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Global well-posedness for Schrödinger equations

with derivative in a nonlinear term and data in

low-order Sobolev spaces ∗

Hideo Takaoka

Abstract

In this paper, we study the existence of global solutions to Schrödinger
equations in one space dimension with a derivative in a nonlinear term.
For the Cauchy problem we assume that the data belongs to a Sobolev
space weaker than the finite energy space H1. Global existence for H1

data follows from the local existence and the use of a conserved quantity.
For Hs data with s < 1, the main idea is to use a conservation law and
a frequency decomposition of the Cauchy data then follow the method
introduced by Bourgain [3]. Our proof relies on a generalization of the
tri-linear estimates associated with the Fourier restriction norm method
used in [1, 25].

1 Introduction

In this paper, we study the well-posedness for the Cauchy problem associated
with the Schrödinger equation

iut + uxx = iλ(|u|2u)x, u(0) = u0, (t, x) ∈ R2, (1.1)

where the unknown function u is complex valued with arguments (t, x) ∈ R2,
and λ ∈ R. Equation (1.1) is a model of the propagation of circularly polarized
Alfvèn waves in magnetized plasma with a constant external magnetic field
[22, 23]. When λ = 0, the above equation is called the free equation.

Many results are known for the Cauchy problem in the energy space H1

[10, 11, 12, 24]. When looking for solutions of (1.1), we meet with a derivative
loss stemming from the derivative in the nonlinear term. In [10, 11, 12, 24], it
was proved that for small data u0 ∈ H1 the Cauchy problem (1.1) is globally
well-posed. The proof of existence of solutions was obtained by using gauge
transformations, which reduces the original equation (1.1) to a system of non-
linear Schrödnger equations with no derivative in the nonlinearity. Then the
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result for nonlinear Schrödinger equations can be combined with energy con-
servation laws to show the existence of global solutions in H1. Let us consider
data u0 in classical Sobolev spaces Hs of low order. In [25], it was proved that
the Cauchy problem (1.1) is locally well-posed in Hs for s ≥ 1

2 . The aim of
the paper is to present the extension of that solution to a global solution. We
shall sketch the proof of [25] briefly, which is convenient to pursue our result.
The result for s ≥ 1

2 was proved by using the Fourier restriction norm method,
in addition to the gauge transformation. The Fourier restriction norm method
was first introduced by J. Bourgain [1], and was simplified by C. E. Kenig, G.
Ponce and L. Vega [14, 16]. The Fourier restriction norm associated with the
free solutions, is defined as follows.

Definition 1.1 For s, b ∈ R, we define the space Xs,b to be the completion of
the Schwarz function space on R2 with respect to the norm

‖f‖Xs,b =
(∫∫

R2
〈ξ〉2s〈τ + ξ2〉2b|f̂(τ, ξ)|2 dτdξ

)1/2

,

where 〈·〉 = (1 + | · |2)1/2. We denote the Fourier transform in t and x of f by
f̂ , and often abbreviate ‖f‖Xs,b by ‖f‖s,b.

Via the transformation v(t, x) = e−iλ
∫ x
−∞ |u(t,y)|2 dyu(t, x) used in [25, 10, 11, 12,

24]), (1.1) is formally rewritten as the Cauchy problem

ivt + vxx = −iλv2vx − λ2

2 |v|
4v,

v(0, x) = v0(x),
(1.2)

where v0(x) = e−iλ
∫ x
−∞ |u0(y)|2 dyu0(x). The Cauchy problem (1.2) is interesting

because of the derivative in the nonlinearity has been removed: |u|2ux in (1.1)
has been replaced by the quintic nonlinearity |v|4v in (1.2). The Strichartz
estimate can control the nonlinearity |v|4v easy (e.g., [9, 29]). In [25], it is
proved that the contraction argument provides the local well-posedness, once
the following estimate holds for some b ∈ R,

‖uvwx‖s,b−1 . ‖u‖s,b‖v‖s,b‖w‖s,b. (1.3)

In fact, whenever s ≥ 1
2 , the estimate (1.3) holds, and then successfully this is

relevant to the local well-posedness in Hs.
In this paper, we shall prove the global well-posedness for the Cauchy prob-

lem (1.2), as stated in the following theorem.

Theorem 1.1 Let 32
33 < s < 1 and let b be a positive constant b > 1

2 and close

enough to 1
2 . We impose ‖v0‖L2 <

√
2π
|λ| for data v0 ∈ Hs. Let T > 0, there

exists a unique solution v of (1.2) on the time interval (−T, T ) such that

ψT v(t) ∈ C((−T, T ) : Hs) ∩Xs,b,
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where ψT is a smooth time cut off function of ψT (t) = ψ( tT ), ψ ∈ C∞, ψ(t) = 1
for |t| ≤ 1 and ψ(t) = 0 for |t| ≥ 2. Moreover the solution v satisfies

v(t)− eit∂
2
xv0 ∈ H1.

As a consequence, the standard argument with the corresponding inverse
transformation; u(t, x) = eiλ

∫ x
−∞ |v(t,y)|2 dyv(t, x) [25] exhibits the global well-

posedness result for the Cauchy problem (1.1).

Theorem 1.2 The Cauchy problem (1.1) is globally well-posed in Hs, s > 32
33 ,

assuming ‖u0‖L2 <
√

2π
|λ| .

One may expect the local solution to be global by making the iteration process
of local well-posedness. But iteration method can not by itself yield the global
well-posedness. Usually, the proof of global well-posedness relies on providing
the a priori estimate of solution, besides the proof of the local well-posedness.
We know that the conserved quantity is of use in the ingredient of the a priori
estimate for the solution. The H1 conservation low is, in actually employed
to extend the local solutions at infinitely. If there was the conserved estimate
for solutions in Hs, 1

2 ≤ s < 1, we would immediately show the global well-
posedness.

The proof of Theorem 1.1 was the argument due to Bourgain [3] (see also [6]),
where the global well-posedness was shown for the two dimensional nonlinear
Schrödinger equation in weaker spaces than the space needed by the conservation
law directly. Let St and S(t) denote the nonlinear flow map and the linear flow
map associated with the Cauchy problem of the nonlinear Schrödinger equation,
respectively. We let X and Y be Banach spaces such that X ( Y , where the
space X is the conserved space of equations, while the space Y is the initial
data space. The strategy of [3] is that if

(St − S(t))u0 ∈ X, (1.4)

whereas u ∈ Y , we have the global well-posedness in Y . It is noted that Stu0

never belong to X for u0 /∈ X. The statement (1.4) mentions that the nonlinear
part is regular than data, where the proof estimates, roughly speaking, the
high Sobolev norm of solution by low Sobolev norm, which aims to control the
transportation of energy between the low frequency and the high frequency.
Thus, this performance presents the a priori estimate of solution.

In ordinary way, we seek the solution to be the integral equation associated
with (1.2)

v(t) = eit∂
2
xv0 −

∫ t

0

eit(t−s)∂
2
x(λv2vx + i

λ2

2
|v|4v)(s) ds.

In (1.4), for v(t) ∈ Hs we will show∫ t

0

eit(t−s)∂
2
x(λv2vx + i

λ2

2
|v|4v)(s)ds ∈ H1. (1.5)
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The above estimate has to really recover more than one derivative loss, since the
estimate (1.4) controls the H1 norm for v ∈ Hs, and there is one space derivative
in (1.5). This is quite different from the case of the nonlinear Schrödinger
equation. In the present paper, we generalize the estimate (1.3) used in [25] to
prove (1.5). Then we combine (1.5) with the argument of [3] to show Theorem
1.1.

Remark 1.1 It is said in section 7 that the local well-posedness in H1/2 is the
sharp result. Note that the exponent s > 32

33 of Theorem 1.1 is far from the
above critical exponent. For more rough data, we do not consider here.

