p\|_{\beta}-k_{2}\|p\|_{\beta}^{\beta}+k_{3} \tag{3.10}
\end{align*}
$$

for some positive constants k_{1}, k_{2}, k_{3} independent of δ, ε and m. Since $\beta>1$, there exists a constant $\bar{c}>0$ independent of δ, ε and m such that

$$
c_{\delta, \varepsilon, m} \leq \sup _{(p, \xi) \in P_{m} \times S^{N-2}} I_{\delta, \varepsilon, m}\left(A_{0}(p, \xi)\right) \leq \bar{c} .
$$

(ii) follows clearly from 3.10.
(iii) Since $I_{\delta, \varepsilon, m}$ satisfies the (PS) condition and property (ii) of Lemma 3.1, then by a standard argument using the deformation theorem and (ii), we can see that $c_{\delta, \varepsilon, m}>0$ is a critical value of $I_{\delta, \varepsilon, m}$. By Lemma 2.2, we get (iii). \diamond

As a corollary to (i) of Lemma 3.1 and the uniform estimates of $c_{\delta, \varepsilon, m}$, we have the following statements.

Corollary 3.1 Let $\left(p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}\right) \in P_{m} \times \Lambda_{m}$ be a critical point of $I_{\delta, \varepsilon, m}$ obtained by Proposition 3.2. Then, there exists a constant $C_{2}>0$ independent of δ, ε and m, such that for all $\delta, \varepsilon \in] 0,1]$ and $m \in \mathbb{N}$, we have

$$
\begin{equation*}
\int_{0}^{T}\left|q_{\delta, \varepsilon, m}\right|^{\alpha}\left|p_{\delta, \varepsilon, m}\right|^{\beta} d t+\int_{0}^{T}\left|q_{\delta, \varepsilon, m}\right|^{\alpha} d t \leq C_{2} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon \int_{0}^{T}\left(\left|q_{\delta, \varepsilon, m}\right|^{\gamma}+\left|p_{\delta, \varepsilon, m}\right|^{\gamma}\right) d t \leq C_{2} \tag{ii}
\end{equation*}
$$

(iii)

$$
\delta \int_{0}^{T} \frac{1}{\left|q_{\delta, \varepsilon, m}\right|^{\gamma}} d t \leq C_{2}
$$

4 Limiting process as $m \rightarrow \infty$

Proposition 4.1 For any $\delta, \varepsilon \in] 0,1]$, $\left(p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}\right)$ possesses a subsequence converging in E to $\left(p_{\delta, \varepsilon}, q_{\delta, \varepsilon}\right) \in(P \times \Lambda) \cap E_{0}$. Moreover,

$$
\begin{align*}
I_{\delta, \varepsilon}\left(p_{\delta, \varepsilon}, q_{\delta, \varepsilon}\right) & \leq \bar{c} \tag{4.1}\\
I_{\delta, \varepsilon}^{\prime}\left(p_{\delta, \varepsilon}, q_{\delta, \varepsilon}\right) & =0 \tag{4.2}
\end{align*}
$$

Proof. By (ii) of Corollary 3.1, we can extract a subsequence - still indexed by m - such that

$$
\left(p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}\right) \rightharpoonup\left(p_{\delta, \varepsilon}, q_{\delta, \varepsilon}\right) \quad \text { weakly in } L^{\gamma}\left(0, T ; \mathbb{R}^{N}\right) .
$$

We remark that $I_{\delta, \varepsilon, m}^{\prime}\left(p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}\right)=0$ is equivalent to

$$
\begin{gather*}
\dot{q}_{\delta, \varepsilon, m}=\operatorname{proj}_{m}\left[H_{p}\left(t, p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}\right)+\varepsilon \gamma\left|p_{\delta, \varepsilon, m}\right|^{\gamma-2} p_{\delta, \varepsilon, m}\right] \tag{4.3}\\
\dot{p}_{\delta, \varepsilon, m}=-\operatorname{proj}_{m}\left[H_{q}\left(t, p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}\right)+\delta \gamma \frac{q_{\delta, \varepsilon, m}}{\left|q_{\delta, \varepsilon, m}\right|^{\gamma+2}}-\varepsilon \gamma\left|q_{\delta, \varepsilon, m}\right|^{\gamma-2} q_{\delta, \varepsilon, m}\right] \tag{4.4}
\end{gather*}
$$

