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An elementary proof of the Harnack inequality for

non-negative infinity-superharmonic functions ∗

Tilak Bhattacharya

Abstract

We present an elementary proof of the Harnack inequality for non-
negative viscosity supersolutions of ∆∞u = 0. This was originally proven
by Lindqvist and Manfredi using sequences of solutions of the p-Laplacian.
We work directly with the ∆∞ operator using the distance function as a
test function. We also provide simple proofs of the Liouville property,
Hopf boundary point lemma and Lipschitz continuity.

1 Introduction

Our effort in this note will be to provide an elementary proof of the Harnack
inequality for nonnegative ∞-superharmonic functions. The ∞-harmonic oper-
ator, in a domain Ω ⊂ Rn, n ≥ 1, is defined as

∆∞u =
n∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
. (1.1)

A function u = u(x1, x2, . . . , xn) is said to be ∞-harmonic if u is a solution of
∆∞u = 0. In this work, by a solution u we will mean a viscosity solution. For
definitions and background for such equations see [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13]
and the references therein, in particular we mention the remarkable work of
Jensen [6]. These references also discuss the relevance and the importance of
the notion of viscosity solutions in the context of such nonlinear equations. We
may also define ∞-superharmonicity: u is said to be ∞-superharmonic if it is a
viscosity supersolution of (1.1) i.e., u is lower semicontinuous and satisfies

−∆∞u ≥ 0,

in the viscosity sense. For our work we will take u ≥ 0.
Let Ω ⊂ Rn, be a bounded domain and ∂Ω be its boundary; also let Br(P )

denote the open ball in Rn, of radius r and center P. The main result of this
work is
∗Mathematics Subject Classifications: 35J70, 26A16.

Key words: Viscosity solutions, Harnack inequality, infinite harmonic operator,
distance function.
c©2001 Southwest Texas State University.

Submitted January 15, 2001. Revised May 17, 2001. Published June 14, 2001.

1



2 An elementary proof of the Harnack inequality EJDE–2001/44

Theorem 1 Let u ≥ 0 be a viscosity supersolution of (1.1) in Ω. Also let
P ∈ Ω, 0 < r ≤ dist(P, ∂Ω) and Br = Br(P ). If M = supBr/2 u(x) and
m = infBr/2 u(x), then

m ≥M/8 .

The result we present here is not new; see, for instance, [5] for the case
when solutions are C2 and [11] for viscosity solutions of (1.1). The proof in [11]
makes use of approximating sequences involving the p-Laplacian and captures
the∞-harmonic operator as the limiting operator when p→∞. This work also
provides sharp local Lipschitz bounds for viscosity solutions of (1.1). However,
we work directly with (1.1). We now briefly discuss the basic idea of our proof.
For a ball Br(P ) in Ω, define d(x) = dist(x, ∂Br(P )) for x ∈ Br(P ). Our
observation is that this distance function d acts as a universal barrier for the
∞-harmonic operator ∆∞. This follows from rather elementary calculations.
See Lemmas 1 and 2 in Section 2. More precisely, we show that if u is ∞-
superharmonic and u ≥ 0, but not identically 0, then

u(x) ≥ u(P )
d(x)
d(P )

.

This estimate is the main contribution of our work and this in turn leads to an
elementary proof of the Harnack inequality. The proof of this result appears
in Lemma 2. As a matter of fact this observation also leads to straightforward
proofs of the Hopf boundary point lemma, the well known Liouville property and
local Lipschitz regularity. These appear in the Appendix. It has been pointed
out to us by Juan Manfredi that some of the ideas presented in this work may
be applicable to other situations such as the Heisenberg group. In a more recent
work, we have been able to adapt the ideas of this work to prove similar results
in the case of nonnegative viscosity supersolutions of the p-Laplacian, when
p > n. We thank Peter Lindqvist and Juan Manfredi for having read an earlier
version of this manuscript and for their comments. We also thank the referee
for comments that have clarified the presentation greatly. For more information
on the Harnack inequality, in this context, see [5, 11].

2 Preliminary results and the proof of the main
theorem

We start with the following rather elementary result. It will set the stage for
showing that the function d acts as a barrier for the ∞-harmonic operator.

Lemma 1 Let Bt(0) be the open ball in Rn centered at 0 and radius t and let
d(x) = dist(x, ∂Bt(0)) = t− |x|, ∀ x ∈ Rn. Then for x 6= 0 and |x| 6= t,

∆∞dα(x) = α3(α− 1)d(x)3α−4. (2.1)
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Proof. We observe that

Did
α = αdα−1

(
−xi
|x|

)
and

Dij(dα) = αdα−1

(
xixj
|x|3

− δij
|x|

)
+ α(α− 1)dα−2xixj

|x|2
.