Notation. Throughout the paper we write a . b (resp. a & b) to denote
a ≤ cb (resp. ca ≥ b) for some constant c > 0. We also write a ∼ b to
denote both a . b and a & b. We denote f̂ as the Fourier transform of f with
respect to the time-space variables, while F−1 denotes the inverse operator of
Fourier transformation in the time-space variables. Let Fxf denote the Fourier
transform in x of f . Let ‖f‖LqtLpx (resp. ‖f‖LpxLqt ) denote the mixed space-
time norm as ‖f‖LqtLpx =

∥∥‖f‖Lpx∥∥Lqt (resp. ‖f‖LpxLqt =
∥∥‖f‖Lqt∥∥Lpx). We denote

‖f‖Lp as ‖f‖Lp = ‖f‖LptLpx . The Riesz and the Bessel potentials of order −s
are denoted by Ds = (−∂2)

s
2 and Js = (1−∂2)

s
2 , respectively. We use notation

a± as a± ε for sufficiently small ε > 0, respectively. We let a+ = max{a, 0}.
The rest of this paper is organized as follows. In section 2, we improve the

estimates developed in [25]. In sections 3 and 4, we prove the estimates by
results in section 2 to use in section 5. In section 5, we consider the evolution of
the initial value problems with data restricted to low and high frequencies. In
section 6, we show Theorem 1.1 by results in section 4 and section 5. In section
7, we show that the data-map fails in Hs for s < 1

2 .

Remark 1.2 We may relax the condition of the nonlinearity for the equation
(1.2). More precisely, instead of (1.2), there seems a chance to show the re-
sult similar to Theorem 1.1 for the equation with more general nonlinearity.
However, we shall not consider this problem in this paper for simplicity.

2 Preliminary estimates

We start this section by stating the variant Strichartz estimates.

Lemma 2.1 For 2
q = 1

2 −
1
p , 2 ≤ p ≤ ∞, b > 1

2 , we have

‖u‖LqtLpx . ‖u‖0,b, (2.1)

‖D1/2
x u‖L∞x L2

t
. ‖u‖0,b, (2.2)

‖u‖L4
xL
∞
t
. ‖D

1
4
x u‖0,b. (2.3)
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Proof. We estimate (2.1) first, because the proof for (2.2) and (2.3) follows in
the same way. We have the classical version of the Strichartz inequality for the
Schrödinger equation:

‖eit∂
2
xu0‖LqtLpx . ‖u0‖L2 , (2.4)

for u0 ∈ L2, where 2
q = 1

2 −
1
p , 2 ≤ p ≤ ∞ (e.g., [9, 29]). The estimate (2.1)

follows from the argument of [14, Lemma 3.3], once we obtain (2.4). In a similar
way to above, the following two estimates imply (2.2) and (2.3), respectively
(e.g., [13] for the estimate in (2.5)):

‖D1/2
x eit∂

2
xu0‖L∞x L2

t
. ‖u0‖L2 , ‖eit∂

2
xu0‖L4

xL
∞
t
. ‖D

1
4
x u0‖L2 . (2.5)

�

Remark 2.1 It is noted ‖u‖s,b = |||u|||s,b where ||| · |||s,b is defined as

|||u|||s,b =
(∫∫

R2
〈ξ〉2s〈τ − ξ2〉2b|û(τ, ξ)|2 dτdξ

)1/2

.

Therefore, by (2.1), (2.2), (2.3), the following estimates hold for same numbers
q, p, b of Lemma 2.1

‖u‖LqtLpx . |||u|||0,b, ‖D1/2
x u‖L∞x L2

t
. |||u|||0,b, ‖u‖L4

xL
∞
t
. |||D

1
4
x u|||0,b.

(2.6)

Let us introduce some variables

σ = τ + ξ2, σ1 = τ1 + ξ2
1 , σ2 = τ2 + ξ2

2 , σ3 = τ − ξ2
3 .

We write
∫
∗ to denote the convolution integral

∫
σ=σ1+σ2+σ3
ξ=ξ1+ξ2+ξ3

dτ1dτ2dτ3dξ1dξ2dξ3

throughout this paper. We assume that the functions d, c1, c2, c3 are non
negative functions on R2.

Using Lemma 2.1, we obtain the following lemma.

Lemma 2.2 For 0 ≤ a ≤ 1− b, b′ > 1
2 , b

′ − b > a− 1
2 , a− b

′ ≤ 0, we have∫
∗

max{|σ|, |σ1|, |σ2|, |σ3|}a
d(τ, ξ)
〈σ〉1−b

3∏
j=1

cj(τj , ξj)
〈σj〉b′

. ‖d‖L2

3∏
j=1

‖cj‖L2 . (2.7)

Proof. We estimate (2.7) by dividing the domain of integration into subcases.
When |σ| dominates in (2.7) which means that the |σ| takes the maximum in
(2.7), the Plancherel identity, (2.1) and (2.6) yield that the contribution of the
above region to the left hand side of (2.7) is bounded by

‖F−1d‖L2

3∏
j=1

‖F−1(〈σj〉−b
′
cj)‖L6 . ‖d‖L2

3∏
j=1

‖cj‖L2 .
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In the other cases, if σ1 or σ2 or σ3 dominates, we can assume that |σ1| ≥
max{|σ1|, |σ2|, |σ3|} by symmetry. By |σ1|a ≤ |σ1|b

′ |σ|a−b′ , by taking
F−1 d

〈σ〉b′+1−a−b , F−1 cj
〈σj〉b′

, j = 2, 3, in L6 and F−1c1 in L2, in a similar way, we
deduce that the contribution of the above region to the left hand side of (2.7)
is bounded by

‖F−1(〈σ〉a−b
′+b−1d)‖L6‖F−1c1‖L2

3∏
j=2

‖F−1(〈σj〉−b
′
cj)‖L6 . ‖d‖L2

3∏
j=1

‖cj‖L2 ,

for b′ − b > a− 1
2 . Then we have the desired estimate. �

Lemma 2.3 Let us define

A1 = {(τ, ξ, τ1, ξ1, τ2, ξ2, τ3, ξ3)|max{|σ|, |σ3|} ≥ max{|σ1|, |σ2|}},
A2 = {(τ, ξ, τ1, ξ1, τ2, ξ2, τ3, ξ3)|max{|σ1|, |σ2|} > max{|σ|, |σ3|}},

F1(ξ, ξ1, ξ2, ξ3) =
min{|ξ|, |ξ3|}1/2

|ξ1|
1
4 |ξ2|

1
4

,

F2(ξ, ξ1, ξ2, ξ3) =
max{|ξ|, |ξ3|}1/2

min{|ξ|, |ξ3|}
1
4 max{|ξ1|, |ξ2|}

1
4
,

M(τ, ξ, τ1, ξ1, τ2, ξ2, τ3, ξ3) = F1(ξ, ξ1, ξ2, ξ3)χA1 + F2(ξ, ξ1, ξ2, ξ3)χA2 ,

where χAj , j = 1, 2 denote the characteristic function on Aj , j = 1, 2, re-
spectively. Then for b′ > 1

2 , 0 ≤ a ≤ 1 − b, b′ − b > a − 1
2 , a − b

′ ≤ 0, we
have∫

∗
M(τ, ξ, τ1, ξ1, τ2, ξ2, τ3, ξ3) max{|σ|, |σ1|, |σ2|, |σ3|}a

d(τ, ξ)
〈σ〉1−b

3∏
j=1

cj(τj , ξj)
〈σj〉b′

. ‖d‖L2

3∏
j=1

‖cj‖L2 . (2.8)

Proof. First of all, we observe that when |σi| dominates, it follows that |σi|a ≤
|σi|b