By (H4) and Lemma 2.3, we have from 4.3

$$
\begin{aligned}
\left\|\dot{q}_{\delta, \varepsilon, m}\right\|_{\frac{\gamma}{\gamma-1}} \leq & K_{\frac{\gamma}{\gamma-1}}\left[a_{5}\left\|\left(\left|q_{\delta, \varepsilon, m}\right|^{\alpha}\left|p_{\delta, \varepsilon, m}\right|^{(\beta-1)}\right)\right\|_{\frac{\gamma}{\gamma-1}}+a_{5}\left\|q_{\delta, \varepsilon, m}\right\|_{\alpha \frac{\gamma}{\gamma-1}}^{\alpha}\right. \\
& \left.+a_{6}\left\|q_{\delta, \varepsilon, m}\right\|_{\frac{\gamma}{\gamma-1}}+\varepsilon \gamma\left\|p_{\delta, \varepsilon, m}\right\|_{\gamma}^{\gamma-1}\right] .
\end{aligned}
$$

Using a Hölder's inequality and (i)-(ii) of Corollary 3.1, we can find a constant $C_{3}>0$ independent of $m \in \mathbb{N}$, such that

$$
\left\|q_{\delta, \varepsilon, m}\right\|_{W^{1,} \frac{\gamma}{\gamma^{-1}}\left(0, T ; \mathbb{R}^{N}\right)} \leq C_{3} .
$$

Thus we can see from (iii) of Corollary 3.1 that

$$
\begin{equation*}
q_{\delta, \varepsilon, m} \rightarrow q_{\delta, \varepsilon} \in \Lambda \text { uniformly in }[0, T] . \tag{4.5}
\end{equation*}
$$

On the other hand, by (H5) and Lemma 2.3, we have from 4.4

$$
\begin{aligned}
\left\|\dot{p}_{\delta, \varepsilon, m}\right\|_{\frac{\gamma}{\gamma-1}} \leq & K_{\frac{\gamma}{\gamma-1}}\left[\left\|A\left(q_{\delta, \varepsilon, m}\right)\left|p_{\delta, \varepsilon, m}\right|^{\beta}\right\|_{\frac{\gamma}{\gamma-1}}+\left\|A\left(q_{\delta, \varepsilon, m}\right)\right\|_{\frac{\gamma}{\gamma-1}}\right. \\
& +\gamma\left\|\delta \frac{q_{\delta, \varepsilon, m}}{\left|q_{\delta, \varepsilon, m}\right|^{\gamma+2}}-\varepsilon\left|q_{\delta, \varepsilon, m}\right|^{\gamma-2} q_{\delta, \varepsilon, m}\right\|_{\frac{\gamma}{\gamma-1}} .
\end{aligned}
$$

Using 4.5, we find

$$
\left\|p_{\delta, \varepsilon, m}\right\|_{W^{1,} \frac{\gamma}{\gamma-1}\left(0, T ; \mathbb{R}^{N}\right)} \leq C_{4}
$$

where $C_{4}>0$ is a constant independent of m. The injection $W^{1, \frac{\gamma}{\gamma-1}}\left(0, T ; \mathbb{R}^{N}\right) \subset$ $L^{\gamma}\left(0, T ; \mathbb{R}^{N}\right)$ is compact, thus we have

$$
\begin{equation*}
p_{\delta, \varepsilon, m} \rightarrow p_{\delta, \varepsilon} \text { strongly in } L^{\gamma}\left(0, T ; \mathbb{R}^{N}\right) \text { and uniformly in }[0, T] \tag{4.6}
\end{equation*}
$$

By (i) and (iii) of Proposition 3.2, we deduce that

$$
\begin{aligned}
I_{\delta, \varepsilon}\left(p_{\delta, \varepsilon}, q_{\delta, \varepsilon}\right) & =\lim _{m \rightarrow \infty} I_{\delta, \varepsilon, m}\left(p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}\right) \leq \bar{c} \\
I_{\delta, \varepsilon}^{\prime}\left(p_{\delta, \varepsilon}, q_{\delta, \varepsilon}\right)(h, k) & =\lim _{m \rightarrow \infty} I_{\delta, \varepsilon, m}^{\prime}\left(p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}\right)(h, k)=0
\end{aligned}
$$

for all sums

$$
h=\sum_{|j| \leq n} \theta_{j} e^{\frac{2 i \pi j t}{T}}, k=\sum_{|j| \leq n} \psi_{j} e^{\frac{2 i \pi j t}{T}} \quad\left(\theta_{j}, \psi_{j} \in \mathbf{C}^{N}\right)
$$

Therefore, $I_{\delta, \varepsilon}^{\prime}\left(p_{\delta, \varepsilon}, q_{\delta, \varepsilon}\right)(h, k)=0$ for all $(h, k) \in E$.

5 Limiting process as $\varepsilon \rightarrow 0$

We take the limit as $\varepsilon \rightarrow 0$ to obtain a critical point $\left(p_{\delta}, q_{\delta}\right) \in(P \times \Lambda) \cap E_{0}$ of I_{δ} with uniform upper bound for critical values. As a consequence to Corollary 3.1 , and $4.5,4.6$ we have the following lemma.