Thus we see that

∆∞dα = (αdα−1)2xixj
|x|2

[
α(α− 1)dα−2xixj

|x|2
+ αdα−1

(
xixj
|x|3

− δij
|x|

)]
=

(
αdα−1

)2 [
α(α− 1)dα−2 + αdα−1

(
1
|x|
− 1
|x|

)]
= α3(α− 1)d3α−4. ♦

We now prove the main estimate mentioned in the introduction. It appears
as part (i) of Lemma 2. In what follows, we will take u to be lower semicontinu-
ous. Note that the estimates are stated in terms of distances of points from the
boundary of a certain ball they lie in. The basic observation is that the function
ku(x)−d(x) attains its infimum at the center of the ball which is being used for
defining d. Here k is a suitable scaling constant. This fact leads to the estimate
pointed out in Section 1.

Lemma 2 Let P ∈ Ω, r ≤ dist(P, ∂Ω) and Br = Br(P ) be the open ball of
radius r and center P . Set d(x) = r − |x − P | = dist(x, ∂Br) for all x ∈ Ω.
Let u(x) ≥ 0 solve −∆∞u ≥ 0 in the viscosity sense. Assume u(P ) > 0 and if
k > 0 is such that d(P ) = ku(P ) = r, then ∀ x ∈ Br,

(i) u(x) ≥ u(P ) d(x)
d(P ) ;

(ii) u(x)− u(P ) ≥ −|x− P |/k or u(x) + |x−P |
k ≥ u(P ).

Proof. We will scale the functions u and d as follows. We define uc(x) =
cu(x)/r and v(x) = d(x)/r where 0 < c < k. By the definition of k,

uc(P ) =
cu(P )
r

< v(P ) =
ku(P )
r

= 1 .

Note that v(x) = 0 whenever x ∈ ∂Br and also note d(P ) = r; fix c and set

w = uc − v =
cu(x)
r
− d(x)

r
,

then w(P ) < 0 and w ≥ 0 on ∂Br(P ). Clearly there is a negative infimum of w
in Br(P ). Our intention is to show that this infimum occurs at P. We proceed
by contradiction. Suppose there is a point xc 6= P with the property that

inf
Br
w(x) = w(xc) < w(P ) < 0 .
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Consider the function v(x)α = (d(x)/r)α, α > 1 and we look at wα(x) =
uc(x)− vα(x). Clearly,

wα(P ) = uc(P )− 1 < 0 and wα(x) ≥ 0 on ∂Br.

Choose α sufficiently close to 1 so that the point of infimum of wα, denoted by
xc,α, is different from P and

wα(xc,α) < wα(P ) = uc(P )− 1 < 0 .

Note xc,α is not in ∂Br. Unscaling wα, this implies that the function

rwα(x)
c

= u(x)−
[
rv(x)α

c

]
= u(x)−

[
d(x)α

crα−1

]
has a negative infimum at xc,α 6= P . Now v(x)α is C2 near xc,α and as u is a
viscosity supersolution of (1.1), we have

−∆∞

[
dα(xc,α)
crα−1

]
≥ 0.

By Lemma 1,

∆∞

[
dα(xc,α)
crα−1

]
=
α3(α− 1)d3α−4(xc,α)

(crα−1)3
> 0,

since α > 1, which results in a contradiction. Thus the infimum of w occurs at
P . Hence, uc(x)− v(x) ≥ uc(P )− 1, i. e.,

cu(x)
r
− d(x)

r
≥ cu(P )

r
− 1, ∀ x ∈ Br and ∀ c < k.

Letting c→ k, we obtain

ku(x)− d(x) ≥ ku(P )− d(P ) = 0 .

The inequality ku(x) ≥ d(x) together with the fact k = r/u(P ) = d(P )/u(P )
yields (i). Rearranging the above inequality now yields

ku(x)− ku(P ) ≥ d(x)− d(P ) = −|x− P |.

This clearly implies (ii). ♦

Before proceeding to the proof of the main result, we make a few observa-
tions below. These follow from the results of Lemma 2 and will be used quite
frequently in what follows. Remark 1 is a straightforward observation, while
Remark 2 shows that if u is positive somewhere then it is positive everywhere,
a fact necessary for our proof.

Remark 1. Observe from (i) of Lemma 2, u(x) ≥ u(P )/2, ∀ x ∈ Br/2(P ).
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Remark 2. We show that if u is positive somewhere in Ω then it is positive
everywhere in Ω. Clearly S, the set of points where u > 0, is open. Suppose
y is a limit point of S. There are two possiblities: either y is in ∂Ω or it
is in the interior of Ω. If the latter happens then there is a Bδ(y) that lies
completely in Ω. Clearly there is a point z ∈ S that lies in Bδ/4(y). Now
u(z) > 0 and Bδ/2(z) ⊂ Bδ(y) with y ∈ Bδ/2(z). Part (i) of Lemma 2 implies
u(y) ≥ u(z)/2 > 0. Thus S is both open and closed and Ω being connected we
have S = Ω.

We now present the proof of the main result.

