A unique continuation property for linear elliptic systems and nonresonance problems *

A. Anane, O. Chakrone, Z. El Allali, \& I. Hadi

Abstract

The aim of this paper is to study the existence of solutions for a quasilinear elliptic system where the nonlinear term is a Caratheodory function on a bounded domain of \mathbb{R}^{N}, by proving the well known unique continuation property for elliptic system in all dimensions: $1,2,3, \ldots$ and the strict monotonocity of eigensurfaces. These properties let us to consider the above problem as a nonresonance problem.

1 Introduction

We study the existence of solutions for the quasilinear elliptic system

$$
\begin{gather*}
-\Delta u_{i}=\sum_{j=1}^{n} a_{i j} u_{j}+f_{i}\left(x, u_{1}, \ldots, u_{n}, \nabla u_{1}, \ldots, \nabla u_{n}\right) \quad \text { in } \Omega, \tag{1}\\
u_{i}=0 \quad \text { on } \partial \Omega, i=1, \ldots, n
\end{gather*}
$$

where $\Omega \subset \mathbb{R}^{N}(N \geq 1)$ is a bounded domain, and the coefficients $a_{i j}(1 \leq$ $i, j \leq n)$ are constants satisfying $a_{i j}=a_{j i}$, for all i, j. The nonlinearity f_{i} : $\Omega \times \mathbb{R}^{N} \times \mathbb{R}^{2 N} \rightarrow \mathbb{R}(1 \leq i \leq n)$ is a Carathéodory function. The case where $n=2$ and $f_{i}(1 \leq i \leq n)$ is independent of $\nabla u_{i}(1 \leq i \leq n)$ has been studied by several authors, in particular by Costa and Magalhães in [8].

This paper is organized as follows. First, we study the unique continuation property in dimension $N \geq 3$ (section 2), for systems of differential inequalities of the form

$$
\left|\Delta u_{i}(x)\right| \leq K \sum_{j=1}^{n}\left|u_{j}(x)\right|+m(x)\left|u_{i}(x)\right| \quad \text { a.e. } x \in \Omega, 1 \leq i \leq n
$$

where $m \in F^{\alpha, p}, 0<\alpha<1$ and $p>1$. Here $F^{\alpha, p}$ denotes the set of functions of class Fefferman-Phong. In our proof of Theorem 2, we make use of a number results and techniques developed in [24, 9, 22]. Secondly, we study the unique

[^0]continuation property in dimension $N=2$ (section 3), for linear elliptic systems of the form
$$
-\Delta u_{i}=\sum_{j=1}^{n} a_{i j} u_{j}+m(x) u_{i} \quad \text { in } \Omega i=1, \ldots, n
$$
where m satisfies the $L_{\log } L$ integrability condition. There is extensive literature on unique continuation; we refer the reader to $[22,12,18,19,15]$. The purpose of section 4 is to show that strict monotonicity of eigenvalues for the linear elliptic system
\[

$$
\begin{gathered}
-\Delta u_{i}=\sum_{j=1}^{n} a_{i j} u_{j}+\mu m(x) u_{i} \quad \text { in } \Omega, \\
u_{i}=0 \quad \text { on } \partial \Omega, i=1, \ldots, n
\end{gathered}
$$
\]

holds if some unique continuation property is satisfied by the corresponding eigenfunctions. Here $a_{i j}=a_{j i}$ for all $i \neq j, \mu \in \mathbb{R}$ and $m \in \mathcal{M}=\{m \in$ $\left.L^{\infty}(\Omega) ; \operatorname{meas}(x \in \Omega / m(x)>0) \neq 0\right\}$. This result will be used for the applications in section 6 . In section 5 , we study the first order spectrum for linear elliptic systems and strict monotonicity of eigensurfaces. This spectrum is defined as the set of couples $(\beta, \alpha) \in \mathbb{R}^{N} \times \mathbb{R}$ such that

$$
\begin{gather*}
-\Delta u_{i}=\sum_{j=1}^{n} a_{i j} u_{j}+\alpha m(x) u_{i}+\beta \cdot \nabla u_{i} \quad \text { in } \Omega, \tag{2}\\
u_{i}=0 \quad \text { on } \partial \Omega, i=1, \ldots, n
\end{gather*}
$$

has a nontrivial solution $U=\left(u_{1}, \ldots, u_{n}\right) \in\left(H_{0}^{1}(\Omega)\right)^{n}$. We denote this spectrum by $\sigma_{1}(-\vec{\Delta}-A, m)$ where $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ and $m \in \mathcal{M}$. This spectrum is made by an infinite sequence of eigensurfaces $\Lambda_{1}, \Lambda_{2}, \ldots$ (cf. section 5 and [2] in the case $n=2$). Finally, in section 6 we apply our results to obtain the existence of solutions to (1) under the condition of nonresonance with respect to $\sigma_{1}(-\vec{\Delta}-A, 1)$.

We use the notation

$$
U=\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right), \quad-\vec{\Delta} U=\left(\begin{array}{c}
-\Delta u_{1} \\
\vdots \\
-\Delta u_{n}
\end{array}\right), \quad \nabla U=\left(\begin{array}{c}
\nabla u_{1} \\
\vdots \\
\nabla u_{n}
\end{array}\right), \quad F=\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right)
$$

We denote by $\sigma(-\Delta)=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{j}, \ldots\right\}$ the spectrum of $-\Delta$ on $H_{0}^{1}(\Omega)$. For $\beta \in \mathbb{R}^{N}$, we denote

$$
(\beta \xi)=\left(\begin{array}{c}
\beta \cdot \xi_{1} \\
\vdots \\
\beta \cdot \xi_{n}
\end{array}\right), \quad|s|^{2}=\sum_{i=1}^{n}\left|s_{i}\right|^{2}, \quad|\xi|^{2}=\sum_{i=1}^{n}\left|\xi_{i}\right|^{2}
$$

In the space $\left(H_{0}^{1}(\Omega)\right)^{n}$ we use the induced inner product

$$
\langle U, \Phi\rangle=\sum_{i=1}^{n}\left\langle u_{i}, \varphi_{i}\right\rangle \quad \forall U=\left(u_{1}, \ldots, u_{n}\right), \Phi=\left(\varphi_{1}, \ldots, \varphi_{n}\right) \in\left(H_{0}^{1}(\Omega)\right)^{n}
$$

and corresponding norm

$$
\|U\|_{1,2, \beta}^{2}=\int_{\Omega} e^{\beta . x}|\nabla U|^{2} d x=\sum_{i=1}^{n}\left\|u_{i}\right\|_{1,2, \beta}^{2}
$$

which is equivalent to the original norm.

2 The unique continuation property for linear elliptic systems in dimensions $N \geq 3$

We will say that a family of functions has the unique continuation property, if no function, besides possibly the zero function, vanishes on a set of positive measure.

In this section, we proceed to establish the unique continuation property when $m \in F^{\alpha, p}, 0<\alpha<1$ and $p>1$ in dimension $N \geq 3$. The proof of the main result is based on the Carleman's inequality with weight.

Theorem 1 (Carleman's inequality with weight) Let $m \in F^{\alpha, p}, 0<\alpha \leq$ $\frac{2}{N-1}$ and $p>1$. Then there exists a constant $c=c(N, p)$ such that

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}}\left|e^{\tau x_{N}} f\right|^{s} m\right)^{1 / s} \leq c\|m\|_{F^{\alpha, p}}^{2 / s}\left(\int_{\mathbb{R}^{N}}\left|e^{\tau x_{N}} \Delta f\right|^{r} m^{1-r}\right)^{1 / r} \tag{3}
\end{equation*}
$$

for all $\tau \in \mathbb{R} \backslash\{0\}$, and all $f \in S\left(\mathbb{R}^{N}\right)$ where $\frac{1}{r}-\frac{1}{s}=\frac{2}{N+1}$ and $\frac{1}{r}+\frac{1}{s}=1$.
For the proof of this theorem see [22].
Theorem 2 Let X be an open subset in \mathbb{R}^{N} and $U=\left(u_{1}, \ldots, u_{n}\right) \in\left(H_{\text {loc }}^{2, r}(X)\right)^{n}$ ($\left.r=\frac{2(N+1)}{N+3}\right)$ be a solution of the following differential inequalities:

$$
\begin{equation*}
\left|\Delta u_{i}(x)\right| \leq K \sum_{j=1}^{n}\left|u_{j}(x)\right|+m(x)\left|u_{i}(x)\right| \quad \text { a.e. } x \in X 1 \leq i \leq n \tag{4}
\end{equation*}
$$

where K is a constant and m is a locally positive function in $F^{\alpha, p}$, with $\alpha=\frac{2}{N-1}$ and $p>1$, i.e.

$$
\lim _{r \rightarrow 0}\left\|\chi_{\{x:|x-y|<r\}} m\right\|_{F^{\alpha, p}} \leq c(N, p) \quad \forall y \in X
$$

Then, if U vanishes on an open $X \subset \Omega, U$ is identically null in Ω.
Lemma 1 Let $U=\left(u_{1}, \ldots, u_{n}\right) \in\left(H_{\mathrm{loc}}^{2, r}(X)\right)^{n}\left(r=\frac{2(N+1)}{N+3}\right)$ be a solution of (4) in a neighborhood of a sphere S. If U vanishes in one side of S, then U is identically null in the neighborhood of S.