Lemma 5.1 For any $\delta, \varepsilon \in] 0,1],\left(p_{\delta, \varepsilon}, q_{\delta, \varepsilon}\right) \in(P \times \Lambda) \cap E_{0}$ satisfies

$$
\begin{equation*}
\int_{0}^{T}\left|q_{\delta, \varepsilon}\right|^{\alpha}\left|p_{\delta, \varepsilon}\right|^{\beta} d t+\int_{0}^{T}\left|q_{\delta, \varepsilon}\right|^{\alpha} d t \leq C_{2} \tag{i}
\end{equation*}
$$

$$
\begin{gather*}
\varepsilon \int_{0}^{T}\left(\left|q_{\delta, \varepsilon}\right|^{\gamma}+\left|p_{\delta, \varepsilon}\right|^{\gamma}\right) d t \leq C_{2} \tag{ii}\\
\delta \int_{0}^{T} \frac{1}{\left|q_{\delta, \varepsilon}\right|^{\gamma}} d t \leq C_{2} \tag{iii}
\end{gather*}
$$

Proposition 5.1 For any $\delta \in] 0,1]$, $\left(p_{\delta, \varepsilon}, q_{\delta, \varepsilon}\right)$ possesses a subsequence converging in E to $\left(p_{\delta}, q_{\delta}\right) \in(P \times \Lambda) \cap E_{0}$. Moreover,

$$
\begin{aligned}
& I_{\delta}^{\prime}\left(p_{\delta}, q_{\delta}\right)=0 \\
& I_{\delta}\left(p_{\delta}, q_{\delta}\right) \leq \bar{c}
\end{aligned}
$$

Proof. Since $I_{\delta, \varepsilon}^{\prime}\left(p_{\delta \varepsilon}, q_{\delta, \varepsilon}\right)=0$, we have

$$
\begin{gather*}
\dot{q}_{\delta, \varepsilon}=H_{p}\left(t, p_{\delta, \varepsilon}, q_{\delta, \varepsilon}\right)+\varepsilon \gamma\left|p_{\delta, \varepsilon}\right|^{\gamma-2} p_{\delta, \varepsilon} \tag{5.1}\\
\dot{p}_{\delta, \varepsilon}=-\left[H_{q}\left(t, p_{\delta, \varepsilon}, q_{\delta, \varepsilon}\right)+\delta \gamma \frac{q_{\delta, \varepsilon}}{\left|q_{\delta, \varepsilon}\right|^{\gamma+2}}-\varepsilon \gamma\left|q_{\delta, \varepsilon}\right|^{\gamma-2} q_{\delta, \varepsilon}\right] . \tag{5.2}
\end{gather*}
$$

By (H4) and 5.1, we can see from (i)-(ii) of Lemma 5.1 that

$$
\begin{aligned}
\int_{0}^{T}\left|\dot{q}_{\delta, \varepsilon}\right| d t \leq & a_{5}\left[\int_{0}^{T}\left|q_{\delta, \varepsilon}\right|^{\alpha}\left|p_{\delta, \varepsilon}\right|^{\beta-1} d t+\int_{0}^{T}\left|q_{\delta, \varepsilon}\right|^{\alpha} d t\right]+a_{6} \int_{0}^{T}\left|q_{\delta, \varepsilon}\right| d t \\
& +\varepsilon \gamma \int_{0}^{T}\left|p_{\delta, \varepsilon}\right|^{\gamma-1} d t \\
\leq & C_{5}
\end{aligned}
$$

where $C_{5}>0$ is a constant independent of ε. Thus, we deduce that $\left(q_{\delta, \varepsilon}\right)_{\varepsilon}$ is bounded in $L^{\infty}\left(0, T ; \mathbb{R}^{N}\right)$.
By (H4) and (5.1) again, we have

$$
\begin{aligned}
\left\|\dot{q}_{\delta, \varepsilon}\right\|_{\frac{\gamma}{\gamma-1}} \leq & a_{5}\left\|\left(\left|q_{\delta, \varepsilon}\right|^{\alpha}\left|p_{\delta, \varepsilon}\right|^{\beta-1}\right)\right\|_{\frac{\gamma}{\gamma-1}}+a_{5}\left\|q_{\delta, \varepsilon}\right\|_{\alpha \frac{\gamma}{\gamma-1}}^{\alpha} \\
& +a_{6}\left\|q_{\delta, \varepsilon}\right\|_{\frac{\gamma}{\gamma-1}}+\varepsilon \gamma\left\|p_{\delta, \varepsilon}\right\|_{\gamma}^{\gamma-1} .
\end{aligned}
$$