′ |σ|a−b′ . If |σ| or |σ3| dominates, namely χA2 = 0, we take F−1d in L2 and
D

1/2
x F−1 c3

〈σ3〉b′
in L∞x L

2
t , or D1/2

x F−1 d
〈σ〉b′+1−a−b in L∞x L

2
t and F−1c3 in L2,

respectively, and D
− 1

4
x F−1 cj

〈σj〉b′
, j = 1, 2, in L4

xL
∞
t , so that we have that the

contribution of the above region to the left hand side of (2.8) is bounded by∫
∗

(
d(τ, ξ)

|ξ3|1/2c3(τ3, ξ3)
〈σ3〉b′

+
|ξ|1/2d(τ, ξ)
〈σ〉1−b−a+b′

c3(τ3, ξ3)
) 2∏
j=1

cj(τj , ξj)
|ξj |1/4〈σj〉b′

.
(
‖F−1d‖L2‖D1/2

x F−1 c3
〈σ3〉b′

‖L∞x L2
t

+‖D1/2
x F−1 d

〈σ〉b′+1−b−a ‖L∞x L2
t
‖F−1c3‖L2

) 2∏
j=1

‖D−
1
4

x F−1 cj
〈σj〉b′

‖L4
xL
∞
t
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. ‖d‖L2

3∏
j=1

‖cj‖L2 ,

where we use (2.2), (2.3) and (2.6). In the case that |σ1| or |σ2| dominates, we
use the estimates (2.2) and (2.3), as we just used. We can assume |σ1| ≥ |σ2|
by symmetry. In a similar way to above, we arrive the estimate of (2.8) in∫

∗
c1(τ1, ξ1)

c2(τ2, ξ2)
|ξ2|

1
4 〈σ2〉b′

×
( |ξ|1/2d(τ, ξ)
〈σ〉1−b−a+b′

c3(τ3, ξ3)
|ξ3|

1
4 〈σ3〉b′

+
d(τ, ξ)

|ξ| 14 〈σ〉1−b−a+b′

|ξ3|1/2c3(τ3, ξ3)
〈σ3〉b′

)
.

(
‖D1/2

x F−1 d

〈σ〉b′+1−a−b ‖L∞x L2
t
‖D−

1
4

x F−1 c3
〈σ3〉b′

‖L4
xL
∞
t

+‖D−
1
4

x F−1 d

〈σ〉b′+1−a−b ‖L4
xL
∞
t
‖D1/2

x F−1 c3
〈σ3〉b′

‖L∞x L2
t

)
×‖F−1c1‖L2‖D−

1
4

x F−1 c2
〈σ2〉b′

‖L4
xL
∞
t
,

which is bounded by c‖d‖L2
∏3
j=1 ‖cj‖L2 . This completes the proof. �

Let us introduce the operator A(v1, v2) defined by

FxA(v1, v2)(ξ) =
∫
ξ=ξ1+ξ2

χ|ξ1|≥|ξ2|Fxv1(ξ1)Fxv2(ξ2)dξ1,

which easily gives v1v2 = A(v1, v2) +A(v2, v1).

Lemma 2.4 Let 0 ≤ s ≤ 1, 1
2 < b ≤ 5

8 , b
′ > 1

2 . Then

‖A(v1, v2)(v3)x‖s,b−1 .
∑
‖v1‖s1,b′‖v2‖s2,b′‖v3‖s3,b′ , (2.9)

where the summation is taken by choosing non-negative different numbers (s1, s2, s3)
in the different cases (2.10), (2.11), (2.12), (2.13), (2.14), (2.15), such that

s1 + s2 + s3 ≥ s+ 1, (2.10)
s1 ≥ (s+ b− 1)+, s2 ≥ 0, s3 ≥ 0, (2.11)

s1 ≥ s+ b− 1 + (1− s3 −min{s2, 1− b})+ (2.12)

s1 + s3 ≥ 3
4 , s2 ≥ 0, (2.13)

s1 + s3 ≥ b+ (s−min{s2, 1− b})+ , (2.14)

s3 ≥ s+ 2b− 5
4 +

(
1
4 − s1

)
+
, s2 ≥ 0. (2.15)

Remark 2.2 Lemma 2.4 includes estimate (1.3). Namely, to recover such an
estimate, one should take s = s1 = s2 = s3 ≥ 1

2 ,
1
2 < b = b′ ≤ 5

8 in (2.10),
(2.11), (2.12), (2.13), (2.14), (2.15).
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Proof. By duality and the Plancherel identity, it suffices to show that∫
∗
χ|ξ1|≥|ξ2|〈ξ〉

s|ξ3|
d(τ, ξ)
〈σ〉1−b

|v̂1(τ1, ξ1)||v̂2(τ2, ξ2)||v̂3(τ3, ξ3)|

. ‖d‖L2

∑ 3∏
j=1

‖vj‖sj ,b′ , (2.16)

for d ∈ L2, d ≥ 0. One let

K(ξ, ξ1, ξ2, ξ3) = χ|ξ1|≥|ξ2|
〈ξ〉s|ξ3|

〈ξ1〉s1〈ξ2〉s2〈ξ3〉s3
,

cj(τj , ξj) = 〈ξj〉sj 〈σj〉b
′
×
{
|v̂j(τj , ξj)|, j = 1, 2,
|v̂j(τj , ξj)|, j = 3.

We easily see that ‖cj‖L2 = ‖vj‖sj ,b′ . Then introduce the identity σ − σ1 −
σ2 − σ3 = 2(ξ − ξ1)(ξ − ξ2) which implies that, at least, one factor among
|σ|, |σ1|, |σ2|, |σ3| is bigger than 1

2 |ξ − ξ1||ξ − ξ2|, namely

max{|σ|, |σ1|, |σ2|, |σ3|} ≥
1
2
|ξ − ξ1||ξ − ξ2|. (2.17)

Thus, in the case of |ξ − ξ1| > 1 and |ξ − ξ2| > 1, we make use of (2.17) similar
to the KdV equation case [3, 14, 16].

We estimate (2.16) with the bounds ‖d‖L2
∏3
j=1 ‖cj‖L2 for choosing a pair

of non negative different numbers (s1, s2, s3), by separating the domain of inte-
gration into several subdomains. The different cases correspond to the different
cases of (2.10), (2.11), (2.12), (2.13), (2.14), (2.15), respectively.

Case |ξ| ≤ 2. If |ξ − ξ1| ≤ 1 or |ξ − ξ2| ≤ 1, we easy see that |ξ3| .
max{〈ξ1〉, 〈ξ2〉}, then

K(ξ, ξ1, ξ2, ξ3) .
|ξ3|1/2

|ξ1|
1
4 |ξ2|

1
4 〈ξ1〉s1〈ξ3〉s3

〈ξ3〉
3
4 .

|ξ3|1/2

|ξ1|
1
4 |ξ2|

1
4
,

for s1 + s3 ≥ 3
4 . Therefore, since by (2.13) and by the Plancherel identity, the

contribution of the above region to (2.16) is bounded by

‖F−1d‖L2‖D1/2
x F−1 c3

〈σ3〉b′
‖L∞x L2

t

2∏
j=1

‖D−
1
4

x F−1 cj
〈σj〉b′

‖L4
xL
∞
t
. ‖d‖L2

3∏
j=1

‖cj‖L2 ,

where we use (2.2), (2.3) and (2.6). In the subdomain of |ξ − ξ1| > 1 and
|ξ − ξ2| > 1, it follows that 〈ξ − ξ1〉 ∼ 〈ξ1〉, 〈ξ − ξ2〉 ∼ 〈ξ2〉, then

K(ξ, ξ1, ξ2, ξ3)
〈ξ − ξ1〉1−b〈ξ − ξ2〉1−b

.
〈ξ3〉1−s3

〈ξ1〉s1+1−b〈ξ2〉s2+1−b ,

which is bounded by a constant since by (2.13). Hence we obtain that the
contribution of this region to (2.16) is bounded by c‖d‖L2

∏3
j=1 ‖cj‖L2 , since by

Lemma 2.2 and (2.17).
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Case |ξ| > 2 and |ξ3| ≤ 2. When |ξ − ξ1| ≤ 1 or |ξ − ξ2| ≤ 1, we have that

K(ξ, ξ1, ξ2, ξ3) .
max(|ξ1|, |ξ2|)1/2

min(|ξ1|, |ξ2|)
1
4 |ξ3|

1
4

max(|ξ1|, |ξ2|)s−
1
2

〈ξ1〉s1〈ξ2〉s2
.