Proof. We may assume without loss generality that S is centered at $-1=$ $(0, \ldots,-1)$ and has radius 1. By the reflection principle (see [24]), we can also suppose that $U=0$ in the exterior neighborhood of S.

Now, let $\varepsilon>0$ small enough such that $U(x)=0$ when $|(x+1)|>1$ and $|x|<\varepsilon$. Set $f_{i}(x)=\eta(|x|) u_{i}(x)$ for each $i=1, \ldots, n$ where $\eta \in C_{0}^{\infty}([-\varepsilon, \varepsilon])$, $\eta(|x|)=1$ if $|x|<\varepsilon / 2$. For fixed ρ such that $0<\rho<\frac{\varepsilon}{2}$, let B_{ρ} the ball of radius ρ centered at zero. By the Carleman inequality, theorem 1 yields

$$
\begin{equation*}
\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{s} m\right)^{1 / s} \leq c\left\|\chi_{B_{\rho}} m\right\|_{F^{\alpha, p}}^{2 / s}\left(\int_{\mathbb{R}^{N}}\left|e^{\tau x_{N}} \Delta f_{i}\right|^{r} m^{1-r}\right)^{1 / r}, \quad \forall \tau>0 \tag{5}
\end{equation*}
$$

for $i=1, \ldots, n$. Inequality (5) implies

$$
\begin{align*}
\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{s} m\right)^{1 / s} \leq & c\left\|\chi_{B_{\rho}} m\right\|_{F^{\alpha, p}}^{2 / s}\left\{\left(\int_{\mathbb{R}^{N} \backslash B_{\rho}}\left|e^{\tau x_{N}} \Delta f_{i}\right|^{r} m^{1-r}\right)^{1 / r}\right. \\
& \left.+\left(\int_{B_{\rho}}\left|e^{\tau x_{n}} \Delta f_{i}\right|^{r} m^{1-r}\right)^{1 / r}\right\} \tag{6}
\end{align*}
$$

¿From (4), we have

$$
\begin{align*}
\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} \Delta f_{i}\right|^{r} m^{1-r}\right)^{1 / r} \leq & c \sum_{j=1}^{n}\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{j}\right|^{r} m^{1-r}\right)^{1 / r} \\
& +\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{r} m\right)^{1 / r} \tag{7}
\end{align*}
$$

for each $i=1, \ldots, n$. Using the Hölder's inequality, we obtain

$$
\begin{align*}
\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{r} m\right)^{1 / r} & =\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{r} m^{r / s} m^{1-r / s}\right)^{1 / r} \\
& \leq\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{s} m\right)^{1 / s}\left(\int_{B_{\rho}} m\right)^{\frac{1}{r}-\frac{1}{s}} \tag{8}
\end{align*}
$$

As $m \in F_{\text {loc }}^{\alpha, p}(X)$, it follows that

$$
\begin{equation*}
\int_{B_{\rho}} m \leq c \rho^{N-\alpha}\left\|\chi_{B_{\rho}} m\right\|_{F^{\alpha, p}} \tag{9}
\end{equation*}
$$

Indeed, if $m \in F_{\text {loc }}^{\alpha, p}(X)$ then

$$
\begin{aligned}
\int_{B_{\rho}} m & \leq\left(\int_{B_{\rho}} m^{p}\right)^{1 / p}\left|B_{\rho}\right|^{1-\frac{1}{p}} \\
& \leq\left|B_{\rho}\right|^{1-\alpha / N}\left(\left|B_{\rho}\right|^{\alpha / N}\left(\frac{1}{\left|B_{\rho}\right|} \int_{B_{\rho}} m^{p}\right)^{1 / p}\right) \\
& \leq c \rho^{N-\alpha}\left\|\chi_{B_{\rho}} m\right\|_{F^{\alpha, p}}
\end{aligned}
$$

It follows from (8) and (9) that

$$
\begin{align*}
\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{r} m\right)^{1 / r} & \leq c \rho^{(N-\alpha)\left(\frac{1}{r}-\frac{1}{s}\right)}\left\|\chi_{B_{\rho}} m\right\|_{F^{\alpha, p}}^{\frac{1}{r}-\frac{1}{s}}\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{s} m\right)^{1 / s}, \\
& \leq c \rho^{\frac{2(N-\alpha)}{N+1}}\left\|\chi_{B_{\rho}} m\right\|_{F^{\alpha, p}}^{\frac{1}{r}-\frac{1}{s}}\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{s} m\right)^{1 / s}, \tag{10}
\end{align*}
$$

for each $i=1, \ldots, n$.
We may assume without loss generality that $m \geq 1$, then

$$
\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{r} m^{1-r}\right)^{1 / r} \leq\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{r} m\right)^{1 / r} \quad \forall 1 \leq i \leq n
$$

¿From (10), we deduce

$$
\begin{equation*}
\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{r} m^{1-r}\right)^{1 / r} \leq c \rho^{\frac{2(N-\alpha)}{N+1}}\left\|\chi_{B_{\rho}} m\right\|_{F^{\alpha, p}}^{\frac{1}{r}-\frac{1}{s}}\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{s} m\right)^{1 / s} \tag{11}
\end{equation*}
$$

Therefore from (10) and (11), we have

$$
\begin{align*}
\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{s} m\right)^{1 / s} \leq & c\left\|\chi_{B_{\rho}} m\right\|_{F^{\alpha, p}}^{2 / s}\left(\int_{\mathbb{R}^{N} \backslash B_{\rho}}\left|e^{\tau x_{N}} \Delta f_{i}\right|^{r} m^{1-r}\right)^{1 / r} \\
& +c \rho^{\frac{2(N-\alpha)}{(N+1)}}\left\|\chi_{B_{\rho}} m\right\|_{F^{\alpha, p}} \sum_{j=1}^{n}\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{j}\right|^{s} m\right)^{1 / s} \\
& +c \rho^{\frac{2(N-\alpha)}{(N+1)}}\left\|\chi_{B_{\rho}} m\right\|_{F^{\alpha, p}}\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{s} m\right)^{1 / s}, \tag{12}
\end{align*}
$$

for each $i=1, \ldots, n$. Replacing α by $\frac{2}{N-1}$ in (12), we obtain

$$
\begin{aligned}
\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{s} m\right)^{1 / s} \leq & c\left\|\chi_{B_{\rho}} m\right\|_{F^{\alpha, p}}^{2 / s}\left(\int_{\mathbb{R}^{N} \backslash B_{\rho}}\left|e^{\tau x_{N}} \Delta f_{i}\right|^{r} m^{1-r}\right)^{1 / r} \\
& +c \rho^{\frac{2(N-2)}{(N-1)}}\left\|\chi_{B_{\rho}} m\right\|_{F^{\alpha, p}} \sum_{j=1}^{n}\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{j}\right|^{s} m\right)^{1 / s} \\
& +c \rho^{\frac{2(N-2)}{(N-1)}}\left\|\chi_{B_{\rho}} m\right\|_{F^{\alpha, p}}\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{s} m\right)^{1 / s}
\end{aligned}
$$

for each $=1, \ldots, n$. Let us choose ρ small enough, such that

$$
\left\|\chi_{B_{\rho}} m\right\|_{F^{\alpha, p}} \leq \frac{1}{2 n c}
$$

So for $i=1, \ldots, n$,

$$
\begin{aligned}
\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{s} m\right)^{1 / s} \leq & c\left(\int_{\mathbb{R}^{N} \backslash B_{\rho}}\left|e^{\tau x_{N}} \Delta f_{i}\right|^{r} m^{1-r}\right)^{1 / r} \\
& +\frac{1}{2 n} \sum_{j=1}^{n}\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{j}\right|^{s} m\right)^{1 / s} \\
& +\frac{1}{2 n}\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{s} m\right)^{1 / s},
\end{aligned}
$$

Since $f_{i}(x)=0$ for all $1 \leq i \leq n$ when $|(x+1)|>1$ or $|x|>\varepsilon$, we deduce that

$$
\frac{n-1}{2 n} \sum_{i=1}^{n}\left(\int_{B_{\rho}}\left|e^{\tau x_{N}} f_{i}\right|^{s} m\right)^{1 / s} \leq c e^{-\rho \tau} \sum_{i=1}^{n}\left(\int_{\mathbb{R}^{N} \backslash B_{\rho}}\left|\Delta f_{i}\right|^{r} m^{1-r}\right)^{1 / r}
$$

So

$$
\begin{equation*}
\frac{n-1}{2 n} \sum_{i=1}^{n}\left(\int_{B_{\rho}}\left|e^{\tau\left(\rho+x_{N}\right)} f_{i}\right|^{s} m\right)^{1 / s} \leq c \sum_{i=1}^{n}\left(\int_{\mathbb{R}^{N}}\left|\Delta f_{i}\right|^{r} m^{1-r}\right)^{1 / r} \tag{13}
\end{equation*}
$$

Taking $\tau \rightarrow+\infty$ in (13), we conclude that $U=0$ in B_{ρ}.

