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DECAY ESTIMATES OF HEAT TRANSFER TO MELTON
POLYMER FLOW IN PIPES WITH VISCOUS DISSIPATION

DONGMING WEI & ZHENBU ZHANG

Abstract. In this work, we compare a parabolic equation with an elliptic
equation both of which are used in modeling temperature profile of a power-

law polymer flow in a semi-infinite straight pipe with circular cross section.
We show that both models are well-posed and we derive exponential rates of

convergence of the two solutions to the same steady state solution away from

the entrance. We also show estimates for difference between the two solutions
in terms of physical data.

1. Introduction

Chemical engineers frequently use the following equation to model temperature
distribution of melton polymer flows inside a semi-infinite circular straight pipe
with viscous dissipation

ρcpu
∂T

∂z
= k

∂2T

∂r2
+
k

r

∂T

∂r
+ η(

du

dr
)2. (1.1)

In this equation,

η = Ae−nB(T−Tm)
∣∣du
dr

∣∣n−1
,

ρ, cp, k, A,B, Tm, and n are positive constants,

u = uav(
ν + 2
ν

)[1− (
r

R
)ν ]

is the flow velocity in the pipe direction with ν = n+1
n , r =

√
x2 + y2, R is the

radius of the pipe, uav is the mean flow velocity, and T = T (r, z) is the unknown
temperature of the flow at location (r, z) with 0 ≤ r ≤ R and 0 ≤ z < ∞. The
constant n is called the power-law index which satisfies 0 < n < ∞ and the flows
are frequently referred to as power-law flows. The constants are being obtained
experimentally. Here the origin of the xy-plane is at the center of the cross section
of the pipe at z = 0, and the z-axis is in the pipe flow direction. Equation (1.1) is a
nonlinear parabolic equation. The initial and boundary conditions for the equation
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are
T (r, 0) = T0, u(R, z) = 0,

T (R, z) = Tw,
∂T

∂r
(0, z) = 0,

(1.2)

where Tw is the pipe wall temperature and T0 the fluid temperature at the pipe
entrance. The boundary condition ∂T

∂r (0, z) = 0 is due to the assumption that the
solution is symmetric about the z-axis. See, e.g., [1, 6, 19, 23] for detail derivation
of the model. Introducing the dimensionless parameters

t =
νkz

(ν + 2)ρcpuavR2
, r̄ =

r

R
. (1.3)

We then have the following nonlinear parabolic initial-boundary value problem

(1− r̄ν)
∂T

∂t
=
∂2T

∂r̄2
+

1
r̄

∂T

∂r̄
+ ce−nBT r̄ν in (0, 1)× (0,+∞),

T (r̄, 0) = T0 in (0, 1),

T (1, t) = Tw in (0,+∞),
∂T

∂r̄
(0, t) = 0 in (0,+∞),

(1.4)

where c = un+1
av

k AenBTm (ν+2)n+1

Rn−1 . If the thermal resistance of the pipe wall is not ig-
nored, then the boundary condition T = Tw on the wall will be replaced by a mixed
boundary condition −k ∂T∂r = h(T −Tw), where Tw now represents the ambient tem-
perature in the exterior of the pipe, the positive constant h is the film coefficient.
In the new variables, we replace T (1, t) = Tw in (1.4) by ∂T

∂r̄ (1, t) = h̄(Tw−T (1, t)),
where h̄ = ah

k . One of the main assumptions used in deriving this model is that heat
transfer by conduction in the pipe direction is negligible compared to both convec-
tion in the pipe direction and the conduction in the directions perpendicular to the
pipe, which leads to the absence of the term L∂

2T
∂t2 , where L =

[
νk

(ν+2)ρcpuavR2

]2, in
the right-hand side of (1.4) in engineering literature. This assumption is frequently
used when one is not concerned with the entrance effect and when L is very small.
The cancellation of the term L∂

2T
∂t2 changes the partial differential equation from an

elliptic type to a parabolic type, and therefore allows one to use different analytical
and numerical solution techniques to find the temperature profile in the pipe. Finite
difference and numerical ODE techniques can be used for the parabolic model, as is
done in [1], to produce stable numerical schemes for approximation of the tempera-
ture distribution in the pipe. And in some special cases closed form or semi-closed
form solutions are available, see, e.g., results in [6] and [15]. One other advantage
of using finite difference and the parabolic model is that it requires less effort in
discretizing the domain as compared with other numerical methods. However, the
well-posedness of the parabolic problem in the classical sense is not automatic due
to the degeneracy of the coefficient of ∂T