Then, as in the case above, for |ξ| < 2, and |ξ − ξ1| ≤ 1 or |ξ − ξ2| ≤ 1, we
have the contribution of this region to (2.16) is bounded by c‖d‖L2

∏3
j=1 ‖cj‖L2 ,

since by s1 ≥ (s+ b− 1)+ > s− 1
2 of (2.11).

In the domain of |ξ − ξ1| > 1 and |ξ − ξ2| > 1, we easy see that by |ξ3| < 2,
〈ξ − ξ1〉 ∼ 〈ξ2〉, 〈ξ − ξ2〉 ∼ 〈ξ1〉 and

K(ξ, ξ1, ξ2, ξ3)
〈ξ − ξ1〉1−b〈ξ − ξ2〉1−b

.
〈ξ〉s

〈ξ1〉s1+1−b〈ξ2〉s2+1−b ≤ c,

provided s1 ≥ s+ b− 1 of (2.11). The argument of the case |ξ| < 2, |ξ − ξ1| >
1, |ξ − ξ2| > 1 is applied to this case. Then by Lemma 2.2 and (2.17),
we have that the contribution of the above region to (2.16) is bounded by
c‖d‖L2

∏3
j=1 ‖cj‖L2 .

Case |ξ| > 2 and |ξ3| > 2. We separate the domain of integration into four
subdomains:
case a |ξ − ξ1| ≤ 1 or |ξ − ξ2| ≤ 1,
case b |ξ − ξ1| > 1, |ξ − ξ2| > 1, |ξ| � |ξ3|,
case c |ξ − ξ1| > 1, |ξ − ξ2| > 1, |ξ| ∼ |ξ3|,
case d |ξ − ξ1| > 1, |ξ − ξ2| > 1, |ξ| � |ξ3|.
For the points of case a, it follows

K(ξ, ξ1, ξ2, ξ3) .
|ξ1|1/2

|ξ2|
1
4 |ξ3|

1
4
×
{
〈ξ1〉s−s1−

1
2 〈ξ2〉

3
2−s2−s3 , if |ξ − ξ1| ≤ 1,

〈ξ1〉
3
4−s1−s3〈ξ2〉s+

1
4−s2 , if |ξ − ξ2| ≤ 1,

which is bounded by |ξ1|1/2

|ξ2|
1
4 |ξ3|

1
4

provided (2.10) or (2.12), and (2.10) or (2.13),

respectively. Hence we use (2.2), (2.3) and (2.6) again, then we have the con-
tribution of the case a to (2.16) is bounded,

‖F−1d‖L2‖D1/2
x F−1 c1

〈σ1〉b′
‖L∞x L2

t

3∏
j=2

‖D−
1
4

x F−1 cj
〈σj〉b′

‖L4
xL
∞
t

. ‖d‖L2

3∏
j=1

‖cj‖L2 .

In both cases b and d, we get

max{|ξ|, |ξ3|} ∼ |ξ1 + ξ2| . max{|ξ1|, |ξ2|} . max{|ξ − ξ1|, |ξ − ξ2|}, (2.18)
min{|ξ|, |ξ3|} . max {min{|ξ1|, |ξ2|},min{|ξ − ξ1|, |ξ − ξ2|}} , (2.19)
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which follows from the fact ξ − ξ3 = ξ1 + ξ2, (ξ − ξ1)− (ξ − ξ2) = ξ2 − ξ1. The
conditions of (2.18) and (2.19) yield the bound

K(ξ, ξ1, ξ2, ξ3)
〈ξ − ξ1〉1−b〈ξ − ξ2〉1−b

.

{
〈ξ〉s−min{1−b,s2}〈ξ3〉b−s1−s3 , case b,
〈ξ3〉1−s3−min{1−b,s2}〈ξ〉s−s1+b−1, case d,

which is bounded by a constant, because by (2.14), (2.12), respectively. Thereby,
applying Lemma 2.2 again with (2.17) to these cases, we obtain the desired
estimate for cases b and d in an analogous argument to above.

In case c, we have the estimate either

min{|ξ1|, |ξ2|} & |ξ| (2.20)

or
min{|ξ − ξ1|, |ξ − ξ2|} & |ξ| � min{|ξ1|, |ξ2|}. (2.21)

The condition (2.20) leads the bound of K(ξ, ξ1, ξ2, ξ3) by a constant provided
(2.10). Then we use Lemma 2.2 again with (2.17) and we have the desired
estimate. The proof is very similar to above, so that we omit the detail.

On the other hand, in the case of (2.21), K(ξ,ξ1,ξ2,ξ3)
〈ξ−ξ1〉1−b〈ξ−ξ2〉1−b is bounded by

min
{
F1(ξ, ξ1, ξ2, ξ3)

〈ξ1〉
1
4−s1〈ξ2〉

1
4−s2〈ξ〉s−s3+ 1

2

〈ξ − ξ1〉1−b〈ξ − ξ2〉1−b
,

F2(ξ, ξ1, ξ2, ξ3)
〈ξ〉s−s3+ 3

4

〈ξ1〉s1−
1
4 〈ξ2〉s2〈ξ − ξ1〉1−b〈ξ − ξ2〉1−b

}
. min{F1(ξ, ξ1, ξ2, ξ3), F2(ξ, ξ1, ξ2, ξ3)} ≤M(τ, ξ, τ1, ξ1, τ2, ξ2, τ3, ξ3),

provided for (2.15). We apply Lemma 2.3 with (2.17) and obtain the desired
estimate, because by (2.15). This completes the proof of Lemma 2.4. �

Lemma 2.5 Let b, qjk, p
j
k, 1 ≤ k, j ≤ 5, be such that 1

2 < b < 3
4 , 4 ≤ qjk ≤

∞, 2 ≤ pjk ≤ ∞ for 1 ≤ k, j ≤ 5 and
∑5
k=1

1

pjk
= 2b− 1

2 ,
∑5
k=1

1

qjk
= 3

2 − b for

1 ≤ j ≤ 5. Let s, sjk, 1 ≤ k, j ≤ 5 be such that 0 ≤ s ≤ 1,
∑5
k=1 s

j
k = s+ 2b− 1

for 1 ≤ j ≤ 5, and s ≤ sjj < s + 1

pjj
if pjj < ∞, while sjj = s if pjj = ∞ and

0 ≤ sjk <
1

pjk
if pjk < ∞ for k 6= j, while sjk = 0 if pjk = ∞ for k 6= j. Then the

following estimate holds

‖Ds
x(v1v2v3v4v5)‖0,b−1 .

5∑
j=1

5∏
k=1

‖vk‖
L
q
j
k
t Ẇ

s
j
k
,p
j
k

x

. (2.22)

Proof. With Plancherel identity (c.f., Leibniz rule for fractional power), it
suffices to show the case of s = 0, namely we show the following inequality

‖v1v2v3v4v5‖0,b−1 .
5∏
j=1

‖vj‖Lqjt Ẇ
sj,pj
x

, (2.23)
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for 2 ≤ pj ≤ ∞, 4 ≤ qj ≤ ∞, 0 ≤ sj < 1
pj

if pj <∞, while sj = 0 if pj =∞ for

1 ≤ j ≤ 5 such that
∑5
j=1

1
pj

= 2b− 1
2 ,
∑5
j=1

1
qj

= 3
2 − b,

∑5
j=1 sj = 2b− 1. In

a similar way to [25, Lemma 3.4], the Hölder inequality, the Sobolev embedding
theorem with respect to the time variable and Minkowski’s inequality show that
the left hand side of (2.23) is bounded by

‖v1v2v3v4v5‖
L

1
3
2−b
t L2

x

.
5∏
j=1

‖vj‖Lqjt L
pj
x
,

where 1
pj

= 1
pj
− sj , which is bounded by the right hand side of (2.23), since by

Sobolev inequality.

3 Nonlinear estimates I

As a consequence of Lemma 2.4, we obtain the following lemma, which play a
role for the proof of the local well-posedness.