Here we will apply the Hölder's inequality

$$
\|f g\|_{s} \leq\|f\|_{s \mu}\|g\|_{s \nu}
$$

with $f(t)=\left|q_{\delta, \varepsilon}\right|^{\frac{\alpha}{\beta}}, g(t)=\left(\left|q_{\delta, \varepsilon}\right|^{\alpha}\left|p_{\delta, \varepsilon}\right|^{\beta}\right)^{\frac{\beta-1}{\beta}}, s=\frac{\gamma}{\gamma-1}, \quad \mu=\frac{(\gamma-1) \beta}{\alpha}$ and $\nu=$ $\frac{(\gamma-1) \beta}{(\beta-1) \gamma}$.
We verify that $\frac{1}{\mu}+\frac{1}{\nu}=1$. Then we have

$$
\left.\begin{aligned}
\left\|\left(\left|q_{\delta, \varepsilon}\right|^{\alpha}\left|p_{\delta, \varepsilon}\right|^{\beta-1}\right)\right\|_{\frac{\gamma}{\gamma-1}} & =\|\left(\left|q_{\delta, \varepsilon}\right|^{\frac{\alpha}{\beta}}\right)\left(\left|q_{\delta, \varepsilon}\right|^{\alpha}\left|p_{\delta, \varepsilon}\right|^{\beta}\right)^{\beta-1} \\
& \leq\left\|\left(\left|q_{\delta, \varepsilon}\right|^{\frac{\alpha}{\beta}}\right)\right\|_{\frac{\gamma}{\gamma \beta}}^{\alpha-1}
\end{aligned} \right\rvert\,\left(\left|q_{\delta, \varepsilon}\right|^{\alpha}\left|p_{\delta, \varepsilon}\right|^{\beta}\right)^{\frac{\beta-1}{\beta}}\| \|_{\frac{\beta}{\beta-1}}
$$

where $C_{6}>0$ is a constant independent of ε.

Finally $\left(q_{\delta, \varepsilon}\right)_{\varepsilon}$ is bounded in $W^{1, \frac{\gamma}{\gamma-1}}\left(0, T ; \mathbf{R}^{N}\right)$. That is we can extract a subsequence -still indexed by ε - such that

$$
\begin{equation*}
q_{\delta, \varepsilon} \rightarrow q_{\delta} \in \Lambda \quad \text { uniformly in }[0, T] . \tag{5.3}
\end{equation*}
$$

Since $\int_{0}^{T}\left|q_{\delta, \varepsilon}\right|^{\alpha}\left|p_{\delta, \varepsilon}\right|^{\beta} d t \leq C_{2}$, we get

$$
\begin{equation*}
\int_{0}^{T}\left|p_{\delta, \varepsilon}\right|^{\beta} d t \leq C_{7} \tag{5.4}
\end{equation*}
$$

for some constant $C_{7}>0$ independent of ε. By (H5) and 5.2-5.4, there exists a constant $C_{8}>0$ independent of ε such that

$$
\begin{aligned}
\int_{0}^{T}\left|\dot{p}_{\delta, \varepsilon}\right| d t & \leq \int_{0}^{T} A\left(q_{\delta, \varepsilon}\right)\left(\left|p_{\delta, \varepsilon}\right|^{\beta}+1\right) d t+\gamma \int_{0}^{T}\left(\frac{1}{\left|q_{\delta, \varepsilon}\right|^{\gamma+1}}+\left|q_{\delta, \varepsilon}\right|^{\gamma-1}\right) d t \\
& \leq C_{8}
\end{aligned}
$$

and

$$
\int_{0}^{T}\left|\dot{p}_{\delta, \varepsilon}\right|^{\gamma} d t \leq C_{8}
$$

So we can extract a subsequence -still indexed by ε - such that

$$
\begin{equation*}
p_{\delta, \varepsilon} \rightarrow p_{\delta} \text { strongly in } L^{\gamma}(0, T ; \mathbb{R}) \text { and uniformly in }[0, T] \tag{5.5}
\end{equation*}
$$

By 5.3 and 5.5 , a passage to the limit on 4.1-4.2 similar as in Section 4 completes the proof.

6 Proof of Theorem 1.1

We take a limit as $\delta \rightarrow 0$ to obtain a T-periodic solution of (1.1). Let $\left(p_{\delta}, q_{\delta}\right) \in$ $(P \times \Lambda) \cap E_{0}$ be a critical point of $I_{\delta}(p, q)$ obtained by Proposition 5.1. By Lemma 5.1, 5.3 and 5.5, we have
Lemma 6.1 For any $\delta \in] 0,1]$,

$$
\begin{gather*}
\int_{0}^{T}\left|q_{\delta}\right|^{\alpha}\left|p_{\delta}\right|^{\beta} d t+\int_{0}^{T}\left|q_{\delta}\right|^{\alpha} d t \leq C_{2} \tag{i}\\
\delta \int_{0}^{T} \frac{1}{\left|q_{\delta}\right|^{\gamma}} d t \leq C_{2}
\end{gather*}
$$