∂t , since u = 0 on the pipe wall. The
parabolic model can not provide accurate solution in the entrance region of the
pipe nor can it provide such solutions to pipes with large L which are of consider-
able practical interest in many applications. When the entrance effect is of main
concern, or when high thermal diffusivity fluid flows at a low mean velocity, the
conduction term ∂2T

∂t2 , must be added to the right-hand side of (1.4) which then
becomes a nonlinear elliptic equation. This is especially important for modelling
of polymer flows in extrusion dies. We show that the elliptic problem is well posed
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due to the theory of Fredholm alternatives and comparison principle. However the
solution is not classical, and there is a possible discontinuity of the solution at the
entrance wall. In numerical approximation of the solution to the elliptic model,
more storage and computing time may be required in a computer, and therefore is
less economical as being compared with the parabolic model. It however provides
more accurate physical solutions.

The purpose of this work is to give a mathematical analysis of the two models
with comparison, which to our knowledge is not available in literature. We show
that both the parabolic and the elliptic problem are well posed and the solutions
to both problems on a cross section of the pipe converge exponentially to the same
steady state solution as the cross section moves far away from the entrance of the
pipe. In the parabolic case, we show that there exists a unique weak solution which
is almost a classical solution except on the pipe wall, while the elliptic problem
has a unique weak solution which is everywhere regular except at the boundary of
the pipe inlet. We derive a analytic steady state solution and give explicit a priori
estimates of rates of convergence of the two solutions to the steady state solution
in the interior of the pipe cross sections. We also estimate the difference between
the two solutions in terms of physical data. In a more general situation, if the cross
section of the pipe is not circular, we denote this cross section by Ω and assume
that it is a bounded open set in R2 with smooth boundary. The corresponding
problem to (1.4) is then

ρcpu
∂T

∂z
= k(

∂2T

∂x2
+
∂2T

∂y2
) + η

∣∣∇u∣∣2 in Ω× (0,+∞),

T = T0 0n Ω× {0},
T = Tw on ∂Ω× [0,∞),

(1.5)

where η = Ae−nB(T−Tm)
∣∣∇u∣∣n−1.

In this case, although an explicit form of the steady state solution is not available,
our main results of existence, uniqueness and rates of convergence are still valid. In
the following, we will first consider boundary condition of the mixed type −k ∂T∂r =
h(T − Tw) for the equations. The corresponding results for the Dirichlet boundary
condition T = Tw follows similarly. We will restrict ourself to circular straight pipes.
In section 2, we derive the closed form steady state solution of the temperature
profile for t → ∞ in the pipe. In section 3, we prove existence and uniqueness of
a weak solution to the parabolic problem and derive explicit rate of convergence of
the solution to the steady state solution. In section 4, we prove that the elliptic
model is well-posed and also derive rate of convergence of the solution to the same
steady state solution. In section 5, we estimate the difference between the solutions
of the two models in terms of the quantity L, and in section 6 we discuss the
implications of the results in application. This type of work has been considered
by several mathematicians. See, e.g., [3], [22], and [18] for decay estimates and [8],
[13] for existence and regularity results on other equations.

For simplicity in notation, in the rest of this paper, we will replace r̄ by r and
h̄ by h. In this work, we do not consider variable or time dependent boundary
conditions.
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2. The fully developed temperature profile

Assuming that the solution T of (1.4) is independent of t, then T satisfies the
equation:

d2T

dr2
+

1
r

dT

dr
+ ce−nBT rν = 0 in (0, 1),

T (1) = Tw ,
∂T

dr
(0) = 0.

(2.1)

By using Chambre’s method, see, e.g., [2], we find that the solution to (2.1) is

T = Tw +
2
nB

ln
c1r

ν+2 + 1
c1 + 1

, (2.2)

where

c1 =

√
[
cnB + (ν + 2)2enBTw

cnB
]2 − 1− cnB + (ν + 2)2enBTw

cnB
.