Lemma 3.1 For 0 ≤ s ≤ 1, 1
2 < b ≤ 5

8 , b
′ > 1

2 , we have

‖v2vx‖0,b−1 . ‖v‖20,b′‖v‖1,b′ , (3.1)

‖(v2vx)x‖0,b−1 . ‖v‖0,b′‖v‖21,b′ , (3.2)
‖vwvx‖s,b−1 . ‖v‖0,b′‖v‖1,b′‖w‖s,b′ + ‖v‖s,b′‖v‖b,b′‖w‖0,b′ , (3.3)

‖w2vx‖s,b−1 . ‖v‖1,b′‖w‖0,b′‖w‖s,b′ , (3.4)
‖v2wx‖s,b−1 . ‖v‖0,b′‖v‖1,b′‖w‖s,b′ , (3.5)

‖vwwx‖s,b−1 . ‖v‖1,b′‖w‖max{ 1
2 ,(

3
4−s)+},b′‖w‖s,b′ , (3.6)

‖w2wx‖s,b−1 . ‖w‖21
2 ,b
′‖w‖s,b′ . (3.7)

Proof. We use Lemma 2.4 by taking different variables (s1, s2, s3) correspond-
ing to the different cases in (2.10), (2.11), (2.12), (2.13), (2.14), (2.15), respec-
tively.

For (3.1), we choose the numbers s = s1 = s2 = 0, s3 = 1 in (2.10), (2.11),
(2.12), (2.13), (2.14), (2.15), respectively. Then by v2 = 2A(v, v), we have the
desired estimate.

For (3.2), in a similar way to above, we take s = s1 = s3 = 1, s2 = 0 in
(2.10), (2.11), (2.12), (2.13), (2.14), (2.15), which shows the estimate (3.2).

For (3.3), we first note that vw = A(v, w) +A(w, v), then

‖vwvx‖s,b−1 ≤ ‖A(v, w)vx‖s,b−1 + ‖A(w, v)vx‖s,b−1. (3.8)

For the treatment of first term of (3.8), we take s = s2, s1 = 1, s3 = 0 in (2.10),
(2.11), (2.13). In (2.12), (2.14), (2.15), we put s = s3, s1 = b, s2 = 0. Such a
choice shows

‖A(v, w)vx‖s,b−1 . ‖v‖0,b′‖v‖1,b′‖w‖s,b′ + ‖v‖s,b′‖v‖b,b′‖w‖0,b′ . (3.9)
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On the other hand, for the second term of (3.8), we choose s = s1, s2 = 0, s3 = 1
in (2.10), (2.11), (2.12), (2.13), (2.14), (2.15), which yields

‖A(w, v)vx‖s,b−1 . ‖v‖0,b′‖v‖1,b′‖w‖s,b′ . (3.10)

As a consequence, the estimate (3.3) follows immediately from (3.9) and (3.10).
For (3.4), we put s = s1, s2 = 0, s3 = 1 in Lemma 2.4. Then in a similar

way to above we have (3.4).
For (3.5), s1 = 1, s2 = 0, s3 = s are taken in Lemma 2.4. We omit the

detail because the proof is very similar to above.
For (3.6), we follow the same argument as the proof of (3.3). We take

s1 = 1, s2 = 1
2 , s3 = s in (2.10), (2.11), (2.12), (2.13), (2.14), (2.15) for the

treatment of ‖A(v, w)wx‖s,b−1, which yields

‖A(v, w)wx‖s,b−1 . ‖v‖1,b′‖w‖ 1
2 ,b
′‖w‖s,b′ . (3.11)

For ‖A(w, v)wx‖s,b−1, we shall take s = s1, s2 = 1, s3 = 1
2 in (2.10), (2.11),

(2.12), and we take s1 = 1
2 , s2 = 1, s3 = s in (2.15). In (2.13), (2.14), we put

s1 = s, s2 = 1, s3 = 1
2 if s ≥ 1 − b, while s1 = ( 3

4 − s)+, s2 = 1, s3 = s if
s < 1− b. Such a choice shows

‖A(w, v)wx‖s,b−1 . ‖v‖1,b′‖w‖ 1
2 ,b
′‖w‖s,b′ + ‖v‖1,b′‖w‖( 3

4−s)+,b′‖w‖s,b′ . (3.12)

The estimates (3.11) and (3.12) give (3.6).
For (3.7), we choose s1, s2, s3 as follows; s1 = s, s2 = s3 = 1

2 in (2.10), (2.11),
(2.12), and s1 = s3 = 1

2 , s2 = s in (2.13), and s1 = s2 = 1
2 , s3 = s in (2.15). In

(2.14), we choose s1 = s3 = 1
2 , s2 = s if s ≤ 1− b, while s1 = s, s2 = s3 = 1

2 if
s > 1− b. Such a choice shows (3.7).

This completes the proof of Lemma 3.1. �

4 Nonlinear estimates II

In this section, we prove the estimates needed for the proof of Theorem 1.1. In
section 6, the following lemma is used to show (1.5).

Lemma 4.1 Let b > 1
2 be close enough to 1

2 . For b′ > 1
2 , we have

‖(vwvx)x‖0,b−1 . ‖v‖21,b′‖w‖ 1
2 +,b′ , (4.1)

‖(w2vx)x‖0,b−1 . ‖v‖1,b′‖w‖21
2 +,b′

, (4.2)

‖(v2wx)x‖0,b−1 . ‖v‖21,b′‖w‖0+,b′ + ‖v‖0,b′‖v‖ 1
4 ,b
′‖w‖ 3

4 +,b′ , (4.3)

‖(vwwx)x‖0,b−1 . ‖v‖1,b′‖w‖ 1
2 +,b′‖w‖ 3

4 +,b′ , (4.4)

‖(w2wx)x‖0,b−1 . ‖w‖21
2 ,b
′‖w‖ 3

4 +,b′ . (4.5)
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Proof. We use Lemma 2.4 again for choosing s = 1, b > 1
2 and let b be close

enough to 1
2 .

For (4.1), in a similar way to the proof of Lemma 3.1, we have

‖(vwvx)x‖0,b−1 ≤ ‖(A(v, w)vx)x‖0,b−1 + ‖(A(w, v)vx)x‖0,b−1. (4.6)

We take s = s1 = s3 = 1, s2 = 1
2+ for the first term of (4.6), and s = s2 = s3 =

1, s1 = 1
2+ for the second term of (4.6), respectively, in (2.10), (2.11), (2.12),

(2.13), (2.14), (2.15), which yields the result.
For (4.2), we put s = s3 = 1, s1 = s2 = 1

2+ in (2.10), (2.11), (2.12), (2.13),
(2.14), (2.15). Then we have the desired estimate.

For (4.3), s = s1 = s2 = 1, s3 = 0+ are taken in (2.10), (2.11), (2.12),
(2.13), (2.14) which yields the estimate ‖v‖21,b′‖w‖0+,b′ . In (2.15), we put s =
1, s1 = 1

4 , s2 = 0, s3 = 3
4+, which yields the estimate ‖v‖0,b′‖v‖ 1

4 ,b
′‖w‖ 3

4 +,b′ .
The combination of these estimates implies (4.3).

For (4.4), we choose s = s1 = 1, s2 = 1
2+, s3 = 3

4+ in (2.10), (2.11), (2.12),
(2.13), (2.14), (2.15), which yields

‖(A(v, w)wx)x‖0,b−1 . ‖v‖1,b′‖w‖ 1
2 +,b′‖w‖ 3

4 +,b′ . (4.7)

Similarly, we have

‖(A(w, v)wx)x‖0,b−1 . ‖v‖1,b′‖w‖ 1
2 +,b′‖w‖ 3

4 +,b′ , (4.8)

by choosing s = s2 = 1, s1 = 1
2+, s3 = 3

4+. The estimate (4.4) is obtained by
(4.7) and (4.8).

For (4.5), we put s = 1, s1 = s2 = 1
2+, s3 = 3

4+ in (2.10), (2.11), (2.12),
(2.13), (2.14), (2.15) to obtain (4.4).

This completes the proof of Lemma 4.1. �

5 Preliminaries for the proof of Theorem 1.1

In this section we summarize some results needed for the proof of Theorem 1.1.
We begin by stating some facts of the space Xs,b.