By (i) of Lemma 6.1, we can extract a subsequence -still indexed by δ - such that

$$
q_{\delta} \rightharpoonup q \quad \text { weakly in } L^{\alpha}\left(0, T ; \mathbb{R}^{N}\right)
$$

We also remark that $I_{\delta}^{\prime}\left(p_{\delta}, q_{\delta}\right)=0$ is equivalent to

$$
\begin{gather*}
\dot{q}_{\delta}=H_{p}\left(t, p_{\delta}, q_{\delta}\right) \tag{6.1}\\
\dot{p}_{\delta}=-\left[H_{q}\left(t, p_{\delta}, q_{\delta}\right)+\delta \gamma \frac{q_{\delta}}{\left|q_{\delta}\right|^{\gamma+2}}\right] . \tag{6.2}
\end{gather*}
$$

Lemma 6.2 $q_{\delta} \rightarrow q \in \Lambda$ uniformly in $[0, T]$.

Proof. By (H4) and 6.1, we have

$$
\int_{0}^{T}\left|\dot{q}_{\delta}\right| d t \leq a_{5} \int_{0}^{T}\left|q_{\delta}\right|^{\alpha}\left|p_{\delta}\right|^{\beta-1} d t+a_{5} \int_{0}^{T}\left|q_{\delta}\right|^{\alpha} d t+a_{6} \int_{0}^{T}\left|q_{\delta}\right| d t
$$

Using (i) of Lemma 6.1, we can see that $\left\|q_{\delta}\right\|_{W^{1,1}\left(0, T ; \mathbb{R}^{N}\right)}$ is bounded. Thus we can find a constant $C_{9}>0$ independent of δ, such that

$$
\int_{0}^{T}\left|\dot{q}_{\delta}\right|^{\frac{\beta}{\beta-1}} d t \leq C_{9}
$$

Consequently, we obtain $q_{\delta} \rightarrow q$ uniformly in $[0, T]$.
We now argue indirectly and suppose that

$$
q\left(t_{0}\right)=0 \quad \text { for some } t_{0} \in[0, T]
$$

We may assume $t_{0}=0$. By 6.1, for any $\left.\left.t \in\right] 0, T\right]$ we have

$$
\begin{equation*}
|\log | q_{\delta}(t)|-\log | q_{\delta}(0) \| \leq \int_{0}^{t} \frac{\left|\dot{q}_{\delta}(s)\right|}{\left|q_{\delta}(s)\right|} d s=\int_{0}^{t} \frac{\left|H_{p}\left(s, p_{\delta}, q_{\delta}\right)\right|}{\left|q_{\delta}\right|} d s \tag{6.3}
\end{equation*}
$$

By (H4),

$$
\int_{0}^{t} \frac{\left|H_{p}\left(s, p_{\delta}, q_{\delta}\right)\right|}{\left|q_{\delta}\right|} d s \leq a_{5} \int_{0}^{t}\left|q_{\delta}\right|^{\alpha-1}\left|p_{\delta}\right|^{\beta-1} d s+a_{5} \int_{0}^{t}\left|q_{\delta}\right|^{\alpha-1} d s+a_{6} T
$$

Since $\alpha>\beta>1$ and $\int_{0}^{T}\left|q_{\delta}\right|^{\alpha}\left|p_{\delta}\right|^{\beta} d t \leq C_{2}$, there exists a constant $C_{10}>0$ independent of δ, such that

$$
\begin{equation*}
\int_{0}^{t} \frac{\left|H_{p}\left(s, p_{\delta}, q_{\delta}\right)\right|}{\left|q_{\delta}\right|} d s \leq C_{10} \tag{6.4}
\end{equation*}
$$

Passing to the limit in 6.3 , we see that $q_{\delta} \rightarrow 0$ uniformly in $[0, T]$. By 6.1-6.2, we have

$$
\begin{aligned}
I_{\delta}\left(p_{\delta}, q_{\delta}\right) & =\int_{0}^{T} H_{p}\left(t, p_{\delta}, q_{\delta}\right) p_{\delta} d t-\int_{0}^{T} H\left(t, p_{\delta}, q_{\delta}\right) d t+\delta \int_{0}^{T} \frac{1}{\left|q_{\delta}\right|^{\gamma}} d t \\
& =\int_{0}^{T} H_{q}\left(t, p_{\delta}, q_{\delta}\right) q_{\delta} d t-\int_{0}^{T} H\left(t, p_{\delta}, q_{\delta}\right) d t+\delta(\gamma+1) \int_{0}^{T} \frac{1}{\left|q_{\delta}\right|^{\gamma}} d t
\end{aligned}
$$