If the boundary condition T (1) = Tw in (2.1) is replaced by the mixed boundary
condition ∂T

dr (1) + h(Tw − T (1)) = 0, then the solution is given by

T = Tw −
2c1(ν + 2)
nBh(c1 + 1)

+
2
nB

ln
c1r

ν+2 + 1
c1 + 1

, (2.3)

where the constant c1 is implictly determined by

c1 =

√
[
cnB + (ν + 2)2enB`

cnB
]2 − 1− cnB + (ν + 2)2enB`

cnB
.

with ` = Tw − 2c1(ν+2)2

nBh(c1+1) . We outline the derivation of (2.2) as following: First, let

w = r
dT

dr
and v = rν+2e−nBT .

Then from (2.1), we get

(ν + 2− nBw)
dw

dv
+ c = 0,

which can be solved by using v|r=0 = w|r=0 = 0, and give

2(ν + 2)w − nBw2 + 2cv = 0.

From this last equation, we have

−nBr2
(dT
dr

)2 + 2(ν + 2)r
dT

dr
= −2ce−nBT rν+2. (2.4)

Multiplying both sides of (2.1) by 2r2 we have

2r2 d
2T

dr2
+ 2r

dT

dr
= −2ce−nBT rν+2. (2.5)

The right-hand sides of (2.4) and (2.5) are equal. This gives

d2T

dr2
− ν + 1

r

dT

dr
+
nB

2
(dT
dr

)2 = 0, (2.6)

which is a Bernoulli’s equation. We have

dT

dr
=

2(ν + 2)rν+1

2C(ν + 2 + nBrν+2),
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which can be rewritten as
dT

dr
=

2c1(ν + 2)rν+1

nB(c1rν+2 + 1),
(2.7)

where c1 = nB
2C(ν+2) , and where C is an arbitrary integration constant. Integrating

(2.7) and using T (1) = Tw we then obtain (2.2). Substituting (2.2) into (2.1), we
get

2[c1(ν + 2)2]
nB(c1rν+2 + 1)2

+ ce−nBT (r) = 0.

Let r = 1 and T (1) = Tw, we then have

c1 =

√
[
cnB + (ν + 2)2enBTw

cnB
]2 − 1− cnB + (ν + 2)2enBTw

cnB
.

Here, we choose c1 > −1 so that ln(c1 + 1) is well-defined. Similarly, by using
dT
dr (1) + hT (1) = hTw, we then have (2.3) and

c1 =

√
[
cnB + (ν + 2)2enB`

cnB
]2 − 1− cnB + (ν + 2)2enB`

cnB
.

with ` = Tw − 2c1(ν+2)
nBh(c1+1) . Notice that the solution with the mixed boundary

condition given in (2.3) reduces to the solution with Dirichlet boundary condition
given in (2.2) as h→∞.

3. The parabolic model

The parabolic problem (1.4) with mixed boundary condition can be rewritten as

(1− rν)
∂T

∂t
= ∆T + ce−nBT rν in D × (0,+∞),

∂T

∂n
= h(Tw − T ) in ∂D × (0,+∞),

T = T0 in D × {0},

(3.1)

where D = {(x, y)|
√
x2 + y2 < 1}, is the unit disk and ∆T = ∂2T

∂x2 + ∂2T
∂y2 . Since

the coefficient of ∂T
∂t in (3.1) is degenerate at r = 1, we first consider a perturbed

version of this equation

a(r, ε)
∂T

∂t
= ∆T + ce−nBT rν in D × (0,+∞),

∂T

∂n
= h(Tw − T ) in ∂D × (0,+∞),

T = T0 in D × {0},

(3.2)

where a(r, ε) = (1 + ε − rν) and 0 < ε < 1
2 is the perturbation parameter. A

similar problem was studied in [8]. Let Ts denote the solution of the steady state
problem obtained in (2.3). Let φ1 be the first eigenfunction associated with the
first eigenvalue λ1 of