Lemma 5.1 For s ∈ R, 1
2 < b < b′ < 1, 0 < δ < 1, we have

‖ψδ(t)eit∂
2
xu0‖s,b . δ

1
2−b‖u0‖Hs , (5.1)

‖ψδ(t)
∫ t

0
ei(t−s)∂

2
xf(s) ds‖s,b . δ

1
2−b‖f‖s,b−1, (5.2)

‖ψ(t)
∫ t

0
ei(t−s)∂

2
xf(s) ds‖L∞t Hsx . ‖f‖s,b−1, (5.3)

‖ψδ(t)f‖s,b−1 . δb
′−b‖f‖s,b′−1. (5.4)

For the proof of Lemma 5.1, see [14, 16].
Let us consider the following Cauchy problem

ivt + vxx = −iλv2vx −
λ2

2
|v|4v, v(0) = v0 ∈ H1. (5.5)
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Lemma 5.2 Let v0 ∈ H1. For T0 > 0 such that T
1
8−

0 (1 + ‖v0‖H1) � 1, there
exists a unique solution v of the Cauchy problem (5.5) in the time interval
[−T0, T0] such that

ψT0v ∈ C([−T0, T0] : H1) ∩X1, 12 +.

Moreover we have

‖ψT0v‖0, 12 + . T
0−
0 ‖v0‖L2 , ‖ψT0vx‖0, 12 + . T

0−
0 ‖v0‖H1 .

Proof. For b > 1
2 , we define

B1 =
{
v ∈ X1,b | T

b− 1
2

0 ‖v‖0,b ≤ 2c‖v0‖L2 , T
b− 1

2
0 ‖vx‖0,b ≤ 2c‖v0‖H1

}
,

Φ(v)(t) = ψT0(t)eit∂
2
xv0 + ψT0(t)

∫ t
0
ei(t−s)∂

2
xN1(v)(s) ds,

where the constant c is taken large enough relatively to ‖v0‖H1 , and N1(v) is
the nonlinear term of (5.5) defined as follows:

N1(v) = −λv2vx + i
λ2

2
|v|4v.

We look for the solution of the integral equation v = Φ(v). We choose b close
enough to 1

2 . By Lemma 2.5, (2.1) and (2.6), we have

‖|v|4v‖γ,b′−1 . ‖v‖γ,b‖v‖2b′−1,b‖v‖30,b, (5.6)

for 1
2 < b′ < 3

4 and 0 ≤ γ ≤ 1, where we choose numbers qjk, p
j
k, s

j
k in Lemma 2.5

such that sjj = γ, sjk0
= 2b′−1, pjj =∞, qjj = 4, 1

pjk0

= 2b′−1+, 2

qjk0

= 1
2 −

1

pjk0

for choosing some k0 among k 6= j, and sjk = 0, 3

pjk
= 2b′ − 1

2 −
1

pjk0

, 2

qjk
=

1
2 −

1

pjk
for k 6= j, k0. We only deal with the homogeneous spaces in Lemma 2.5.

However, again, applying the similar proof of Lemma 2.5 to the inhomogeneous
space, we can justify (5.6), since by the trivial embedding; ‖u‖s1,b1 ≤ ‖u‖s2,b2
for s1 ≤ s2, b1 ≤ b2.

Therefore, by (3.1), (5.1), (5.2), (5.4) and (5.6), we have

T
b− 1

2
0 ‖Φ(v)‖0,b−1

. ‖v0‖L2 + T
5
8−b

0 ‖N1(v)‖0, 58−1

. ‖v0‖L2 + T
1
8−

0 ‖v‖20,b‖v‖1,b + T
1
8−

0 ‖v‖40,b‖v‖1,b ≤ 2c‖v0‖L2 ,

for v ∈ B1, since by T b−
1
2

0 ‖v‖0,b ≤ 2c‖v0‖L2 and T
1
8−

0 ‖v‖1,b � 1, where we put
b′ = 5

8 in (5.4). Similarly, for v ∈ B1, by (3.2), (5.1), (5.2), (5.4) and (5.6), we
have

T
b− 1

2
0 ‖Φ(v)x‖0,b−1 . ‖v0‖Ḣ1 + T

1
8−

0 ‖v‖0,b‖v‖21,b + T
1
8−

0 ‖v‖30,b‖v‖21,b ≤ 2c‖v0‖H1 .
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In an analogous way to above, we obtain

‖Φ(v1)− Φ(v2)‖1,b ≤
1
2
‖v1 − v2‖1,b,

for v1, v2 ∈ B1. Then we conclude that Φ is a contraction map. Thus we obtain
the unique local existence result in X1,b of (5.5) by the contraction argument.
This completes the proof. �

Let us assume 3
4 ≤ s < 1. For v obtained in Lemma 5.2, let us consider the

following Cauchy problem with the variable coefficient depending on v

iwt + wxx = iN2(v, w), w(0) = w0 ∈ Hs, (5.7)

where the nonlinearity N2(v, w) is defined by

N2(v, w) = −λ
∑

v1,v2,v3=v or w

(v1,v2,v3)6=(v,v,v)

v1v2(v3)x + i
λ2

2

∑
v1,v2,v3,v4,v5=v or w

(v1,v2,v3,v4,v5)6=(v,v,v,v,v)

v1v2v3v4v5,

(5.8)
which is equivalent to N2(v, w) = N1(v + w) − N1(v). We put the first term
and the second term of the right hand side of (5.8) in N21(v, w) and N22(v, w),
respectively.

Let N � 1 be a large number. We next show the well-posedness of the
Cauchy problem (5.7).

Lemma 5.3 Let 3
4 ≤ s < 1. Assume that ‖w0‖Hγ ≤ cNγ−s‖w0‖Hs for 0 ≤

γ ≤ s. Moreover assume ‖v0‖Ḣ1 ≤ cN1−s. There exists a unique solution w of
the Cauchy problem (5.7) in the time interval [−T0, T0] such that

ψT0w ∈ C([−T0, T0] : Hs) ∩Xs, 12 +,

where T0 is the same as in Lemma 5.2. Moreover the solution w satisfies

‖ψT0w‖γ, 12 + ≤ cNγ−s+. (5.9)

Proof. Let b > 1
2 be close enough to 1

2 . We define

B2 =
{
w ∈ Xs,b : T b−

1
2

0 ‖w‖0,b ≤ 2cN−s‖w0‖Hs , T
b− 1

2
0 ‖w‖s,b ≤ 2c‖w0‖Hs

}
,

Ψ(w)(t) = ψT0(t)eit∂
2
xw0 + ψT0(t)

∫ t

0

ei(t−s)∂
2
xN2(v, w)(s) ds, (5.10)

where the constant c is taken large enough relatively to ‖w0‖Hs . In a similar
way to the proof of Lemma 5.2, by Lemma 2.5, (2.1), we have

‖N22(v, w)‖γ′,b′−1 . (‖v‖0,b + ‖w‖0,b)3(‖v‖1,b + ‖w‖ 1
2 ,b

)‖w‖γ′,b, (5.11)

for 1
2 < b′ < 3

4 and 0 ≤ γ′ ≤ s, where we choose sjj = γ′ in the case for taking
the summation with respect to vj = w in Lemma 2.5, where pjj = ∞, qjj =
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4, sjk0
= 2b′ − 1, 1

pjk0

= 2b′ − 1+, 2

qjk0

= 1
2 −

1

pjk0

for choosing some k0 among

k 6= j, and sjk = 0, 3

pjk
= 2b′ − 1

2 −
1

pjk0

, 2

qjk
= 1

2 −
1

pjk
for k 6= k0, j, while

sjj = min{1, γ′ + 2b′ − 1} in the case of vj = v where we take in Lemma 2.5 as
follows; 1

pjj
= 2b′ − 1+, 2

qjj
= 1

2 −
1

pjj
, sjk0

= (γ′ + 2b′ − 2)+, p
j
k0

= 2+, 2

qjk0

=
1
2 −

1

pjk0

for choosing some k0 among k 6= j of vk = w, and sjk = 0, 1

pjk
=

1
3

(
2b′ − 1

2 −
1

pjj
− 1

pjk0

)
∈ (0, 1

2 ), 2

qjk
= 1

2 −
1

pjk
for k 6= k0, j. We remark that by

interpolation,

T
1
8−

0 ‖v‖γ′,b‖v‖ 5
8 ,b
. T

1
8−

0 ‖v‖γ
′+ 5

8
1,b ‖v‖

11
8 −γ

′

0,b . Nγ′−, (5.12)

for w ∈ B2 and 0 ≤ γ′ ≤ s, because by T
1
8−

0 ‖v‖γ
′+ 5

8
1,b . ‖v‖γ

′− 3
8

1,b . N (1−s)(γ′− 3
8 ) .