Hence

$$
\int_{0}^{T}\left[H_{q}\left(t, p_{\delta}, q_{\delta}\right) q_{\delta}-H_{p}\left(t, p_{\delta}, q_{\delta}\right) p_{\delta}\right] d t+\delta \gamma \int_{0}^{T} \frac{1}{\left|q_{\delta}\right|} d t=0
$$

From (H6)(i) and (H2)(ii), it follows that

$$
a_{7} a_{2} \int_{0}^{T}\left|q_{\delta}\right|^{\alpha}\left|p_{\delta}\right|^{\beta} d t-a_{7} \int_{0}^{T} K_{1}\left(q_{\delta}\right) d t+\int_{0}^{T} K_{2}\left(q_{\delta}\right) d t+\delta \gamma \int_{0}^{T} \frac{1}{\left|q_{\delta}\right|^{\gamma}} d t \leq 0
$$

for small δ. Since $q_{\delta} \rightarrow 0$ uniformly in $[0, T]$, we find

$$
\begin{equation*}
\int_{0}^{T}\left|q_{\delta}\right|^{\alpha}\left|p_{\delta}\right|^{\beta} d t \rightarrow 0 \text { as } \delta \rightarrow 0 \tag{6.5}
\end{equation*}
$$

Thus we can see from 6.1, 6.5 and (H6)(ii),

$$
\begin{align*}
\int_{0}^{T} \frac{\left|\dot{q}_{\delta}\right|^{\frac{\beta}{\beta-1}}}{\left|q_{\delta}\right|^{\frac{\alpha}{\beta-1}}} d t= & \int_{0}^{T} \frac{\left|H_{p}\left(t, p_{\delta}, q_{\delta}\right)\right|^{\frac{\beta}{\beta-1}}}{\left|q_{\delta}\right|^{\frac{\alpha}{\beta-1}}} d t \\
\leq & a_{8} \int_{0}^{T}\left[\left|q_{\delta}\right|^{\alpha}\left|p_{\delta}\right|^{\beta}+K_{3}\left(q_{\delta}\right)\right] d t \\
& \rightarrow 0 \text { as } \delta \rightarrow 0 \tag{6.6}
\end{align*}
$$

In other hand, we have from Lemma 2.1

$$
\begin{aligned}
& \int_{0}^{T} \frac{\left|\dot{q}_{\delta}\right|^{\frac{\beta}{\beta-1}}}{\left|q_{\delta}\right|^{\frac{\alpha}{\beta-1}}} d t \geq \frac{\left(\int_{0}^{T}\left|\dot{q}_{\delta}\right| d t\right)^{\frac{\beta}{\beta-1}}}{T^{\frac{1}{\beta-1}}\left\|q_{\delta}\right\|_{\infty}^{\frac{\alpha}{\beta-1}}} \\
& \geq \frac{1}{T^{\frac{1}{\beta-1}}\left\|q_{\delta}\right\|_{\infty}^{\frac{\alpha-\beta}{\beta-1}}} \\
& \rightarrow+\infty \text { as } \delta \rightarrow 0 .
\end{aligned}
$$

This is a contradiction to 6.6 which proves the Lemma 6.2.
Lemma 6.3 There exists a constant C_{11} independent of $\left.\left.\delta \in\right] 0,1\right]$ such that

$$
\left\|p_{\delta}\right\|_{W^{1, \gamma}\left(0, T ; \mathbb{R}^{N}\right)} \leq C_{11}
$$

Proof. Since $q_{\delta} \rightarrow q \in \Lambda$ uniformly in $[0, T]$ and $\int_{0}^{T}\left|q_{\delta}\right|^{\alpha}\left|p_{\delta}\right|^{\beta} d t \leq C_{2}$, there exists a constant $C_{12}>0$ independent of $\left.\left.\delta \in\right] 0,1\right]$ such that

$$
\int_{0}^{T}\left|p_{\delta}\right|^{\beta} d t \leq C_{12}
$$

By (H5) and 6.2, one deduce that $\int_{0}^{T}\left|\dot{p}_{\delta}\right| d t$ is bounded. Thus we can see for some constant $C_{11}>0$ independent of $\left.\left.\delta \in\right] 0,1\right]$

$$
\left\|p_{\delta}\right\|_{W^{1, \gamma}\left(0, T ; \mathbb{R}^{N}\right)} \leq C_{11}
$$

We complete the proof of Theorem 1.1 as follows: By Lemmas 6.2 and 6.3, we can extract a subsequence -still indexed by δ - such that $p_{\delta} \rightarrow p$ strongly in $L^{\gamma}\left(0, T ; \mathbb{R}^{N}\right)$ and $\left(p_{\delta}, q_{\delta}\right) \rightarrow(p, q) \in(P \times \Lambda) \cap E_{0}$ uniformly in $[0, T]$. Since $I_{\delta}^{\prime}\left(p_{\delta}, q_{\delta}\right)=0$, we get

$$
I^{\prime}(p, q)(h, k)=0 \quad \text { for all }(h, k) \in E
$$

That is $(p, q) \in(P \times \Lambda) \cap E_{0}$ is a non-constant T-periodic solution of (1.1).