−∆φ = λφ in D,

∂φ

∂n
+ hφ = 0 on ∂D,

(3.3)

where D = {(x, y) :
√
x2 + y2 < 1}. We have φ1(r) = J0(

√
λ1r),

√
λ1 is the

smallest positive root of λJ ′0(λ) + hJ0(λ) = 0, and J0(λ) is the Bessel function of
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the first kind with 0 order. It is well-known that for more general smooth, convex
domains, the first eigenfunction φ1 of (3.3) is smooth and strictly bounded below
in D̄ for h > 0. See, e.g., [20] and [24] for classical results on the eigenvalues and
eigenfunctions. We first prove the following lemma:
Lemma 3.1. For each ε > 0, (3.2) has a unique classical solution Tε. Furthermore,
let K = max0≤r≤1,

∣∣T0−Ts
φ1(r)

∣∣, then

|Tε(r, t)− Ts(r)| ≤ Ke−αtφ1(r), (r, t) ∈ D̄ × [0,∞),

and ||Tε||L∞D̄×[0,∞) ≤M, where α = λ1
(1+ε) and M is a constant independent of ε.

Proof. Note that Ts satisfies:

−∆Ts = ce−nBTsrν in D × (0,+∞),
∂Ts
∂n

= h(Tw − Ts) in ∂D × (0,+∞),

Ts = T0 in D × {0}.

(3.4)

Let Wu = Ts +Ke−αtφ1, where K > 0 and α > 0 are to be determined. We have

a(r, ε)Wu
t −∆Wu = −a(r, ε)Kαe−αtφ1 −∆Ts +Ke−αt∆φ1

= (λ1 − αa(r, ε))Ke−αtφ1 + ce−nBTsrν .

Let α = λ1
(1+ε) , then λ1 − αa(r, ε) ≥ 0, since 0 < a(r, ε) ≤ (1 + ε). We have

a(r, ε)Wu
t −∆Wu ≥ ce−nBTsrν (3.5)

Since φ1 > 0, we have ce−nBW
u

rν−ce−nBTsrν = ce−nBTsrν(e−nBKe
−αtφ1−1) ≤ 0,

which gives ce−nBTsrν ≥ ce−nBW
urν . Let K = max0≤r≤1

∣∣T0−Ts
φ1(r)

∣∣. From (3.5), we
get

a(r, ε)
∂Wu

∂t
−∆Wu ≥ ce−nBW

u

rν in D × (0,+∞),

∂Wu

∂n
= h(Tw −Wu) in ∂D × (0,+∞),

Wu ≥ T0 in D × {0}.

(3.6)

Similarly, let Wl = Ts −Ke−αtφ1, where α = λ1
(1+ε) , and K large enough.

a(r, ε)
∂Wl

∂t
−∆Wl ≤ ce−nBWlrν in D × (0,+∞),

∂Wl

∂n
= h(Tw −Wl) in ∂D × (0,+∞),

Wl ≤ T0. in D × {0},

(3.7)

We have obtained an upper solution Wu and a lower solution Wl of (3.2). By the
comparison principle, see, e.g., Theorem 4.1 in [17], there exists a unique classical
solution Tε of (3.2) satisfying

Ts(r)−Ke−αtφ1(r) ≤ Tε(r, t) ≤ Ts(r) +Ke−αtφ1(r), (3.8)

This completes the proof of Lemma 3.1. �

We now show that the singular parabolic problem (3.1) has a unique solution
which is everywhere “regular” except at the boundary ∂D×{0}, where degeneracy
occurs and the mixed boundary condition is satisfied only in the sense of trace.
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Theorem 3.2. There exists a unique weak solution T of (3.1) with the following
interior regularity:

T ∈ C2,1
loc (D × (0,∞)) ∩ C(D × [0,∞)).

Proof. Let D1 be any smooth subdomain of D such that D̄1 ⊂ D and let δ1 > 0.
Then, by Lemma 3.1, there exists a positive constant C independent of ε such that

||Tε||L∞(D̄1×[δ1,∞)) ≤ C.

We now use the standard local regularity theory for linear parabolic PDEs (see, e.g.
[9] and [14]) and a “bootstrap” argument to prove that {Tε}ε>0 has a convergent
subsequence which will converge to the solution of the problem. Applying the
interior Lp estimates for p > 1, we then have,

||Tε||W 2,1
p (D1×(δ1,∞)) ≤ C1.

Then, by Sobolev’s embedding Theorem, there exists a σ > 0 such that

||Tε||Cσ,σ/2(D̄1×[δ1,∞)) ≤ C2.