Nγ′− and ‖v‖0,b . 1 by Lemma 5.2.
Then by (3.3), (3.4), (3.5), (3.6), (3.7), (5.1), (5.2), (5.4), (5.11), we obtain

the estimates

T
b− 1

2
0 ‖Ψ(w)‖0,b . ‖w0‖L2 + T

1
8−

0 (‖v‖0,b + ‖w‖ 1
2 ,b

)(‖v‖1,b + ‖w‖ 1
2 ,b

)‖w‖0,b

+T
1
8−

0 ‖v‖1,b‖w‖ 3
4 ,b
‖w‖0,b

+T
1
8−

0 (‖v‖0,b + ‖w‖0,b)3(‖v‖1,b + ‖w‖ 1
2 ,b

)‖w‖0,b
≤ 2cN−s‖w0‖Hs ,

and

T
b− 1

2
0 ‖Ψ(w)‖s,b

. ‖w0‖Hs + T
1
8−

0 (‖v‖0,b + ‖w‖ 1
2 ,b

)(‖v‖1,b + ‖w‖ 1
2 ,b

)‖w‖s,b

+T
1
8−

0 ‖v‖s,b‖v‖ 5
8 ,b
‖w‖0,b + T

1
8−

0 (‖v‖0,b + ‖w‖0,b)3(‖v‖1,b + ‖w‖ 1
2 ,b

)‖w‖s,b
≤ 2c‖w0‖Hs ,

for all w ∈ B2, where one uses in (5.4) with b′ = 5
8 to make the appearance T

1
8−

0 ,

and we use (5.12) to estimate T
1
8−

0 ‖v‖s,b‖v‖ 5
8 ,b
‖w‖0,b. Similarly, it follows

(Ns‖Ψ(w1)−Ψ(w2)‖0,b + ‖Ψ(w1)−Ψ(w2)‖s,b)

≤ 1
2

(Ns‖w1 − w2‖0,b + ‖w1 − w2‖s,b) ,

for w1, w2 ∈ B2. Therefore, by the Picard’s iteration argument, we obtain the
unique local existence result in Xs,b.

We now turn to show T
b− 1

2
0 ‖w‖γ,b ≤ cNγ−s for 0 ≤ γ ≤ s. By Lemma 2.5,

(5.10) of w = Ψ(w), (3.3), (3.4), (3.5), (3.6), (3.7), (5.11), we have

T
b− 1

2
0 ‖w‖γ,b . ‖w0‖Hγ + T

1
8−

0 (‖v‖0,b + ‖w‖ 1
2 ,b

)(‖v‖1,b + ‖w‖ 3
4 ,b

)‖w‖γ,b
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+T
1
8−

0 ‖v‖1,b‖w‖ 3
4 ,b
‖w‖γ,b + T

1
8−

0 ‖v‖γ,b‖v‖ 5
8 ,b
‖w‖0,b

+T
1
8−

0 (‖v‖0,b + ‖w‖0,b)3(‖v‖1,b + ‖w‖ 1
2 ,b

)‖w‖γ,b

. ‖w0‖Hγ + T 0+
0 ‖w‖γ,b + T

1
8−

0 ‖v‖γ,b‖v‖ 5
8 ,b
‖w‖0,b

. ‖w0‖Hγ + T 0+
0 ‖w‖γ,b +Nγ−s,

which shows (5.9), where we use ( 3
4 − γ)+ ≤ 3

4 in (3.6), and (5.12) for the

treatment of T
1
8−

0 ‖v‖γ,b‖v‖ 5
8 ,b
‖w‖0,b. �

We note that ψT0v and ψT0w given by Lemmas 5.2 and 5.3 satisfy the inte-
gral equations corresponding to (5.5) and (5.7), respectively. For simplicity, we
abbreviate ψT0v and ψT0w to v and w, respectively, hereafter.

6 Proof of Theorem 1.1

In this section we prove Theorem 1.1 by using the results in sections 4 and 5.
Let us consider the following Cauchy problem

iut + uxx = −iλu2ux −
λ2

2
|u|4u, u(0) = u0 ∈ Hs. (6.1)

We break data u0 into two pieces; low frequency and high frequency, as follows;
u0 = v0 + w0,

Fxv0(ξ) = Fxu0(ξ)||ξ|≤N , Fxw0(ξ) = Fxu0(ξ)||ξ|>N , (6.2)

where N � 1 is to be determined later. We try to solve the Cauchy problems
(5.5) and (5.7) for data v0 and w0, respectively. If this is accomplished, we
solve the Cauchy problem (6.1), since the solution u of (6.1) is written as u(t) =
v(t) + w(t). From Lemmas 5.2 and 5.3, the Cauchy problems (5.5) and (5.7)
are locally well-posed in H1 and Hs, respectively, on the time interval [−T0, T0]

if T
1
8−

0 ‖v0‖H1 � 1. The definition (6.2) implies ‖v0‖Ḣ1 . N1−s. We can put
T0 ∼ N8(s−1)−. Without loss of generality, it is sufficient to treat the non-
negative time, because the case of t < 0 is similar.

In order to extend the existence time of (6.1) up to any time T > 0, we make
the iteration scheme as follows; At the time t = T0, we choose v1 and w1 as the
corresponding v0 and w0, respectively,

v1 = v(T0) + ν(T0), w1 = eiT0∂
2
xw0,

where

ν(t) =
∫ t

0

ei(t−s)∂
2
xN2(v, w) ds.

We want to continue the above process of T/T0 steps to obtain vT/T0 and wT/T0

with the Cauchy problems (5.5) and (5.7), which concludes the proof of Theorem
1.1. To show this, we have only to ensure vj ∈ H1 and wj ∈ Hs on each step.
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The unitarity of eit∂
2
x shows wj ∈ Hs and ‖wj‖Hs = ‖w0‖Hs . Then if the

growth order of vj is the same as v0 on each step, namely, ‖vj‖L2 ∼ ‖v0‖L2 ∼ 1
and ‖vj‖Ḣ1 ∼ ‖v0‖Ḣ1 . N1−s for 1 ≤ j ≤ T/T0, we have the solution of (6.1)
until t = T , since by the argument of section 5. Then we shall check it.

Lemma 6.1 Assume 6
7 < s < 1. Let v, w be given as above. We have

‖N2(v, w)x‖0,− 1
2 + . N

1− 5s
4 +. (6.3)

Proof. We use Lemma 4.1 for the estimate of trilinear terms N21(v, w). By
(4.1), (4.2), (4.3), (4.4), (4.5), respectively, we have

‖N21(v, w)x‖0,− 1
2 + . N2(1−s)+ 1

2−s+ +N1−s+2( 1
2−s)+ +N2(1−s)−s+

+N
1−s

4 + 3
4−s+ +N1−s+ 1

2−s+
3
4−s+ +N2( 1

2−s)+
3
4−s+

. N
1−s

4 + 3
4−s+ = N1− 5s

4 +,

where ‖v‖γ1,
1
2 + . Nγ1(1−s)+ and ‖w‖γ2,b . Nγ2−s+ for 0 ≤ γ1 ≤ 1 and 0 ≤

γ2 ≤ s obtained in Lemmas 5.2 and 5.3 are used.
For the quintic nonlinearity N22(v, w), by (2.2), (2.3) and the Sobolev in-

equality, we have

‖N22(v, w)x‖L2

.
∑

u1,u2,u3,u4,u5=v or w

(u1,u2,u3,u4,u5)6=(v,v,v,v,v)