Proof of Theorem 2 We assume that $U \not \equiv 0$ on X. Let Ω be a maximal open set on which U vanishes and $\Omega \neq X$, then there exists a sphere S which its interior is contained in Ω, such that there exists $x \in \partial \Omega \cap S$. As U vanishes in one side of S, it follows that $x \in \Omega$, which is absurd.

3 The unique continuation property for linear elliptic systems in dimension $N=2$

In this section we prove the unique continuation property where $m \in L_{\log } L$ in lower dimension by using the zero of infinite order theory.

Definition 1 Let Ω be an open subset in \mathbb{R}^{N}. A function $U=\left(u_{1}, \ldots, u_{n}\right) \in$ $\left(L_{\text {loc }}^{2}(\Omega)\right)^{n}$ has a zero of infinite order at $x_{0} \in \Omega$, if for each $l \in \mathbb{N}$

$$
\lim _{R \rightarrow 0} R^{-l} \int_{\left|x-x_{0}\right|<R}|U(x)|^{2} d x=0
$$

Let us denote by ψ the N -function

$$
\psi(t)=(1+t) \log (1+t)-t, \quad t \geq 0
$$

and by L^{ψ} the corresponding Orlicz space (see [20]).

Theorem 3 Let Ω be a bounded open subset in \mathbb{R}^{2} and $m \in L_{\text {loc }}^{\psi}(\Omega)$. Let $U=\left(u_{1}, \ldots, u_{n}\right) \in\left(H_{\mathrm{loc}}^{1}(\Omega)\right)^{n}$ be a solution of the linear elliptic system

$$
\begin{equation*}
-\Delta u_{i}=\sum_{j=1}^{n} a_{i j} u_{j}+m(x) u_{i} \quad \text { in } \Omega ; \quad i=1, \ldots, n \tag{14}
\end{equation*}
$$

where the coefficients $a_{i j}(1 \leq i, j \leq n)$ are assumed to be constants satisfying $a_{i j}=a_{j i} \forall i, j$. If U vanishes on a set $E \subset \Omega$ of positive measure, then almost every point of E is a zero of infinite order for U.

The proof of this theorem is done in several lemmas.
Lemma 2 Let ω be a bounded open subset in \mathbb{R}^{2} and $m \in L^{\psi}(\omega)$. Then for any ε there exists $c_{\varepsilon}=c_{\varepsilon}(\omega, m)$ such that

$$
\begin{equation*}
\int_{\omega} m u^{2} \leq \varepsilon \int_{\omega}|\nabla u|^{2}+c_{\varepsilon} \int_{\omega} u^{2} \tag{15}
\end{equation*}
$$

for all $u \in H_{0}^{1}(\omega)$.
For a proof of this lemma, see [7].
Lemma 3 Let U be a solution of system (14), B_{r} and $B_{2 r}$ be two concentric balls contained in Ω. Then

$$
\begin{equation*}
\int_{B_{r}}|\nabla U|^{2} \leq \frac{c}{r^{2}} \int_{B_{2 r}}|U|^{2} \tag{16}
\end{equation*}
$$

where the constant c does not depend on r.
Proof. Let φ, with $\operatorname{supp} \varphi \subset B_{2 r}, \varphi(x)=1 \quad$ for $x \in B_{r} \quad$ and $\quad|\nabla \varphi| \leq \frac{2}{r}$. Using $\varphi^{2} U$ as test function in (14), we get

$$
\int_{\Omega}-\vec{\Delta} U \cdot\left(\varphi^{2} U\right)=\int_{\Omega} A U \cdot\left(\varphi^{2} U\right)+\int_{\Omega} m U \cdot\left(\varphi^{2} U\right)
$$

So

$$
\begin{equation*}
\int_{\Omega}|\nabla U|^{2} \varphi^{2}=\int_{\Omega}(A U . U) \varphi^{2}-2 \int_{\Omega}\langle\varphi \nabla U, \nabla \varphi U\rangle+\int_{\Omega} m \varphi^{2} U^{2} \tag{17}
\end{equation*}
$$

On the other hand, we have

$$
A U(x) \cdot U(x) \leq \rho(A) U(x) \cdot U(x) \quad \text { a.e. } x \in \Omega,
$$

where $\rho(A)$ is the largest eigenvalue of the matrix A. Using Schwartz and Young's inequalities, we have

$$
\begin{equation*}
2|\langle\varphi \nabla U, \nabla \varphi U\rangle| \leq \varepsilon|\varphi \nabla U|^{2}+\frac{|\nabla \varphi U|^{2}}{\varepsilon} \quad \text { for } \varepsilon>0 \tag{18}
\end{equation*}
$$

Thus, by lemma 2 , we have for any $\varepsilon>0$, there exists $c_{\varepsilon}=c_{\varepsilon}(\Omega, m)$ such that

$$
\begin{equation*}
\int_{\Omega} m|\varphi U|^{2} \leq \varepsilon \int_{\Omega}|\nabla(\varphi U)|^{2}+c_{\varepsilon} \int_{\Omega}|\varphi U|^{2} \tag{19}
\end{equation*}
$$

It follows from (17), (18) and (19) that

$$
\begin{aligned}
\int_{B_{2 r}} \varphi^{2}|\nabla U|^{2} \leq & \rho(A) \int_{B_{2 r}}|\varphi U|^{2}+\varepsilon \int_{B_{2 r}}|\nabla U|^{2} \varphi^{2}+\frac{1}{\varepsilon} \int_{B_{2 r}}|\nabla \varphi|^{2} U^{2} \\
& +\varepsilon \int_{B_{2 r}}|\nabla(\varphi U)|^{2}+c_{\varepsilon} \int_{B_{2 r}}|\varphi U|^{2},
\end{aligned}
$$

and therefore
$\left(1-\left(\varepsilon^{2}+2 \varepsilon\right)\right) \int_{B_{2 r}} \varphi^{2}|\nabla U|^{2} \leq\left(\varepsilon+1+\frac{1}{\varepsilon}\right) \int_{B_{2 r}}|(\nabla \varphi U)|^{2}+\left(\rho(A)+c_{\varepsilon}\right) \int_{B_{2 r}}|\varphi U|^{2}$.
Using the fact that $|\nabla \varphi| \leq \frac{2}{r},|\varphi| \leq \frac{c}{r}$ and $\varphi=1$ in B_{r}, we have immediately (16).

Remark 1 If U has a zero of infinite order at $x_{0} \in \Omega$, then ∇U has also a zero of infinite order at x_{0}.