By Schauder’s estimates, we have

||Tε||C2+σ,1+σ
2 (D̄1×[δ1,∞))

≤ C3.

The constants C1, C2 and C3 are independent of ε since the coefficent a(r, ε) is
uniformly boundad away from 0 in D̄1× [δ1,∞). Using the Ascoli-Arzela Theorem,
we then can extract a subsequence {Tεk}∞k=1 of {Tε}ε>0, such that

Tεk → some T ∈ C2,1(D̄1 × [δ1,∞))as k →∞

uniformly. Therefore, T ∈ C2,1
loc (D × (0,∞)), and it satisfies (3.1). We now show

that the function T obtained above is the weak solution to (3.1). First, we derive
some energy estimates. Let t̄ > 0 be fixed. Multiply both sides of (3.1) by Tε and
then use integratition by parts. We have∫ t̄

0

∫
D

2|∇Tε|2dxdt+
∫
D

a|Tε|2dx =
∫
D

a|T0|2dx+∫ t̄

0

∫
D

2ce−nBTεrνTεdxdt+
∫ t̄

0

∫
∂D

2h(Tw − Tε)dsdt.
(3.9)

Therefore, by Lemma 3.1 and (3.9),∫ t̄

0

∫
D

2|∇Tε|2dxdt+
∫
D

a|Tε|2dx ≤M, (3.10)

and we have ||Tε||L2(0,t̄;H1(D)) ≤M , where M is independent of ε.
Let 〈·, ·〉 denote the duality pairing between H1

0 (D) and H−1(D), (·, ·) the inner
product of L2(D), and (·, ·)∂D the inner product of L2(∂D). For any V ∈ H1

0 (D),
with ||V ||H1

0 (D) ≤ 1, we have

〈a∂Tε
∂t

, V 〉+ (∇Tε,∇V ) = (h(Tε − Tw), V )∂D + (g(Tε), V ), (3.11)

where g(Tε) = ce−nBTεrν . By Lemma 3.1 and (3.11),∫ t̄

0

∣∣∣∣a∂Tε
∂t

∣∣∣∣2
H−1(D)

dt ≤ C1

∫ t̄

0

||∇Tε||H1(D)dt+ C2

∫ t̄

0

||Tε||L2(D)dt+ C3t̄.
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We have shown that {Tε}ε>0 is uniformly bounded in L2(0, t̄;H1(D)), and {a∂Tε∂t }ε>0

is uniformly bounded in L2(0, t̄;H−1(D)). Consequently there exists a subsequence
{Tεk}∞k=1 ⊂ {Tε}ε>0 and {∂Tεk∂t }

∞
k=0 ⊂ {

∂Tε
∂t }ε>0, such that (see, e.g., p. 356 of [7])

Tεk ⇀ T weakly in L2(0, t̄;H1(D))
∂Tεk
∂t

⇀
∂T

∂t
weakly in L2(0, t̄;H−1(D)).

By the Mean Value Theorem and Lemma 3.1, we have

|
∫ t̄

0

(g(Tεk)− g(T ), V )dt| ≤M
∫ t̄

0

||Tεk − T ||L2(D)dt.

Since weak convergence in L2(0, t̄;H1(D)) implies strong convergence in the space
L2(0, t̄;L2(D)), we have g(Tεk) ⇀ g(T ) weakly in L2(0, t̄;L2(D)). For each 1 ≤
k <∞, Tεk satisfies

〈a∂Tεk
∂t

, V 〉+ (∇Tεk ,∇V )

= (h(Tεk − Tw), V )∂D + (g(Tεk), V ) ∀V ∈ L2(0, t̄;H1
0 (D)). (3.12)

Passing to the limit, we then have

〈a∂T
∂t
, V 〉+ (∇T,∇V )

= (h(T − Tw), V )∂D + (g(T ), V ) ∀V ∈ L2(0, t̄;H1
0 (D)), (3.13)

i.e., T is a weak solution of (3.1). To prove uniqueness, let E = T1 − T2 where T1

and T2 be two solutions of (3.1), then we have

a(r, ε)
∂E

∂t
−∆E = ce−nBT1rν − ce−nBT2rν in D × (0,+∞),

∂E

∂n
+ hE = 0 in ∂D × (0,+∞),

E = 0 in D × {0}.