‖(u1)x‖L∞x L2
t
‖u2‖L4

xL
∞
t
‖u3‖L4

xL
∞
t
‖u4‖L∞‖u5‖L∞

.
∑

u1,u2,u3,u4,u5=v or w

(u1,u2,u3,u4,u5)6=(v,v,v,v,v)

‖u1‖ 1
2 ,

1
2 +‖u2‖ 1

4 ,
1
2 +‖u3‖ 1

4 ,
1
2 +‖u4‖ 1

2 +, 12 +‖u5‖ 1
2 +, 12 +

. N
1−s

2 + 1−s
4 + 1−s

4 + 1−s
2 + 1

2−s+ = N2− 5s
2 +,

where the last order N2− 5s
2 + in the right hand side of (6.4) appears in the order

for uj = v, j = 1, 2, 3, 4, and u5 = w. As combining these results, we have the
estimate (6.3). �

Let us come back the proof of Theorem 1.1. The conservation of L2 norm
for the Cauchy problem (6.1) gives

‖v1‖L2 = ‖u(T0)− eiT0∂
2
xw0‖L2 ≤ ‖u0‖L2 + ‖w0‖L2 ≤ ‖u0‖L2 + cN−s. (6.4)

We want to estimate ‖v1‖Ḣ1 . Let us define

E(v) = ‖vx‖2L2 −
λ

2
Im〈|v|2v, vx〉L2 .

The simple calculation shows that E(v) is the conserved quantity for the Cauchy
problem (5.5); E(v(t)) = E(v0) for all t ∈ R (see [10, Lemma 2.3], [24, Propo-
sition 3.1]). Moreover the following estimates hold (e.g., [10, Lemma 2.4], [24,
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Proposition 3.2])

‖vx‖L2 . (1 + ‖v‖2L2)‖(Gv)x‖L2 , (6.5)

E(v) ≥
(

1− λ2

4π2 ‖v‖4L2

)
‖(Gv)x‖2L2 , (6.6)

where Gv is defined as

(Gv)(x) = exp
(
−iλ

4

∫ x

−∞
|v(y)|2 dy

)
.

By (5.3), (5.4), Lemma 6.1 and (6.4), we have

E(v1) = E(v(T0) + ν(T0))− E(v(T0)) + E(v0) ≤ E(v0) + cN2− 9s
4 +, (6.7)

where one uses that E is conserved for solutions to (5.5), the order N2− 9s
4 +

corresponds to the order of ‖v(T0)‖Ḣ1‖ν(T0)‖Ḣ1 . N1−sN1− 5s
4 +. Hence by

(6.4), (6.5), we have

‖v1‖L2 <
√

2π
|λ| , ‖v1‖Ḣ1 . N1−s,

E(v1) ≤ E(v0) + cN2− 9s
4 + . N2(1−s),

provided ‖v0‖L2 <
√

2π
|λ| for (6.6) and sufficiently large N � 1, where the second

inequality comes from the third inequality, since by (6.5) and (6.6). Here we use
the fact ‖v0‖L2 ≤ ‖u0‖L2 <

√
2π
|λ| assumed in Theorem 1.1 to be (6.6) positive.

We want to take this process T/T0 steps. Let j0 such that 1 < j0 < T/T0.
As long as ‖vj‖L2 <

√
2π
|λ| and ‖vj‖Ḣ1 . N1−s for 1 ≤ j ≤ j0, after iterating

j0 + 1 steps, we have

‖vj0+1‖L2 ≤ ‖u0‖L2 + cN−s, (6.8)

‖vj0+1‖Ḣ1 . N1−s + j
1/2
0 N1− 9s

8 +, (6.9)

where (6.9) is obtained by (6.5), (6.6) and

E(vj0+1) ≤ E(v0) + cj0N
2− 9s

4 +. (6.10)

The number we have to repeat is, at most, T/T0 ∼ TN8(1−s)+. In order to
succeed the above process up to j0 + 1 ∼ T/T0, uniform, by (6.8) and (6.10),
we need the relations

N−s � 1, TN8(1−s)+N2− 9s
4 + . N2(1−s), (6.11)

where the restriction on s appears. When s > 32
33 , the relations (6.11) hold for

large N � 1. Then we complete the proof of Theorem 1.1.
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7 Remarks on local well-posedness in H1/2

In this section we will show the best local well-posedness for the Cauchy problem
(1.1). We recall that in [25] the local well-posedness in H1/2 was proven, where
the proof uses the Fourier restriction norm method. Moreover, if s < 1

2 , the
estimate (1.3) crucial to proof fails for any b ∈ R. So it seems difficult to
expect the well-posedness below H1/2 for the usual use of Fourier restriction
norm method. The scaling argument suggests the value of s = 0 critical for the
local well-posedness. Thereby we see the gap between the suggestions of scaling
argument and of the local well-posedness results in H1/2.

This section is motivated by the work in [2, section 6], where Bourgain
observes the well-posedness for KdV equation by the data-map argument. The
well-posedness requires the continuous dependence on data. Indeed, if we use
the contraction argument for proving the integral equation associated with the
Cauchy problem, the data-map; u0 7→ u(t) acts smoothly from Hs to itself.

Let us consider the following Cauchy problem

iut + uxx = i(|u|2u)x, u(0) = δu0. (7.1)

In this section, we show that the data-map; St : δu0 7→ uδ(t) of (7.1) fails in Hs

for s < 1
2 . The result is the following proposition.

Proposition 7.1 Let T > 0. Assume that the data-map St of (7.1) is C3

class in the sense of Fréchet derivative on the time interval [0, T ]. Moreover we
suppose that St(δu0) is expressed as

St(δu0) =
∞∑
k=1

δkvk(t)

in Hs, where vk ∈ L∞t ([0, T ] : Hs). If s < 1
2 , then the data-map fails.

Proof. By assumption, we have

∂uδ(t)
∂δ

∣∣∣∣
δ=0

= v1(t) = eit∂
2
xu0,

∂2uδ(t)
∂δ2

∣∣∣∣
δ=0

= cv2(t) = 0,

∂3uδ(t)
∂δ3

∣∣∣∣
δ=0

= cv3(t) = c

∫ t

0

ei(t−s)∂
2
x∂x(|v1|2v1)(s) ds. (7.2)

The assumption of C3-differentiability implies

‖eit∂
2
xu0‖Hs ≤ c‖u0‖Hs ,

∥∥∥∥∫ t

0

ei(t−s)∂
2
x∂x(|v1|2v1)(s) ds

∥∥∥∥
Hs
≤ c‖u0‖3Hs . (7.3)

Let T > 0 be fixed, and for simplicity we suppose T < 1. We set u0 as follows

u0(x) =
1
Ns

∫
|λ−N |≤ 1

1010

eiλx dλ.
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We easily see that ‖u0‖Hs ∼ 1, and the right hand side of (7.2) is similar to

1
N3s

∫
|λj−N |≤ 1

1010

λ1 + λ2 − λ3

(λ1 − λ3)(λ2 − λ3)
ei(λ1+λ2−λ3)x

×
(
ei(λ

2
1+λ2

2−λ
2
3)t − ei(λ1+λ2−λ3)2t

)
dλ1dλ2dλ3.

When T
2 ≤ t ≤ T , we note that for the points in |λj −N | ≤ 1

1010 , j = 1, 2, 3, we
have

|λ1 + λ2 − λ3| ∼ N,

∣∣∣∣∣ei(λ
2
1+λ2

2−λ
2
3)t−i(λ1+λ2−λ3)2t − 1

(λ1 − λ3)(λ2 − λ3)

∣∣∣∣∣ & 1.

Then we have the following∥∥∥∥∫ t

0

ei(t−s)∂
2
x∂x(|v1|2v1)(s) ds

∥∥∥∥
Hs
&
NsN

N3s
∼ N1−2s. (7.4)

From (7.3), (7.4), we need the relation N1−2s . 1, which implies the necessity
of s ≥ 1

2 for sufficiently large N > 1. �
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