Lemma $4([21])$ Let $u \in W^{1,1}\left(B_{r}\right)$, where B_{r} is the ball of radius r in \mathbb{R}^{N} and let $E=\left\{x \in B_{r}: u(x)=0\right\}$. Then there exists a constant β depending only on N such that

$$
\int_{D}|u| \leq \beta \frac{r^{N}}{|E|}|D|^{1 / N} \int_{B_{r}}|\nabla u|
$$

for all B_{r}, u as above and all measurable sets $D \subset B_{r}$.
Proof of Theorem 3. Let $U=\left(u_{1}, \ldots, u_{n}\right) \in\left(H_{\text {loc }}^{1}(\Omega)\right)^{n}$ be a solution of (14) which vanishes on a set E of positive measure. We know that almost every point of E is a point of density of E. Let x_{0} be such a point, i.e.

$$
\begin{equation*}
\frac{\left|E^{c} \cap B_{r}\right|}{\left|B_{r}\right|} \rightarrow 0 \quad \text { and } \quad \frac{\left|E \cap B_{r}\right|}{\left|B_{r}\right|} \rightarrow 1 \quad \text { as } r \rightarrow 0 \tag{20}
\end{equation*}
$$

where B_{r} is the ball of radius r centered at x_{0}. So, for a given $\varepsilon>0$ there exists $r_{0}=r_{0}(\varepsilon)>0$ such that for $r \leq r_{0}$

$$
\frac{\left|E^{c} \cap B_{r}\right|}{\left|B_{r}\right|}<\varepsilon \quad \text { and } \quad \frac{\left|E \cap B_{r}\right|}{\left|B_{r}\right|}>1-\varepsilon
$$

where E^{c} denotes the complement of E in Ω. Taking r_{0} smaller if necessary, we may assume that $\bar{B}_{2 r_{0}} \subset \Omega$. By lemma 4 we have

$$
\begin{aligned}
\int_{B_{r}}\left|u_{i}\right|^{2}=\int_{B_{r} \cap E^{c}}\left|u_{i}\right|^{2} & \leq \beta \frac{r^{2}}{\left|E \cap B_{r}\right|}\left|E^{c} \cap B_{r}\right|^{1 / 2} \int_{B_{r}}\left|\nabla\left(u_{i}\right)^{2}\right| \\
& \leq 2 \beta \frac{r^{2}}{\left|E \cap B_{r}\right|}\left|E^{c} \cap B_{r}\right|^{1 / 2} \int_{B_{r}}\left|u_{i}\right|\left|\nabla u_{i}\right|
\end{aligned}
$$

for each $i=1, \ldots, n$. The Hölder and Youngs's inequalities lead to

$$
\begin{align*}
\int_{B_{r}}\left|u_{i}\right|^{2} & \leq 2 \beta \frac{r^{2}}{\left|E \cap B_{r}\right|}\left|E^{c} \cap B_{r}\right|^{1 / 2}\left(\int_{B_{r}}\left|u_{i}\right|^{2}\right)^{1 / 2}\left(\int_{B_{r}}\left|\nabla u_{i}\right|^{2}\right)^{1 / 2} \\
& \leq \beta \frac{r^{2}}{\left|E \cap B_{r}\right|}\left|E^{c} \cap B_{r}\right|^{1 / 2}\left(\frac{1}{r} \int_{B_{r}} u_{i}^{2}+r \int_{B_{r}}\left|\nabla u_{i}\right|^{2}\right) \tag{21}
\end{align*}
$$

for each $i=1, \ldots, n$. We take the sum for $i=1$ to n, we obtain

$$
\int_{B_{r}}|U|^{2} \leq \beta \frac{r^{2}}{\left|E \cap B_{r}\right|}\left|E^{c} \cap B_{r}\right|^{1 / 2}\left(\frac{1}{r} \int_{B_{r}}|U|^{2}+r \int_{B_{r}}|\nabla U|^{2}\right)
$$

It follows from (16) and (20) that

$$
\begin{align*}
\int_{B_{r}}|U|^{2} & \leq \beta \frac{r^{2}\left|B_{r}\right|}{\left|B_{r}\right|^{1 / 2}\left|E \cap B_{r}\right|} \frac{\left|E^{c} \cap B_{r}\right|^{1 / 2}}{\left|B_{r}\right|^{1 / 2}}\left(\frac{1}{r} \int_{B_{2 r}}|U|^{2}+\frac{c}{r} \int_{B_{2 r}}|U|^{2}\right) \\
& \leq \beta \frac{c r}{\left|B_{r}\right|^{1 / 2}} \frac{\varepsilon^{1 / 2}}{1-\varepsilon} \int_{B_{2 r}}|U|^{2} \\
& \leq c \frac{\varepsilon^{1 / 2}}{1-\varepsilon} \int_{B_{2 r}}|U|^{2}, \quad \text { for } r \leq r_{0} \tag{22}
\end{align*}
$$

Set $f(r)=\int_{B_{r}}|U|^{2}$. Let us fix $n \in \mathbb{N}$, we have $\varepsilon>0$ such that $\frac{c \varepsilon^{1 / 2}}{1-\varepsilon}=2^{-n}$. Observe that now r_{0} depend on n. ¿From (22), we deduce that

$$
\begin{equation*}
f(r) \leq 2^{-n} f(2 r), \quad \text { for } r \leq r_{0} \tag{23}
\end{equation*}
$$

Iterating (23), we get

$$
\begin{equation*}
f(\rho) \leq 2^{-k n} f\left(2^{k} \rho\right) \quad \text { if } 2^{k-1} \rho \leq r_{0} \tag{24}
\end{equation*}
$$

Thus, given $0<r<r_{0}(n)$ and choosing $k \in \mathbb{N}$ such that

$$
2^{-k} r_{0} \leq r \leq 2^{-(k-1)} r_{0}
$$

¿From (24), we conclude that

$$
f(r) \leq 2^{-k n} f\left(2^{k} r\right) \leq 2^{-k n} f\left(2 r_{0}\right)
$$

and since $2^{-k} \leq \frac{r}{r_{0}}$, we get

$$
f(r) \leq\left(\frac{r}{r_{0}}\right)^{n} f\left(2 r_{0}\right)
$$

This shows that $f(r)=0\left(r^{n}\right)$ as $r \rightarrow 0$. Consequently x_{0} is a zero of infinite order for U.
Theorem 4 Let Ω be an open subset in \mathbb{R}^{2}. Assume that $U=\left(u_{1}, \ldots, u_{n}\right) \in$ $\left(H_{\mathrm{loc}}^{2}(\Omega)\right)^{n}$ has a zero of infinite order at $x_{0} \in \Omega$ and satisfies

$$
\begin{equation*}
\left|\Delta u_{i}(x)\right| \leq K \sum_{j=1}^{n}\left|u_{j}(x)\right|+m(x)\left|u_{i}(x)\right| \quad \text { a.e. } x \in \Omega, 1 \leq i \leq n \tag{25}
\end{equation*}
$$

where m is a positive function belong to a class of $L_{\log } L_{\operatorname{loc}}(\Omega)$. Then U is identically null in Ω.

Proof. The technique used here is due to S. Chanillo and E. Sawyer (see [9]), we may assume that $m \geq 1$. Since $m+1$ also satisfy the hypotheses of theorem 4 when $m \in L_{\log } L_{\mathrm{loc}}\left(\mathbb{R}^{N}\right)$, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left|I_{1} f\right|^{2} m \leq c\|m\| \int_{\mathbb{R}^{2}} f^{2} \quad \forall f \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right) \tag{26}
\end{equation*}
$$

(cf. $[13,25]$), where $I_{\alpha} f$ denotes the Riesz potential of order $0<\alpha<n$, defined by

$$
I_{\alpha}(x)=\int_{\mathbb{R}^{N}}|x-y|^{-n+\alpha} f(y) d y
$$

where one posed to simplify $\|m\|=\|m\|_{L_{\log } L}$. The inequality (26) is equivalent to the dual inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}\left|I_{2} f\right|^{2} m \leq c\|m\|^{2} \int_{\mathbb{R}^{2}}|f|^{2} m^{-1} \quad \forall f \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right) \tag{27}
\end{equation*}
$$

(cf. [14]) where $I_{2} f=\phi_{2} * f$ denotes the Newton Potential with ϕ_{2} is the elementary solution of $-\Delta$. On the other hand, from the result of E.Sawyer (cf. [23]), if

$$
\phi_{2}(x)=\frac{1}{2 \pi} \log |x|,
$$

then

$$
\begin{equation*}
\left.\left|\phi_{2}(x-y)-\sum_{j=0}^{l-1} \frac{1}{j!}\left(\frac{\partial}{\partial s}\right)^{j} \phi_{2}(s x-y)\right|_{s=0} \right\rvert\, \leq c\left(\frac{|x|}{|y|}\right)^{l} \phi_{2}(x-y) \quad \forall l \in \mathbb{N} . \tag{28}
\end{equation*}
$$