7 Remarks on the prescribed energy problem

If $H(t, p, q)$ does not depend on t, then the energy surface

$$
S_{h}=H^{-1}(h)=\left\{(p, q) \in \mathbb{R}^{N} \times \mathbb{R}^{N} ; H(p, q)=h\right\}(h>0)
$$

is not compact for such Hamiltonian functions. Moreover, S_{h} is equal to

$$
\tilde{H}^{-1}(1)=\left\{(p, q) \in \mathbb{R}^{N} \times \mathbb{R}^{N} \backslash\{0\} ; \tilde{H}(p, q)=1\right\}
$$

where

$$
\begin{equation*}
\tilde{H}(p, q)=\frac{H(p, q)-h}{|q|^{\alpha}}+1 \tag{7.1}
\end{equation*}
$$

It is clear that, if $H(p, q) \sim|q|^{\alpha}\left(|p|^{\beta}-1\right)$, then

$$
\begin{equation*}
\tilde{H}(p, q) \sim|p|^{\beta}-\frac{h}{|q|^{\alpha}} \tag{7.2}
\end{equation*}
$$

In the last few years, the existence of periodic solutions of singular Hamiltonian systems has been studied via variational methods under the situation related to two-body problem in celestial mechanics. That is, situation $\tilde{H}(p, q)$ is of the form

$$
\tilde{H}(p, q)=\frac{1}{2}|p|^{2}+V(q)
$$

where $V(q) \in C^{1}\left(\mathbb{R}^{N} \backslash\{0\}, \mathbb{R}\right)$ and $V(q) \rightarrow-\infty$ as $q \rightarrow 0$. See $[8,9,10]$ and references therein. Results dealing with more general singular Hamiltonians of the form (7.2) can be found in $[7,11]$ for fixed period problems, and in $[12,13]$ for fixed energy problems.

According to the fundamental lemma of Rabinowitz (see [1] and $[14$, lemma 3.1]), it follows that the Hamiltonian system (1.1) has, for H and \tilde{H} which are related by 7.1 , the same orbits on S_{h}. Therefore, under suitable conditions on H including $|q|^{\alpha}\left(|p|^{\beta}-1\right)$ with $\alpha>\beta>1$, the theorem of [12] carries a non-collision orbit of the singular Hamiltonian system

$$
\begin{gathered}
\dot{q}=\tilde{H}_{p}(p(t), q(t)) \\
\dot{p}=-\tilde{H}_{q}(p(t), q(t)) \\
\tilde{H}(p, q)=1,
\end{gathered}
$$

which corresponds to a non-constant periodic solution of (1.1) with energy h.

Appendix: Proof of Lemma 3.2

The proof of Lemma 3.2 is a special case of [7, lemma 3.1]. We fix $A \in \Gamma_{m}$ and take $R>0$ such that

$$
R>\lambda \max _{\xi \in S^{N-2}}\left\|\operatorname{proj}_{m}\left|\frac{d}{d t}\left(\sigma_{0}(\xi)\right)(t)\right|^{\frac{1}{\gamma-1}-1} \frac{d}{d t}\left(\sigma_{0}(\xi)\right)(t)\right\|_{\beta}
$$

$$
A(p, \xi)=\left(p, \sigma_{0}(\xi)\right) \quad \text { if }\|p\|_{\beta} \geq R
$$

We note that

$$
\begin{gather*}
A(p, \xi)=(x(p, \xi), y(p, \xi)), \tag{A.1}\\
B(\rho)=\left\{p \in P_{m} ;\|p\|_{\beta} \leq \rho\right\}, \quad \rho>0
\end{gather*}
$$

Then we define the function $\phi(\rho) \in C(\mathbb{R},[0,1])$ such that

$$
\phi(\rho)= \begin{cases}1, & \rho \leq R \\ 0, & \rho \geq 2 R\end{cases}
$$

Using the notation (A.1), we define a mapping

$$
F: P_{m} \times S^{N-2} \times[0, T] /\{0, T\} \sim P_{m} \times S^{N-2} \times S^{1} \rightarrow P_{m} \times S^{N-1}
$$

by

$$
F(p, \xi, t)=\left(x(p, \xi)-\lambda \phi\left(\|p\|_{\beta}\right) \operatorname{proj}_{m}\left(|\dot{y}(p, \xi)|^{\frac{1}{\gamma-1}-1} \dot{y}(p, \xi)\right), \tilde{\sigma}(\xi)(t)\right)
$$

where $\tilde{\sigma}(\xi)(t)=\frac{\sigma(\xi)(t)}{|\sigma(\xi)(t)|}$ and

$$
\sigma(\xi)(t)=\left(3+\cos \frac{2 \pi t}{T}\right)\left(\xi_{1}, \ldots, \xi_{N-1}, 0\right)-(3,0, \ldots, 0)+\left(0, \ldots, 0, \sin \frac{2 \pi t}{T}\right)
$$

