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A unique continuation property for linear elliptic

systems and nonresonance problems ∗

A. Anane, O. Chakrone, Z. El Allali, & I. Hadi

Abstract

The aim of this paper is to study the existence of solutions for a quasi-
linear elliptic system where the nonlinear term is a Caratheodory function
on a bounded domain of RN , by proving the well known unique contin-
uation property for elliptic system in all dimensions: 1, 2, 3, . . . and the
strict monotonocity of eigensurfaces. These properties let us to consider
the above problem as a nonresonance problem.

1 Introduction

We study the existence of solutions for the quasilinear elliptic system

−∆ui =
n∑
j=1

aijuj + fi(x, u1, . . . , un,∇u1, . . . ,∇un) in Ω,

ui = 0 on ∂Ω, i = 1, . . . , n,

(1)

where Ω ⊂ RN (N ≥ 1) is a bounded domain, and the coefficients aij (1 ≤
i, j ≤ n) are constants satisfying aij = aji, for all i, j. The nonlinearity fi :
Ω × RN × R2N → R(1 ≤ i ≤ n) is a Carathéodory function. The case where
n = 2 and fi (1 ≤ i ≤ n) is independent of ∇ui (1 ≤ i ≤ n) has been studied
by several authors, in particular by Costa and Magalhães in [8].

This paper is organized as follows. First, we study the unique continuation
property in dimension N ≥ 3 (section 2), for systems of differential inequalities
of the form

|∆ui(x)| ≤ K
n∑
j=1

|uj(x)|+m(x)|ui(x)| a.e. x ∈ Ω, 1 ≤ i ≤ n,

where m ∈ Fα,p, 0 < α < 1 and p > 1. Here Fα,p denotes the set of functions
of class Fefferman-Phong. In our proof of Theorem 2, we make use of a number
results and techniques developed in [24, 9, 22]. Secondly, we study the unique
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continuation property in dimension N = 2 (section 3), for linear elliptic systems
of the form

−∆ui =
n∑
j=1

aijuj +m(x)ui in Ω i = 1, . . . , n ,

where m satisfies the LlogL integrability condition. There is extensive literature
on unique continuation; we refer the reader to [22, 12, 18, 19, 15]. The purpose
of section 4 is to show that strict monotonicity of eigenvalues for the linear
elliptic system

−∆ui =
n∑
j=1

aijuj + µm(x)ui in Ω,

ui = 0 on ∂Ω, i = 1, . . . , n

holds if some unique continuation property is satisfied by the corresponding
eigenfunctions. Here aij = aji for all i 6= j, µ ∈ R and m ∈ M = {m ∈
L∞(Ω); meas(x ∈ Ω/m(x) > 0) 6= 0}. This result will be used for the appli-
cations in section 6. In section 5, we study the first order spectrum for linear
elliptic systems and strict monotonicity of eigensurfaces. This spectrum is de-
fined as the set of couples (β, α) ∈ RN × R such that

−∆ui =
n∑
j=1

aijuj + αm(x)ui + β · ∇ui in Ω,

ui = 0 on ∂Ω, i = 1, . . . , n

(2)

has a nontrivial solution U = (u1, . . . , un) ∈ (H1
0 (Ω))n. We denote this spectrum

by σ1(−
−→
∆ − A,m) where A = (aij)1≤i,j≤n and m ∈ M. This spectrum is

made by an infinite sequence of eigensurfaces Λ1,Λ2, . . . (cf. section 5 and [2]
in the case n = 2). Finally, in section 6 we apply our results to obtain the
existence of solutions to (1) under the condition of nonresonance with respect
to σ1(−

−→
∆ −A, 1).

We use the notation

U =

 u1

...
un

 , −
−→
∆U =

 −∆u1

...
−∆un

 , ∇U =

 ∇u1

...
∇un

 , F =

 f1

...
fn

 .