The constant c does not depend on l, x and y. Let $U=\left(u_{1}, \ldots, u_{n}\right)$ be a solution of (25) and has a zero of infinite order at $x_{0} \in \Omega$. We may suppose without loss generality that $0 \in \Omega$ and $x_{0}=0$. Let also η and ψ be two functions such that $\eta \in C_{0}^{\infty}\left(B_{2 r}\right), \eta=1$ on B_{r} and $\psi=0$ on $B_{1}, \psi=1 \quad$ outside B_{2} and $0 \leq \psi \leq 1$. Set $\psi_{k}(x)=\psi(k x), k \geq 0$. We also assume that $k \geq 4 / r$ and $r<1 / 2$. Then by
$(27,28)$ and $[16$, Theoremm 4.3], for $l \geq 1$ we have

$$
\begin{align*}
\int_{B_{r}} & \frac{\left|\psi_{k}(x) u_{i}(x)\right|}{|x|^{2 l}} m(x) d x \tag{29}\\
= & \int_{B_{r}}|x|^{-2 l}\left|\int \phi_{2}(x-y) \Delta\left(\eta \psi_{k} u_{i}\right) d y\right|^{2} m(x) d x \\
= & \int_{B_{r}}|x|^{-2 l}\left|\int\left(\phi_{2}(x-y)-\left.\sum_{j=0}^{l-1} \frac{1}{j!}\left(\frac{\partial}{\partial s}\right)^{j} \phi_{2}(s x-y)\right|_{s=0}\right) \Delta\left(\eta \psi_{k} u_{i}\right) d y\right|^{2} m d x \\
\leq & c \int_{B_{r}}\left(\frac{\int \phi_{2}(x-y)\left|\Delta\left(\psi_{k} \eta u_{i}\right)\right|}{|y|^{l}}\right)^{2} m(x) d x \\
\leq & c \int_{B_{r}}\left|I_{2}\left(\frac{\Delta\left(\psi_{k} \eta u_{i}\right)}{|y|^{l}}\right)\right|^{2} m(x) d x \\
\leq & c\left\|\chi_{B_{r}} m\right\|^{2} \int_{B_{2 r}} \frac{\left|\Delta\left(\psi_{k} \eta u_{i}\right)\right|^{2}}{|x|^{2 l}} m^{-1}(x) d x \\
\leq & c\left\|\chi_{B_{r}} m\right\|^{2}\left(\int_{B_{2 r}} \frac{\left|\Delta \psi_{k}\right|^{2} u_{i}^{2}}{|x|^{2 l}} m^{-1}(x) d x+\int_{B_{2 r}} \frac{\left|\nabla \psi_{k}\right|^{2}\left|\nabla u_{i}\right|^{2}}{|x|^{2 l}} m^{-1}(x) d x\right. \\
& \left.\left.+\int_{B_{r}} \frac{\left|\psi_{k}\right|^{2}\left|\Delta\left(\eta u_{i}\right)\right|^{2}}{|x|^{2 l}} m^{-1} d x\right)+\int_{|x|>r} \frac{\left|\psi_{k}\right|^{2}\left|\Delta\left(\eta u_{i}\right)\right|^{2}}{|x|^{2 l}} m^{-1} d x\right) \\
= & c\left\|\chi_{B_{r}} m\right\|^{2}\left(I_{k}^{i}+I I_{k}^{i}+I I I_{k}^{i}+I V_{k}^{i}\right), \tag{30}
\end{align*}
$$

for each $i=1, \ldots, n$. Choosing $c\left\|\chi_{B_{r}} m\right\|^{2}<\frac{1}{2 n}$ (this is possible since the measure $L_{\log } L$ is absolutely continuous) it follows that

$$
\begin{aligned}
I I I_{k}^{i} & \leq \frac{1}{2 n} \int_{|x|<r} \frac{\left|\psi_{k}\right|^{2}\left|\Delta u_{i}\right|^{2}}{|x|^{2 l}} m^{-1}(x) d x \\
& \leq \frac{1}{2 n}\left(\sum_{j=1}^{n} \int_{|x|<r} \frac{\left|\psi_{k}\right|^{2}\left|u_{j}\right|^{2}}{|x|^{2 l}} m^{-1}(x) d x+\int_{|x|<r} \frac{\left|\psi_{k}\right|^{2}\left|u_{i}\right|^{2}}{|x|^{2 l}} m(x) d x\right) .
\end{aligned}
$$

We have

$$
\int_{|x|<r} \frac{\left|\psi_{k}\right|^{2}\left|u_{j}\right|^{2}}{|x|^{2 l}} m^{-1}(x) d x \leq \int_{|x|<r} \frac{\left|\psi_{k}\right|^{2}\left|u_{j}\right|^{2}}{|x|^{2 l}} m(x) d x \quad \text { whenever } m \geq 1
$$

So

$$
\begin{equation*}
I I I_{k}^{i} \leq \frac{1}{2 n}\left(\sum_{j=1}^{n} \int_{|x|<r} \frac{\left|\psi_{k}\right|\left|u_{j}\right|^{2}}{|x|^{2 l}} m(x) d x+\int_{|x|<r} \frac{\left|\psi_{k}\right|^{2}\left|u_{i}\right|^{2}}{|x|^{2 l}} m(x) d x\right) \tag{31}
\end{equation*}
$$

As $U=\left(u_{1}, \ldots, u_{n}\right)$ is a solution of (25), from (29) and (31), we conclude that

$$
\begin{equation*}
\left(1-\frac{1}{2 n}\right) \int_{B_{r}} \frac{\left|\psi_{k}\right|^{2}\left|u_{i}\right|^{2}}{|x|^{2 l}} m(x) d x-\frac{1}{2 n} \sum_{j=1}^{n} \int_{B_{r}} \frac{\left|\psi_{k}\right|^{2}\left|u_{j}\right|^{2}}{|x|^{2 l}} m(x) d x \leq I_{k}^{i}+I I_{k}^{i} . \tag{32}
\end{equation*}
$$

On the other hand, we have

$$
I_{k}^{i} \leq \int_{\frac{1}{k} \leq|x| \leq \frac{2}{k}} \frac{\left|\psi_{k}\right|^{2}\left|u_{i}\right|^{2}}{|x|^{2 l}} m^{-1}(x) d x \leq c k^{2 l+4} \int_{|x| \leq \frac{2}{k}}\left|u_{i}\right|^{2} d x
$$

for each $i=1, \ldots, n$. Hence $\lim _{k \rightarrow+\infty} I_{k}^{i}=0 \quad \forall 1 \leq i \leq n$, since U has a zero of infinite order at 0 by hypothesis. On the other side

$$
I I_{k}^{i} \leq c k^{2 l+2} \int_{|x| \leq \frac{2}{k}}\left|\nabla u_{i}\right|^{2} d x
$$

By Remark 1, it follows that $\lim _{k \rightarrow+\infty} I I_{k}^{i}=0 \quad \forall 1 \leq i \leq n$. The sum from $i=1$ to n in the inequality (32), yields

$$
\frac{n-1}{2 n} \sum_{i=1}^{n} \int_{B_{r}} \frac{\left|\psi_{k} u_{i}\right|^{2}}{|x|^{2 l}} m(x) d x \leq \sum_{i=1}^{n}\left(I_{k}^{i}+I I_{k}^{i}+I V_{k}^{i}\right)
$$

So that

$$
\begin{equation*}
\int_{|x|<r}\left|\psi_{k} U\right|^{2} m \leq r^{2 l} \int_{B_{r}} \frac{\left|\psi_{k} U\right|^{2}}{|x|^{2 l}} \leq \frac{2 n}{n-1} r^{2 l} \sum_{i=1}^{n}\left(I_{k}^{i}+I I_{k}^{i}+I V_{k}^{i}\right) \tag{33}
\end{equation*}
$$

Taking the limit as k and $l \rightarrow+\infty$ in (33), we conclude that $U=0$ on B_{r}.
Remark 2 In the following sections we take m in \mathcal{M} which is obviously a subspace of $F^{\alpha, p}$ and $L_{\log } L$. Also for those bounded potential we can use the Carleman inequality of N. Arnsajn [5].

4 Strict monotonicity of eigenvalues for linear elliptic systems

In this section we study the strict monotonicity of eigenvalues for the linear elliptic system

$$
\begin{align*}
-\Delta u_{i} & =\sum_{j=1}^{n} a_{i j} u_{j}+\mu m(x) u_{i} \quad \text { in } \Omega, \tag{34}\\
u_{i} & =0 \quad \text { on } \partial \Omega, i=1, \ldots, n
\end{align*}
$$

We will assume that

$$
\begin{equation*}
\lambda_{1}>\rho(A) \tag{35}
\end{equation*}
$$

where $\rho(A)$ is the largest eigenvalue of the matrix A and λ_{1} the smallest eigenvalue of $-\Delta$.