(3.14)

Integrating (3.14) and use the mean value theorem, we get

1
2

∫
D

aE2dxdy +
∫ t

0

∫
D

|∇E|2dxdydτ = −
∫ t

0

∫
D

cnBe−cnBθE2dxdydτ,

where θ = αT1 + (1 − α)T2 for some 0 ≤ α ≤ 1. Therefore E = 0, since the
right-hand side of this last equation is less than or equal to zero.

We now use the barrier function method to show that T satisfies the initial
condition in the classical sense, i.e., T is continuous up to the boundary D × {0}.
Let Q0 = (x0, y0, 0) where (x0, y0) ∈ D and Vε = Tε − T0. Then, Vε satisfies

a(r, ε)
∂Vε
∂t
−∆Vε = ∆T0 + ce−nB(T0+Vε)rν in D × (0,+∞),

Vε = Tw − T0 in ∂D × (0,+∞),

Vε = 0 in D × {0}.

(3.15)

Choose D1 so that Q0 ∈ D1 ⊂ D and δ1 = dist(D̄1, ∂D) > 0. Then

a(r, ε) ≥ (1− (1− δ1)ν) = δ2 > 0,∀(x, y) ∈ D̄2.
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By Lemma 3.1, the exists some M1 > 0 such that

|∆T0 + cenB(T0+Vε)rν | ≤M1.

Let WQ0(x, y, t) = ((x− x0)2 + (y − y0)2 +At)et. Then

a(r, ε)
∂WQ0

∂t
−∆WQ0 ≥ (δ3A− 4)etin D̄1 × [0,∞).

By choosing A large enough, so that a(r, ε)∂WQ0
∂t −∆WQ0 ≥M1 in D̄1× [0,∞),

WQ0 ≥ Tw − T0 on ∂D1 × (0,∞), and WQ0 ≥ T0 in D1 × {0}. By comparison
principle, see, e.g., Theorem 2.1 in [17], we have |Vε(P )| ≤WQ0(P ), P ∈ D̄1×[0,∞),
which implies that |Tε(P ) − T0(P )| ≤ WQ0(P ). By letting ε → 0, it follows that,
limP→P0 T (P ) = T0(P ).

�

Theorem 3.3. Let (λ1, φ1) be the first eigenpair of the problem
−∆φ = λφ in D

∂φ

∂n
+ hφ = 0 on ∂D,

where D = {(x, y) : x2 + y2 < 1}. Let K = max0≤r≤1

∣∣T0−Ts
φ1(r)

∣∣. Then,

|T (r, t)− Ts(r)| ≤ Ke−λ1tφ1(r) ∀(r, t) ∈ D × (0,∞),

where T is the solution of (3.1) and Ts the steady state solution given by (2.3).

Proof. The result follows immediately by taking limit ε→ 0 in (3.8). �

When the mixed boundary condition in (3.1) is replaced by the Dirichlet bound-
ary condition, results similar to Lemma 3.1, Theorem 3.2 and Theorem 3.3 follows
with no additional complication. We only state the following theorem.
Theorem 3.4. Let δ be any small positive constant and let (λ1, φ1) be the first
eigenpair of the problem

−∆φ = λφ in Dδ

φ = 0 on ∂Dδ,

where Dδ = {(x, y) : x2 + y2 < 1 + δ}. Let K = max0≤r≤1

∣∣T0−Ts
φ1(r)

∣∣. Then,

|T (r, t)− Ts(r)| ≤ Ke−λ1tφ1(r) ∀(r, t) ∈ D × (0,∞),

where T is the solution of (3.1) with Dirichlet boundary condition and Ts the steady
state solution given by (2.2).

4. The elliptic model

If heat transfer by conduction in the flow direction is not neglected, then we
need to add L∂

2T
∂t2 to the right hand side of (3.1). Replacing the variable t by

√
Lt′,

we then consider the following elliptic boundary value problem

−∆T +
(1− rν)√

L

∂T

∂t′
= ce−nBT rν in D × (0,+∞),

T = T0 in D × {0},
∂T

∂n
= h(Tw − T ) on ∂D × [0,+∞),

|T (t, r)| <∞ in D × (0,+∞),

(4.1)
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where ∆T = ∂2T
∂x2 + ∂2T

∂y2 + ∂2T
∂t′2 , D is the unit disc in the xy-plane as defined in the

previous section. Similar problems were studied in [4], [5], and [13] for existence
and regularity of solutions. Again, for simplicity in notation, we denote t′ by t in
the rest of the section.