We denote by σ(−∆) = {λ1, λ2, . . . , λj , . . .} the spectrum of −∆ on H1
0 (Ω). For

β ∈ RN , we denote

(βξ) =

 β.ξ1
...

β.ξn

 , |s|2 =
n∑
i=1

|si|2, |ξ|2 =
n∑
i=1

|ξi|2.
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In the space (H1
0 (Ω))n we use the induced inner product

〈U,Φ〉 =
n∑
i=1

〈ui, ϕi〉 ∀U = (u1, . . . , un),Φ = (ϕ1, . . . , ϕn) ∈ (H1
0 (Ω))n

and corresponding norm

‖U‖21,2,β =
∫

Ω

eβ.x|∇U |2dx =
n∑
i=1

‖ui‖21,2,β ,

which is equivalent to the original norm.

2 The unique continuation property for linear
elliptic systems in dimensions N ≥ 3

We will say that a family of functions has the unique continuation property,
if no function, besides possibly the zero function, vanishes on a set of positive
measure.

In this section, we proceed to establish the unique continuation property
when m ∈ Fα,p, 0 < α < 1 and p > 1 in dimension N ≥ 3. The proof of the
main result is based on the Carleman’s inequality with weight.

Theorem 1 (Carleman’s inequality with weight) Let m ∈ Fα,p, 0 < α ≤
2

N−1 and p > 1. Then there exists a constant c = c(N, p) such that(∫
RN

|eτxN f |sm
)1/s

≤ c‖m‖2/sFα,p

(∫
RN

|eτxN∆f |rm1−r
)1/r

, (3)

for all τ ∈ R\{0}, and all f ∈ S(RN ) where 1
r −

1
s = 2

N+1 and 1
r + 1

s = 1.

For the proof of this theorem see [22].

Theorem 2 Let X be an open subset in RN and U = (u1, . . . , un) ∈ (H2,r
loc (X))n

(r = 2(N+1)
N+3 ) be a solution of the following differential inequalities:

|∆ui(x)| ≤ K
n∑
j=1

|uj(x)|+m(x)|ui(x)| a.e. x ∈ X 1 ≤ i ≤ n, (4)

where K is a constant and m is a locally positive function in Fα,p, with α = 2
N−1

and p > 1, i.e.

lim
r→0
‖χ{x:|x−y|<r}m‖Fα,p ≤ c(N, p) ∀y ∈ X.

Then, if U vanishes on an open X ⊂ Ω, U is identically null in Ω.

Lemma 1 Let U = (u1, . . . , un) ∈ (H2,r
loc (X))n (r = 2(N+1)

N+3 ) be a solution of
(4) in a neighborhood of a sphere S. If U vanishes in one side of S, then U is
identically null in the neighborhood of S.
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Proof. We may assume without loss generality that S is centered at −1 =
(0, . . . ,−1) and has radius 1. By the reflection principle (see [24]), we can also
suppose that U = 0 in the exterior neighborhood of S.

Now, let ε > 0 small enough such that U(x) = 0 when |(x + 1)| > 1 and
|x| < ε. Set fi(x) = η(|x|)ui(x) for each i = 1, . . . , n where η ∈ C∞0 ([−ε, ε]),
η(|x|) = 1 if |x| < ε/2. For fixed ρ such that 0 < ρ < ε

2 , let Bρ the ball of radius
ρ centered at zero. By the Carleman inequality, theorem 1 yields(∫

Bρ

|eτxN fi|sm
)1/s

≤ c‖χBρm‖
2/s
Fα,p

(∫
RN

|eτxN∆fi|rm1−r
)1/r

, ∀τ > 0 (5)

for i = 1, . . . , n. Inequality (5) implies(∫
Bρ

|eτxN fi|sm
)1/s

≤ c‖χBρm‖
2/s
Fα,p

{(∫
RN\Bρ

|eτxN∆fi|rm1−r
)1/r

+
(∫

Bρ

|eτxn∆fi|rm1−r
)1/r}

. (6)