We remark that $F(p, \xi, t)=(p, \tilde{\sigma}(\xi)(t))$ for $\|p\|_{\beta} \geq 2 R$ and the degree of the map $\tilde{\sigma}: S^{N-2} \times S^{1} \rightarrow S^{N-1}$ is not equal to zero.
Thus, there exists $R^{\prime} \geq 2 R$ such that the degree of the mapping

$$
F:\left(B\left(R^{\prime}\right) \times S^{N-2} \times S^{1} ; \partial B\left(R^{\prime}\right) \times S^{N-2} \times S^{1}\right) \rightarrow\left(B\left(R^{\prime}\right) \times S^{N-1} ; \partial B\left(R^{\prime}\right) \times S^{N-1}\right)
$$

is not equal to zero. Then it follows the existence of (p, ξ) such that

$$
x(p, \xi)-\lambda \phi\left(\|p\|_{\beta}\right) \operatorname{proj}_{m}\left(|\dot{y}(p, \xi)|^{\frac{1}{\gamma-1}-1} \dot{y}(p, \xi)\right)=0 .
$$

By the definition of R, we have necessarily $\|p\|_{\beta} \leq R$. That is

$$
x(p, \xi)=\lambda \operatorname{proj}_{m}\left(|\dot{y}(p, \xi)|^{\frac{1}{\gamma-1}-1} \dot{y}(p, \xi)\right)
$$

and then

$$
A\left(P_{m} \times S^{N-2}\right) \bigcap \mathcal{D}_{m, \lambda} \neq \emptyset
$$

Acknowledgments. The author wishes to thank Professors Abbas Bahri, Leila Lasssoued, and Eric Séré for their helpful discussions .

References

[1] P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31,1978, pp.157-184.
[2] V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite functionals, Inventiones, Vol.52, fasc.2, 1979, pp.241-274.
[3] I. Ekeland, Periodic solutions of Hamiltonian equations and a theorem of Rabinowitz, J. Diff.Eq. , Vol.34, 1979, pp.523-534.
[4] F. H. Clarke and I. Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math., 33, 1980, pp.103-116.
[5] H. Berestycki, Solutions périodiques de systèmes hamiltoniens, Séminaire Bourbaki (603), 1983.
[6] R. E. Edwards and G. I. Gandry, "Littlewood-Paleyand multiplier theory", Springer-Verlag, Berlin, Heidelberg, NewYork,1977.
[7] K. Tanaka, Periodic solutions of first order singular Hamiltonian systems, Nonlinear Analysis: T.M.A. 26, (1996) 691-704.
[8] C. Greco, Periodic solutions of a class of singular Hamiltonian systems, Nonlinear Analysis; T.M.A. 12 (1988), 259-269.
[9] A. Bahri and P. H. Rabinowitz, A minimax method for a class of Hamiltonian systems with singular potentials, Journal of functional analysis, 82, 412-428 (1989).
[10] A. Ambrosetti and V. Coti Zelati, "Periodic solutions of singular Lagrangian systems", Birkhauser, Boston, Basel, Berlin, 1993.
[11] M. Boughariou, Generalized solutions of first order singular Hamiltonian systems, Nonlinear Analysis: T.M.A. 31, (1998) 431-444.
[12] K. Tanaka, E. Sere and C. Carminati, A prescribed energy problem for first order singular Hamiltonian systems, preprint.
[13] M. Boughariou, Solutions périodiques généralisées à énergie fixée pour un système hamiltonien singulier du premier ordre, C.R.Acad.Sci.Paris t.328, SérieI, (1999) p. 17-22.
[14] J. Mawhin and M. Willem, "Critical point Theory and Hamiltonian systems", App. Math. Sci. 74, Springer-Verlag.

Morched Boughariou

Faculté des Sciences de Tunis
Département de Mathématiques
Campus Universitaire, 1060 Tunis, Tunisie.
e-mail: Morched.Boughariou@fst.rnu.tn

[^0]: * Mathematics Subject Classifications: 34C25, 37J45.

 Key words: Hamiltonian systems, non-coercive, periodic solutions, minimax argument.
 © 2001 Southwest Texas State University.
 Submitted January 3, 2001. Published May 28, 2001.