Theorem 4.1. There exists a unique positive solution to the boundary value prob-
lem (4.1) which is everywhere regular except at the boundary ∂D × {0}.

Proof. Let Ω = D × (0,∞). Consider the following nonlinear operator

a(u, v) = (∇u,∇v) + (η
∂u

∂t
, v) + [u, v]1,−(g(u), v)

and the linear operator
l(u, v) = [f, v]2,

where η = (1−rν)√
L

, (·, ·) is the inner product defined on L2(Ω),

[u, v]1 =
∫
∂D×(0,∞)

huvds,

[f, v]2 =
∫
∂D×(0,∞)

hTwvds,

and g(u) = ce−nB|u|.
Let V = {u ∈ H2(Ω) : u = T0 on D × {0}} and V0 = {u ∈ H2(Ω) : u = 0 on D ×
{0}}. First, we look for a solution of the following problem: Find u ∈ V such that

a(u, v) = l(u, v),∀v ∈ V0. (4.2)

We now use the theory of Fredholm alternative for nonlinear operators to show that
the above abstract problem is well-posed. In particular, we use Theorem 33.5 of
[10] which is also valid for general boundary conditions [11]. Therefore, we have a
unique weak solution u of (4.2) in V . Since the boundary conditions are smooth,
and the boundary is everywhere smooth except at part of the boundary ∂D×{0}.
The standard regularity, see, e.g. pp 317-326 of [7], can be applied to show that T
is everywhere smooth except at D × {0} which is the flow inlet boundary.

Then we show by maximum principle that the solution is positive and therefore,
it is a solution of (4.1). The uniqueness of solution follows similarly as that of the
parabolic problem. �

In the following, we derive rate of convergence of the solution of the elliptic
model (4.1) to the steady state solution.

Theorem 4.2. Let T be the solution of (4.1) and Ts the solution of (2.1). Let
(λ1, φ1) be the first eigenpair of the problem

−∆φ = λφ in D

∂φ

∂n
+ hφ = 0 on ∂D,

where D = {(x, y) : x2 + y2 < 1}. Then, there exits a K > 0 such that

|T (r, t)− Ts(r)| ≤ Ke−
√
λ1tφ1(r) ∀(r, t) ∈ D̄ × (0,∞).
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Proof. Let T ∈ C(D × [0,∞)) ∩ C2(D × (0,∞)) be the solution of (4.1) such
that ∂T

∂t |t=∞ = 0, then by the maximum principle, T ≥ min{Tw, T0}. Let W =
Ts +Ke−βtφ1 where φ1 is the first eigenfunction of (3.3), Ts is the solution of (2.1)
given by (2.3), K,β > 0 are to be determined. Then

−∆W +
(1− rν)√

L

∂W

∂t
− ce−nBW rν

= (λ1 − β2 − β (1− rν)√
L

)Ke−βtφ1 + ce−nBTsrν(1− e−nBKe
−βtφ1). (4.3)

Since the second term is nonnegative, we only need to choose β ∈ (0,min0≤r≤1 β̂),
where β̂ = 1

2
√
L

(
√

(1− rν)2 + 4Lλ1 − (1 − rν)) is the positive root of λ1 − β2 −
β (1−rν)√

L
= 0 so that

−∆W +
(1− rν)√

L

∂W

∂t
− ce−nBW rν ≥ 0.

For this purpose, we choose β =
√
λ1. Let V = T −W . Then

−∆V + (1− rν)
∂V

∂t
≤ ce−nBT rν − ce−nBW rν .