¿From (4), we have

(∫
Bρ

|eτxN∆fi|rm1−r
)1/r

≤ c
n∑
j=1

(∫
Bρ

|eτxN fj |rm1−r
)1/r

+
(∫

Bρ

|eτxN fi|rm
)1/r

(7)

for each i = 1, . . . , n. Using the Hölder’s inequality, we obtain(∫
Bρ

|eτxN fi|rm
)1/r

=
(∫

Bρ

|eτxN fi|rmr/sm1−r/s
)1/r

≤
(∫

Bρ

|eτxN fi|sm
)1/s(∫

Bρ

m
) 1
r−

1
s

. (8)

As m ∈ Fα,ploc (X), it follows that∫
Bρ

m ≤ cρN−α‖χBρm‖Fα,p . (9)

Indeed, if m ∈ Fα,ploc (X) then∫
Bρ

m ≤
(∫

Bρ

mp
)1/p

|Bρ|1−
1
p

≤ |Bρ|1−α/N
(
|Bρ|α/N

( 1
|Bρ|

∫
Bρ

mp
)1/p)

≤ cρN−α‖χBρm‖Fα,p .
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It follows from (8) and (9) that

(∫
Bρ

|eτxN fi|rm
)1/r

≤ cρ(N−α)( 1
r−

1
s )‖χBρm‖

1
r−

1
s

Fα,p

(∫
Bρ

|eτxN fi|sm
)1/s

,

≤ cρ
2(N−α)
N+1 ‖χBρm‖

1
r−

1
s

Fα,p

(∫
Bρ

|eτxN fi|sm
)1/s

, (10)

for each i = 1, . . . , n.
We may assume without loss generality that m ≥ 1, then

(∫
Bρ

|eτxN fi|rm1−r
)1/r

≤
(∫

Bρ

|eτxN fi|rm
)1/r

∀1 ≤ i ≤ n.

¿From (10), we deduce

(∫
Bρ

|eτxN fi|rm1−r
)1/r

≤ cρ
2(N−α)
N+1 ‖χBρm‖

1
r−

1
s

Fα,p

(∫
Bρ

|eτxN fi|sm
)1/s

. (11)

Therefore from (10) and (11), we have

(∫
Bρ

|eτxN fi|sm
)1/s

≤ c‖χBρm‖
2/s
Fα,p

(∫
RN\Bρ

|eτxN∆fi|rm1−r
)1/r

+cρ
2(N−α)
(N+1) ‖χBρm‖Fα,p

n∑
j=1

(∫
Bρ

|eτxN fj |sm
)1/s

+cρ
2(N−α)
(N+1) ‖χBρm‖Fα,p

(∫
Bρ

|eτxN fi|sm
)1/s

, (12)

for each i = 1, . . . , n. Replacing α by 2
N−1 in (12), we obtain

(∫
Bρ

|eτxN fi|sm
)1/s

≤ c‖χBρm‖
2/s
Fα,p

(∫
RN\Bρ

|eτxN∆fi|rm1−r
)1/r

+cρ
2(N−2)
(N−1) ‖χBρm‖Fα,p

n∑
j=1

(∫
Bρ

|eτxN fj |sm
)1/s

+cρ
2(N−2)
(N−1) ‖χBρm‖Fα,p

(∫
Bρ

|eτxN fi|sm
)1/s

,

for each = 1, . . . , n. Let us choose ρ small enough, such that

‖χBρm‖Fα,p ≤
1

2nc
.
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So for i = 1, . . . , n,(∫
Bρ

|eτxN fi|sm
)1/s

≤ c
(∫

RN\Bρ
|eτxN∆fi|rm1−r

)1/r

+
1

2n

n∑
j=1

(∫
Bρ

|eτxN fj |sm
)1/s

+
1

2n

(∫
Bρ

|eτxN fi|sm
)1/s

,

Since fi(x) = 0 for all 1 ≤ i ≤ n when |(x+ 1)| > 1 or |x| > ε, we deduce that

n− 1
2n

n∑
i=1

(∫
Bρ

|eτxN fi|sm
)1/s

≤ ce−ρτ
n∑
i=1

(∫
RN\Bρ

|∆fi|rm1−r
)1/r

.