As it is well Known [1, 17, 10, 2], that the eigenvalues in (34) form a sequence of positive eigenvalues, which can be written as

$$
\mu_{1}(m)<\mu_{2}(m) \leq \ldots
$$

Here we use the symbol \supsetneqq to indicate inequality a.e. with strict inequality on a set of positive measure.

Proposition 1 Let m_{1} and m_{2} be two weights of M with $m_{1} \supsetneqq m_{2}$ and let $j \in \mathbb{N}$. If the eigenfunctions associated to $\mu_{j}\left(m_{1}\right)$ enjoy the unique continuation property, then $\mu_{j}\left(m_{1}\right)>\mu_{j}\left(m_{2}\right)$.

Proof. We proceed by the similar arguments which has been developed by D.G. de Figueiredo and J.P. Gossez [12]. $\mu_{j}\left(m_{1}\right)$ is given by the variational characterization

$$
\begin{equation*}
\frac{1}{\mu_{j}\left(m_{1}\right)}=\sup _{F_{j}} \inf \left\{\int_{\Omega} m_{1}|U|^{2} d x ; U \in F_{j} \quad \text { and } \mathcal{L}(U, U)=1\right\} \tag{36}
\end{equation*}
$$

where $\mathcal{L}(U, U)=\int_{\Omega}|\nabla U|^{2}-\int_{\Omega} A U . U d x$ and F_{j} varies over all j-dimensional subspace of $\left(H_{0}^{1}(\Omega)\right)^{n}$ (cf. [1, 17, 10]). Since the extrema in (36) are achieved [11], there exists $F_{j} \subset\left(H_{0}^{1}(\Omega)\right)^{n}$ of dimension j such that

$$
\begin{equation*}
\frac{1}{\mu_{j}\left(m_{1}\right)}=\inf \left\{\int_{\Omega} m_{1}|U|^{2} d x ; U \in F_{j} \quad \text { and } \quad \mathcal{L}(U, U)=1\right\} . \tag{37}
\end{equation*}
$$

Pick $U \in F_{j}$ with $\mathcal{L}(U, U)=1$. Either U achieves tits infimum in (37) or not. In the first case, U is an eigenfunction associated to $\mu_{j}\left(m_{1}\right)$ (cf. [11]), and so, by the unique continuation property

$$
\frac{1}{\mu_{j}\left(m_{1}\right)}=\int_{\Omega} m_{1}|U|^{2}<\int_{\Omega} m_{2}|U|^{2} .
$$

In the second case

$$
\frac{1}{\mu_{j}\left(m_{1}\right)}<\int_{\Omega} m_{1}|U|^{2} \leq \int_{\Omega} m_{2}|U|^{2} .
$$

Thus, in any case

$$
\frac{1}{\mu_{j}\left(m_{1}\right)}<\int_{\Omega} m_{2}|U|^{2}
$$

It follows, by a simple compactness argument that

$$
\frac{1}{\mu_{j}\left(m_{1}\right)}<\inf \left\{\int_{\Omega} m_{2}|U|^{2} ; U \in F_{j} \text { and } \mathcal{L}(U, U)=1\right\}
$$

This yields the desired inequality

$$
\frac{1}{\mu_{j}\left(m_{1}\right)}<\frac{1}{\mu_{j}\left(m_{2}\right)}
$$

5 Spectrum for linear elliptic systems

First order spectrum

Theorem 5 a) $\Lambda_{n}(., A, m): \mathbb{R}^{N} \rightarrow \mathbb{R}$ is the positive function characterized in a variational form by

$$
\frac{1}{\Lambda_{n}(\beta, A, m)}=\sup _{F_{n} \in \mathcal{F}_{n}\left(\left(H_{0}^{1}(\Omega)\right)^{n}\right)} \min \left\{\int_{\Omega} e^{\beta \cdot x} m(x)|U|^{2} d x, U \in F_{n} \cap S_{\beta}(A)\right\}
$$

for all $\beta \in \mathbb{R}^{N}$, with

$$
S_{\beta}(A)=\left\{U \in\left(H_{0}^{1}(\Omega)\right)^{n}:\|U\|_{1,2, \beta}^{2}-\int_{\Omega} e^{\beta \cdot x} A U \cdot U d x=1\right\}
$$

and $\mathcal{F}_{n}\left(\left(H_{0}^{1}(\Omega)\right)^{n}\right)$ is the set of n-dimensional subspaces of $\left(H_{0}^{1}(\Omega)\right)^{n}$.
b) For all $U \in\left(H_{0}^{1}(\Omega)\right)^{n}$,

$$
\Lambda_{1}(\beta, A, m) \int_{\Omega} e^{\beta \cdot x} m(x)|U|^{2} d x \leq\|U\|_{1,2, \beta}^{2}-\int_{\Omega} e^{\beta \cdot x} A U \cdot U d x
$$

c) For all $\beta \in \mathbb{R}^{N}, \lim _{n \rightarrow+\infty} \Lambda_{n}(\beta, A, m)=+\infty$.

For the proof of this theorem see [2].

Strict monotonicity of eigensurfaces for linear elliptic systems

By theorem 5 it seems that the following result may be proved by arguments similar to those in proposition 1 (see section 4).

Proposition 2 Let $m_{1}, m_{2} \in M$, if $m_{1} \supsetneqq m_{2}$ then $\Lambda_{j}\left(\beta, A, m_{1}\right)>\Lambda_{j}\left(\beta, A, m_{2}\right)$ for all $j \in \mathbb{N}^{*}$.

6 Nonresonance between consecutives eigensurfaces

In this section, we study the existence of solutions for the quasilinear elliptic system

$$
\begin{gather*}
-\vec{\Delta} U=A U+F(x, U, \nabla U) \quad \text { in } \Omega \\
U=0 \quad \text { on } \partial \Omega . \tag{38}
\end{gather*}
$$

Let us consider the situation where the nonlinearity F is asymptotically between two consecutive eigensurfaces in the following sense: we assume that there exists $\alpha_{1}<\alpha_{2} \in \mathbb{R}, \beta \in \mathbb{R}^{N}$ and for all $\delta>0$ there exist $a_{\delta} \in L^{2}(\Omega)$ such that

$$
\begin{align*}
\alpha_{1}|s|^{2}+(\beta \xi) \cdot s-\delta\left(|\xi|^{2}+a_{\delta}(x)\right)|s| & \leq s . F(x, s, \xi) \tag{39}\\
& \leq \alpha_{2}|s|^{2}+(\beta \xi) \cdot s+\delta\left(|\xi|^{2}+a_{\delta}(x)\right)|s|
\end{align*}
$$

a.e. $\in \Omega$ and for all $(\xi, s) \in \mathbb{R}^{2 N} \times \mathbb{R}^{2}$.

A function U in $\left(H_{0}^{1}(\Omega)\right)^{n}$ is said to be a solution of (38) if U satisfies (38) in the sense of distributions. With this definition, we state the main result of this section.

Theorem 6 Let (39) be satisfied with $\Lambda_{k}(\beta, A, 1)<\alpha_{1}<\alpha_{2}<\Lambda_{k+1}(\beta, A, 1)$ for some $k \geq 1$, then (38) admits a solution.

Remark 3 It is clear that by (39) there exist $b_{1}>0$ such that for all $\delta>0$ there exists $a_{\delta} \in L^{2}(\Omega)$ such that

$$
\begin{equation*}
|F(x, s, \xi)-(\beta \xi)| \leq b_{1}|s|+\delta b_{1}\left(|\xi|+a_{\delta}(x)\right) \tag{40}
\end{equation*}
$$

a.e. $x \in \Omega$ and for all $(\xi, s) \in \mathbb{R}^{2 N} \times \mathbb{R}^{2}$.