Therefore,

−∆V + (1− rν)
∂V

∂t
+ cnBrνeθV ≤ 0

for some θ satisfying T ≤ θ ≤ W . By maximum principle, V attains its maximum
value on the boundary ∂Ω = D× [0,∞). On t = 0, V = T0−Ts−Kφ1 < 0 for large
K and V |r=1 = −Ke−βtφ1 < 0. Therefore, the maximum value of V will occur
only on ∂D×(0,∞). Since T is bounded by Lemma 3.1, V = T−Ts−Ke−βLφ1 ≤ 0
on D × (0,∞) for large enough K. Therefore V ≤ 0, e.g., T ≤ Ts + Ke−βtφ1 in
D× (0,∞). Similarly, for large enough K, we can show that Ts −Ke−βtφ1 ≤ T in
D × (0,∞). We conclude that

|T − Ts| ≤ Ke−βtφ1,

which is the result of our theorem. �

5. Comparing the two models

In this section, we will estimate the difference between the solutions of the par-
abolic model and the elliptic model. We will use the standard norm in the space
L2(0, t̂;H1

0 (D)) where t̂ > 0 and D is the cross section of the pipe. We denote
the norm by |||u||| for u ∈ L2(0, t̂;H1

0 (D)), and have |||u|||t̂ = (
∫ t

0
||u||2dt) 1

2 , where
||u|| = (

∫
D

(|∇u|2 + u2)dxdy)
1
2 .

Theorem 5.1. Let Te be the solution of (4.1) and Tp the solution of (3.1). Then,
there exits a constant C > 0 which depends only on D such that

|||Tp − Te|||t̂ ≤ C|||
∂2Te
∂t2
|||t̂L,

where L =
[

νk
(ν+2)ρcpuavR2

]2
.
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Proof. Take the difference of (4.1) and (3.1) and let E = Te − Tp, we have

(1− rν)
∂E

∂t
= ∆E + crν(e−nBTe − e−nBTe) + L

∂Te
∂t

.

Multiply both sides of the above equation by E, use the mean value theorem,
and integrate over D × (0, t̂), we get

∫
D

(1− rν)E2dxdy +
∫ t̂

0

∫
D

|∇E|2dxdydτ+∫ t̂

0

∫
D

cnBe−cnBθE2dxdydτ = L

∫ t̂

0

∫
D

∂2Te
∂t2

Edxdydτ,

(5.1)

where θ = αTp + (1 − α)Te for some 0 ≤ α ≤ 1. The result then follows from
Poinceré’s inequality. �

6. Discussion of the results

To our knowledge the steady state solution (2.2) or (2.3) are not available in the
literature. It can be used to verify if a numerical simulation of the unsteady state is
reasonable. Here is an example taken out of [1] for a temperature-dependent high-
density polyethylene melt flowing inside a tube held at a constant temperature.
The following is the list of data: T0 = 403.15◦K, Tw = 433.15◦K,uav = 15 cm/s,
n = 0.453, ρ = 0.000794 kg/cm3, cp = 2510J/(kg◦K), k = 0.00255W/(cm◦K),
R = 0.125 cm, A = 2.82Nsn/cm2, B = .0240K−1, Tm = 399.5◦K. We provide
the solution profile in Figure 1, where the temperature is given in Celsius and the
radial distance is 0.125cm.

One of the quantities that is important to engineers is the bulk temperature,
which is given by

Tbulk(t) =

∫ 1

0
T (r, t)u(r, t)rdr∫ 1

0
u(r, t)rdr

.

It can be calculated by using the steady state solution and obtain

lim
t→∞

Tbulk(t) = 452.39◦C

for this particular example. Galerkin’s method with linear axisymmetric triangular
finite elements is used to approximate the solution of the elliptic problem (4.1).
The resulting system of nonlinear algebraic equations is then solved iteratively by
using Newton’s method. The initial guess for Newton’s method is taken to be the
solution of the problem for n = 1.0 and A = 0.0. Numerical steady state is reached
at approximately z = 740cm. The analytic steady state solution can be used to
check the reliability of the numerical results.

The results given by Theorem 3.3, Theorem 3.4, Theorem 4.2, and Theorem 5.1
partially validate the use of these two different models for the same engineering
problem mathematically. In this particular example, the quantity L in Theorem
5.1 has a values of 1.13 × 10−5 and therfore both models should produce similar
numerical results. The error estimates given by the theorems, although computable,
are not sharp away from the boundary of the pipe wall. The analysis provided
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Figure 1. Steaty State Temperature Profile

help build confidence in using these two models for calculating the temperature
distributions in the pipes.
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