Proof of the main Theorem. By Remark 2, u > 0 in Ω. Let Q be the
point of infimum of u on Br/2(P ). By Remark 1, u(Q) ≥ u(P )/2. Let x be in
Br/2(P ). Let R be the midpoint of the segment joining x to P . Let l = |x−P |,
then by applying Remark 1 to the Bl(x), we see that u(R) ≥ u(x)/2. Clearly,
l ≤ r/2 and |R − P | ≤ r/4. Finally, by applying part (i) of Lemma 2 to the
ball Br/2(R) ( now P lies in this ball with distance from P to the boundary of
this ball is at least r/2 − r/4 = r/4), we get u(P ) ≥ u(R)/2. Putting these
inequalities together we obtain

u(Q) ≥ u(P )/2 ≥ u(R)/4 ≥ u(x)/8, ∀ x ∈ Br/2(x).

3 Appendix

We now present the proofs of the Hopf boundary lemma, the Liouville property
and the local Lipschitz regularity. They follow from the basic estimates proved
in Lemma 2.

Remark 3 (The Liouville Property). If u ≥ 0 is a viscosity supersolution
of (1.1) defined on all of Rn then it is a constant function. To see this, we take
two distinct points x and z in Rn. Consider the ball BR(z) with R > |x − z|.
By part (i) of Lemma 2,

u(z) ≤ u(x)
d(z)
d(x)

, and d(z) = d(x) + |x− z| = R.

Letting R → ∞ we get u(z) ≤ u(x). Switching the roles of x and z we get the
reverse inequality.

Remark 4 (The Hopf Boundary Point Lemma) . We drop the require-
ment that u ≥ 0. Let Q ∈ ∂Ω be such that there is a ball Br(P ) ⊂ Ω with
Q ∈ ∂Ω ∩ ∂Br. Assume that u(Q) = infΩ u and u(P ) > u(Q). We apply part
(i) of Lemma 2 to the function v(x) = u(x)−u(Q) ≥ 0 in the ball Br(P ). Then

v(x) ≥ v(P )
d(x)
d(P )

= v(P )
d(x)
r
.
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Clearly, we obtain
u(x)− u(Q)

d(x)
≥ u(P )− u(Q)

d(P )
.

Implying then

liminfx→Q
u(x)− u(Q)

d(x)
≥ u(P )− u(Q)

d(P )
> 0.

Also see the work in [13] in this regard. ♦

The estimates in Lemma 2 also imply local Lipschitz continuity of u. See
[11] in this regard. We first prove this for u ≥ 0 which are supersolutions of
(1.1). A somewhat modified estimate continues to hold if the assumption of
nonnegativity is dropped. We do this in Remark 5.

Lemma 3 (Lipschitz Continuity) Let y be in Ω and δ = dist(y, ∂Ω). Then
for all x in Bδ/4(y), we have

|u(x)− u(y)| ≤ 4u(y)|x− y|
δ

≤ 4M |x− y|
dist(y, ∂Ω)

,

where M = supu.

Proof. We apply part (ii) of Lemma 2. Let x and y be as in the statement of
the lemma. Clearly,

u(x)− u(y) ≥ −|x− y|
k

= −u(y)|x− y|
r

.

The ball Bδ/2(x) lies in Bδ(y) and contains y. Another application of part (ii)
of Lemma 2 to Bδ/2(x) implies

u(y)− u(x) ≥ −u(x)|x− y|
δ/2

.

Putting together these two inequalities, we obtain

−u(y)|x− y|
δ

≤ u(x)− u(y) ≤ 2u(x)|x− y|
δ

.

The conclusion is now obtained by observing that u(y) ≥ u(x)/2 (apply part (i)
of Lemma 2 to Bδ/2(x) with the observation that |y − x| ≤ δ/4). ♦

Remark 5. In order to prove Lemma 3 for a more general u, we proceed
as follows. First redefine δ = dist(y, ∂Ω)/2. Let m = infBδ(y) u; clearly,
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v(x) = u(x) −m ≥ 0 in Bδ(y) and is a supersolution of (1.1). Going through
the proof of Lemma 4, we find that

|u(x)− u(y)| = |v(x)− v(y)| ≤ 4v(y)|x− y|
δ

≤ (u(y)−m)|x− y|
δ

≤ 8sup|u| |x− y|
dist(y, ∂Ω)

.

Finally, we state a somewhat more precise version of part (i) of Lemma 2.

Remark 6. Let Br(z) be in Ω. We show that for x ∈ Br(z), the function
u(x)/d(x) is increasing along radial lines emanating from z. To state this from
precisely, let e be a unit vector in Rn and 0 < t < r, we claim that u(z+te)/d(z+
te) is increasing as a function of t. Set x = z+te and y = z+se, where t < s < r.
Fix t and s. Note that d(x) = dist(x, ∂Br(z)) and d(y) = dist(y, ∂Br(z)). Note
that the ball Bd(x)(x) contains y. Applying Lemma 2 to this ball and observing
that d(y) = dist(y, ∂Bd(x)(x)), we deduce that u(x)/d(x) ≤ u(y)/d(y).
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