Proof of Theorem 6 Let $\left(T_{t}\right)_{t \in[0,1]}$ be a family of operators from $\left(H_{0}^{1}(\Omega)\right)^{n}$ to $\left(H^{-1}(\Omega)\right)^{n}$:

$$
T_{t}(U)=-\vec{\Delta}^{\beta}(U)-e^{\beta \cdot x}(t(F(x, U, \nabla U)+(1-t) \alpha U-t(\beta \nabla U))
$$

where $\alpha_{1}<\alpha<\alpha_{2}$. Since F verifies (39), the operator T_{t} is of the type (S_{+}). Now, we show the a priori estimate:

$$
\exists r>0 \text { such that } \forall t \in[0,1], \forall U \in(\partial B(0, r))^{n}, \text { we have } T_{t}(U) \neq 0
$$

We proceed by contradiction, if the a priori estimate is not true, then $\forall n \in \mathbb{N}, \exists t_{n} \in[0,1], \exists U_{n} \in(\partial B(0, n))^{n}\left(\left\|U_{n}\right\|_{1,2}=n\right)$, such that $T_{t_{n}}\left(U_{n}\right)=0$, so that

$$
\begin{equation*}
-\vec{\Delta}^{\beta}\left(U_{n}\right)=e^{\beta \cdot x}\left(t_{n} F\left(x, U_{n}, \nabla U_{n}\right)+\left(1-t_{n}\right) \alpha U_{n}-t_{n}\left(\beta \nabla U_{n}\right)\right) \tag{41}
\end{equation*}
$$

Set $V_{n}=\frac{U_{n}}{\left\|U_{n}\right\|_{1,2}}$, the sequence $\left(V_{n}\right)$ is bounded in $\left(H_{0}^{1}(\Omega)\right)^{n}$. Therefore, there exists a subsequence of $\left(V_{n}\right)$ (also noted $\left(V_{n}\right)$) such that: $V_{n} \rightharpoonup V$ in $\left(H_{0}^{1}(\Omega)\right)^{n}$, $V_{n} \rightarrow V$ in $\left(L^{q}(\Omega)\right)^{n}$ for all $q \in\left[1,2^{*}\left[\right.\right.$, with $2^{*}=\frac{2 N}{N-2}$. Then we proceed in several steps.

Step 1: The sequence of functions defined a.e. $x \in \Omega$ by

$$
G_{n}(x)=\frac{F\left(x, U_{n}, \nabla U_{n}\right)}{\left\|U_{n}\right\|_{1,2}}-\left(\beta \nabla V_{n}\right)
$$

is bounded in $\left(L^{2}(\Omega)\right)^{n}$.
To prove this statement we divide (40) by $\left\|U_{n}\right\|_{1,2}$. Then

$$
\left|G_{n}(x)\right| \leq b_{1}\left|V_{n}\right|+\delta b_{1}\left(\left|\nabla V_{n}\right|+\frac{a_{\delta}(x)}{n}\right)
$$

and

$$
\begin{aligned}
\left\|G_{n}\right\| & \leq b_{1}\left\|V_{n}\right\|_{2}+\delta b_{1}\left(\left\|V_{n}\right\|_{1,2}+\frac{\left\|a_{\delta}\right\|_{2}}{n}\right) \\
& \leq \frac{b_{1}}{\left(\lambda_{1}\right)^{1 / 2}}+\delta b_{1}\left(1+\frac{\left\|a_{\delta}\right\|_{2}}{n}\right)
\end{aligned}
$$

which proves step 1 .
Since $\left(L^{2}(\Omega)\right)^{n}$ is a reflexive space, there exists a subsequence of $\left(G_{n}\right)$, also denoted by $\left(G_{n}\right)$, and $\tilde{F} \in\left(L^{2}(\Omega)\right)^{n}$ such that

$$
\begin{equation*}
G_{n} \rightharpoonup \tilde{F} \quad \text { in }\left(L^{2}(\Omega)\right)^{n} \tag{42}
\end{equation*}
$$

Step 2. $\tilde{F}(x)=0$ a.e. in $\mathcal{A}:=\{x \in \Omega: V(x)=0$ a.e. $\}$
To prove this statement, we define $\phi(x)=\operatorname{sgn}(\tilde{F}(x)) \chi_{\mathcal{A}}$. By (40), we have

$$
\left|G_{n}(x) \phi(x)\right| \leq b_{1}\left(\left|V_{n}\right|+\delta\left(\left|\nabla V_{n}\right|+\frac{a_{\delta}(x)}{n}\right)\right) \chi_{\mathcal{A}}(x)
$$

and

$$
\left\|G_{n} \phi\right\|_{2} \leq a\left(\left\|V_{n} \chi_{A}\right\|_{2}+\delta\left(1+\frac{\left\|a_{\delta} \chi_{A}\right\|_{2}}{n}\right)\right)
$$

Since $V_{n} \rightarrow V$ in $\left(L^{2}(\Omega)\right)^{n}$, we have $V_{n} \chi_{\mathcal{A}} \rightarrow 0$ in $\left(L^{2}(\Omega)\right)^{n}$. Passing to the limit, we obtain

$$
\limsup \left\|G_{n} \phi\right\|_{2} \leq \delta b_{1}
$$

As δ is arbitrary, it follows that

$$
G_{n} \phi \rightarrow 0 \quad \text { in }\left(L^{2}(\Omega)\right)^{n}
$$

On the other hand, (42) implies

$$
\int_{\Omega} G_{n} \cdot \phi \rightarrow \int_{\Omega} \tilde{F} \cdot \phi=\int_{\Omega}|\tilde{F}(x)| \chi_{\mathcal{A}}(x) .
$$

So $\int_{\mathcal{A}}|\tilde{F}(x)|=0$, which completes the proof of step 2 .
Now, we define the function

$$
D(x)= \begin{cases}\frac{\tilde{F}(x) \cdot V(x)}{|V(x)|^{2}} & \text { a.e. } x \in \Omega \backslash \mathcal{A} \\ \alpha & \text { a.e. } x \in \mathcal{A}\end{cases}
$$

Step 3. $\quad \alpha_{1} \leq D(x) \leq \alpha_{2}$ a.e. $x \in \Omega$.
First, we prove that $\alpha_{1} \leq \frac{\tilde{F}(x) \cdot V(x)}{|V(x)|^{2}}$ a.e. $x \in \Omega \backslash \mathcal{A}$. then analogously we prove that $\frac{\tilde{F}(x) . V(x)}{|V(x)|^{2}} \leq \alpha_{2}$ a.e. $\left.x \in \Omega \backslash \mathcal{A}\right)$.

Set $B=\left\{x \in \Omega \backslash \mathcal{A}: \alpha_{1}|V(x)|^{2}>\tilde{F}(x) . V(x)\right.$ a.e. $\}$. It is sufficient to show that meas $B=0$. Indeed, the assumption (39) yields

$$
\begin{equation*}
\alpha_{1}\left|U_{n}\right|^{2}-\delta\left(\left|\nabla U_{n}\right|+a_{\delta}(x)\right)\left|U_{n}\right| \leq U_{n} \cdot F\left(x, U_{n}, \nabla U_{n}\right)-\left(\beta \nabla U_{n}\right) \cdot U_{n}, \tag{43}
\end{equation*}
$$

dividing by $\left\|U_{n}\right\|_{1.2}^{2}$, we obtain

$$
\alpha_{1}\left|V_{n}\right|^{2}-\delta\left(\left|\nabla V_{n}\right|+\frac{a_{\delta}(x)}{n}\right)\left|V_{n}\right| \leq V_{n} \cdot G_{n}(x)
$$

Multiplying (43) by χ_{B} and integrating over Ω, we have

$$
\begin{aligned}
& \alpha_{1} \int_{\Omega}\left|V_{n}\right|^{2} \chi_{B} \\
& \quad \leq \delta \int_{\Omega}\left(\left|\nabla V_{n}\right|+\frac{a_{\delta}(x)}{n}\right)\left|V_{n}\right| \chi_{B}+\int_{\Omega} V_{n} \cdot G_{n}(x) \chi_{B} \\
& \quad \leq \int_{\Omega} V_{n} \cdot G_{n} \chi_{B}+\delta\left(\left(\int_{\Omega}\left|\nabla V_{n}\right|^{2}\right)^{1 / 2}\left(\int_{\Omega}\left|V_{n}\right|^{2}\right)^{1 / 2}+\frac{\left\|a_{\delta}\right\|_{2}}{n}\left\|V_{n}\right\|_{2}\right) \\
& \quad \leq \int_{\Omega} V_{n} \cdot G_{n}(x) \chi_{B}+\delta\left(\frac{1}{\lambda_{1}^{1 / 2}}+\frac{\left\|a_{\delta}\right\|_{2}}{n \lambda_{1}^{1 / 2}}\right) .
\end{aligned}
$$

Passing to the limit (Knowing that $G_{n} \rightharpoonup \tilde{F}$ and $V_{n} \rightarrow V$ in $\left.\left(L^{2}(\Omega)\right)^{n}\right)$, we get

$$
\alpha_{1} \int_{\Omega}|V(x)|^{2} \chi_{B} \leq \int_{\Omega} V(x) \cdot \tilde{F}(x) \chi_{B}+\frac{\delta}{\lambda_{1}^{1 / 2}}
$$

for all $\delta>0$. Then

$$
\int_{\Omega}\left(V(x) \cdot \tilde{F}(x)-\alpha_{1}|V(x)|^{2}\right) \chi_{B} d x \geq 0
$$

Finally, by the definition of B, we deduce that meas $B=0$, and the proof of step 3 concludes.

It is clear that we can suppose that $t_{n} \rightarrow t$. Set $m(x)=t D(x)+(1-t) \alpha$.

Step 4. 1) The function V is a solution of

$$
\begin{gathered}
-\vec{\Delta}^{\beta} U=e^{\beta \cdot x} A U+e^{\beta \cdot x} m(x) U \quad \text { in } \Omega \\
U=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

2) $\quad \alpha_{1} \leq m(x) \leq \alpha_{2}$ a.e. $x \in \Omega$.

To prove 1), we dividing (41) by $n=\left\|U_{n}\right\|_{1,2}$. Then

$$
\begin{equation*}
-\vec{\Delta}^{\beta} V_{n}=e^{\beta . x} A V_{n}+e^{\beta . x}\left(t_{n} G_{n}(x)+\left(1-t_{n}\right) \alpha V_{n}\right) \tag{44}
\end{equation*}
$$

Since $V_{n} \rightharpoonup V$ in $\left(H_{0}^{1}(\Omega)\right)^{n}$,

$$
\int_{\Omega} e^{\beta \cdot x} \nabla V_{n} . \nabla \Phi \rightarrow \int_{\Omega} e^{\beta \cdot x} \nabla V . \nabla \Phi \quad \text { for all } \Phi \in\left(H_{0}^{1}(\Omega)\right)^{n} .
$$

On the other hand, multiplying (44) by $\Phi \in\left(H_{0}^{1}(\Omega)\right)^{n}$, as $n \rightarrow+\infty$ we obtain

$$
\begin{aligned}
\int_{\Omega} e^{\beta \cdot x} \nabla V \cdot \nabla \Phi & =\int_{\Omega} A V \cdot \Phi+\int_{\Omega} e^{\beta \cdot x}(t \tilde{F}(x)+(1-t) \alpha V(x)) \cdot \Phi \\
& =\int_{\Omega} e^{\beta \cdot x} A V \cdot \Phi+\int_{\Omega} e^{\beta \cdot x}\left(t \frac{\tilde{F}(x) \cdot V(x)}{|V(x)|^{2}}+(1-t) \alpha\right) V(x) \cdot \Phi \\
& =\int_{\Omega} e^{\beta \cdot x} A V \cdot \Phi+\int_{\Omega} e^{\beta \cdot x}(t D(x)+(1-t) \alpha) V(x) \cdot \Phi
\end{aligned}
$$

From the second step and the definition of $D(x)$ it follows that

$$
-\vec{\Delta}^{\beta} V=e^{\beta \cdot x} A V+e^{\beta . x} m(x) V \quad \text { in }\left(H^{-1}(\Omega)\right)^{n}
$$

Then assertion 1) follows.
To prove 2), we combine the result of step 3 and the fact that $\alpha_{1}<\alpha<\alpha_{2}$.

Step 5. $V \not \equiv 0$.
To prove this statement, we multiplying (44) by V_{n}. Then

$$
\int_{\Omega} e^{\beta \cdot x}\left(t_{n} G_{n}(x) \cdot V_{n}+\left(1-t_{n}\right) \alpha\left|V_{n}\right|^{2}\right)+\int_{\Omega} e^{\beta \cdot x} A V_{n} \cdot V_{n}=\int_{\Omega} e^{\beta \cdot x}\left|\nabla V_{n}\right|^{2} \geq M
$$

where $M=\min _{\bar{\Omega}} e^{\beta . x}>0$. Passing to the limit, we get

$$
\int_{\Omega} e^{\beta \cdot x}\left(t \tilde{F}(x)+(1-t) \alpha|V(x)|^{2}\right)+\int_{\Omega} e^{\beta \cdot x} A V \cdot V \geq M>0 .
$$

This which completes the proof of step 5 .
Finally, from the step 4 and step 5 , we conclude that $(\beta, 1)$ is a first order eigenvalue of the problem, with

$$
\Lambda_{k}(\beta, A, 1)<\alpha_{1} \leq m(x) \leq \alpha_{2}<\Lambda_{k+1}(\beta, A, 1)
$$

By the strict monotonicity with respect to weight (see proposition 2.), we have

$$
\Lambda_{k}(\beta, A, m)<1<\Lambda_{k+1}(\beta, A, m)
$$

which is absurd, and present proof is complete.

References

[1] W. Allegretto, Sturmian theorems for second order systems, Proc. A.M.S., 94, (1985), 291-296.
[2] A. Anane, O. Chakrone and Z. El Allali, First order spectrum for elliptic system and nonresonance problem, Numerical Algorithms 21 (1999) 9-21.
[3] A. Anane, O. Chakrone and J. P. Gossez, Spectre d'ordre supérieur et problème de non-résonance, C.R. Acad. Sci. Paris t.325, Série I, (1997), 33-36.
[4] A. Anane, O. Chakrone and J. P. Gossez, Spectre d'ordre supérieur et problème aux limites quasi-linéaires, to appear.
[5] N. Aronsajn, A unique continuation theorem for solution of elliptic differential equations or inequalities of second order, J. Math. Pure Appl. 36(1957), 235-249.
[6] J. Berkovits and V. Mustonen, Nonlinear mapping of monotone type (classification and degree theory), 1988, Math. Univer. Oulu, Linnamaa, Oulu, Finland.
[7] H. Brézis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures et Appl. 58, 137-151 (1979).
[8] D. G. Costa and C. A. Magalhães, A variational approach to noncooperative elliptic system, Nonlinear Analysis, T.M.A., Vol.25, No7 (1995), 699-715.
[9] S. Chanillo and E. Sawyer, Unique continuation for $\Delta+V$ and the C.Fefferman-Phong class, Trans. Amer. Math. Soc., 318 (1) (1990), 275300.
[10] R. S. Cantrell and K. Schmitt, On the eigenvalue problem for elliptic systems, SIAM J. Math.Anal.17, (1986), 850-862.
[11] D. G. de Figueiredo, Positive solutions of semilinear elliptic equations, Lectures Notes in Mathematics 957, 34-87 (1982).
[12] D. G. de Figueiredo and J. P. Gossez, Strict monotonocity of eigenvalues and unique continuation, Comm. P.D.E. 17 (1992), 339-346.
[13] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206.
[14] G. B. Folland, Introduction to partial differential equations, Princeton Univ. Press, Princeton, N.J., (1976).
[15] N. Garofalo and F. H. Lin, Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math. XL, (1987) 347366.
[16] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equatinos of second order, Springer (1977).
[17] P. Hess, On the eigenvalue problem for weakly coupled elliptic systems, Arch. Rat. Mech. Anal., 81, (1983), 151-159.
[18] D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. 121 (1985), 463-494.
[19] C. E. Kenig, Restriction theorem. Carleman estimates uniform Sobolev inequalities and unique continuation, Lectures Notes in Mathematics 1384, (1989) 69-90.
[20] M. A. Krasnolsel'skii and Y. B. Rutickii, Convex functions and Orlicz spaces, Noordhoff, Groningen (1961).
[21] O. A. Ladyzenskaya and N. N. Uraltzeva, Linear and quasilinear elliptic equations, Academic Press, New York (1968).
[22] A. Loulit, Inégalités avec poids et problèmes de continuation unique, Thèse de Doctorat en Sciences, Université Libre de Bruxelle (1995).
[23] E. Sawyer, Unique continuation for Schrödinger operators in dimension three or less, Ann. Inst. Fourier (Grenoble) 34 (1984), 189-200.
[24] E. M. Stein, Appendix to unique continuation, Ann. of Math. 121 (1985), 489-494.
[25] E. M. Stein, Singular integrals and differentiability of functions, Princeton Univ. Press, Princeton, N.J., (1970).
A. Anane (e-mail: anane@sciences.univ-oujda.ac.ma)
O. Chakrone (e-mail: chakrone@sciences.univ-oujda.ac.ma)
Z. El Allali (e-mail: zakaria@sciences.univ-oujda.ac.ma)

Islam Eddine Hadi (e-mail: hadi@sciences.univ-oujda.ac.ma)
Département de Mathématiques et Informatique Faculté des Sciences, Université Mohamed 1, Oujda, Maroc

[^0]: *Mathematics Subject Classifications: 35J05, 35J45, 35J65.
 Key words: Unique continuation, eigensurfaces, nonresonance problem.
 © 2001 Southwest Texas State University.
 Submitted January 28, 2000. Published June 20, 2001.