So

n− 1
2n

n∑
i=1

(∫
Bρ

|eτ(ρ+xN )fi|sm
)1/s

≤ c
n∑
i=1

(∫
RN

|∆fi|rm1−r
)1/r

. (13)

Taking τ → +∞ in (13), we conclude that U = 0 in Bρ. �

Proof of Theorem 2 We assume that U 6≡ 0 on X. Let Ω be a maximal open
set on which U vanishes and Ω 6= X, then there exists a sphere S which its
interior is contained in Ω, such that there exists x ∈ ∂Ω ∩ S. As U vanishes in
one side of S, it follows that x ∈ Ω, which is absurd. �

3 The unique continuation property for linear
elliptic systems in dimension N = 2

In this section we prove the unique continuation property where m ∈ LlogL in
lower dimension by using the zero of infinite order theory.

Definition 1 Let Ω be an open subset in RN . A function U = (u1, . . . , un) ∈
(L2

loc(Ω))n has a zero of infinite order at x0 ∈ Ω, if for each l ∈ N

lim
R→0

R−l
∫
|x−x0|<R

|U(x)|2dx = 0.

Let us denote by ψ the N-function

ψ(t) = (1 + t) log(1 + t)− t, t ≥ 0

and by Lψ the corresponding Orlicz space (see [20]).
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Theorem 3 Let Ω be a bounded open subset in R
2 and m ∈ Lψloc(Ω). Let

U = (u1, . . . , un) ∈ (H1
loc(Ω))n be a solution of the linear elliptic system

−∆ui =
n∑
j=1

aijuj +m(x)ui in Ω; i = 1, . . . , n (14)

where the coefficients aij(1 ≤ i, j ≤ n) are assumed to be constants satisfying
aij = aji ∀i, j. If U vanishes on a set E ⊂ Ω of positive measure, then almost
every point of E is a zero of infinite order for U .

The proof of this theorem is done in several lemmas.

Lemma 2 Let ω be a bounded open subset in R2 and m ∈ Lψ(ω). Then for
any ε there exists cε = cε(ω,m) such that∫

ω

mu2 ≤ ε
∫
ω

|∇u|2 + cε

∫
ω

u2 (15)

for all u ∈ H1
0 (ω).

For a proof of this lemma, see [7].

Lemma 3 Let U be a solution of system (14), Br and B2r be two concentric
balls contained in Ω. Then∫

Br

|∇U |2 ≤ c

r2

∫
B2r

|U |2, (16)

where the constant c does not depend on r.

Proof. Let ϕ, with suppϕ ⊂ B2r, ϕ(x) = 1 for x ∈ Br and |∇ϕ| ≤ 2
r .

Using ϕ2U as test function in (14), we get∫
Ω

−
−→
∆U.(ϕ2U) =

∫
Ω

AU.(ϕ2U) +
∫

Ω

mU.(ϕ2U).

So ∫
Ω

|∇U |2ϕ2 =
∫

Ω

(AU.U)ϕ2 − 2
∫

Ω

〈ϕ∇U,∇ϕ U〉+
∫

Ω

mϕ2U2. (17)

On the other hand, we have

AU(x).U(x) ≤ ρ(A)U(x).U(x) a.e. x ∈ Ω,

where ρ(A) is the largest eigenvalue of the matrix A. Using Schwartz and
Young’s inequalities, we have

2|〈ϕ∇U,∇ϕU〉| ≤ ε|ϕ∇U |2 +
|∇ϕ U |2

ε
for ε > 0. (18)
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Thus, by lemma 2, we have for any ε > 0, there exists cε = cε(Ω,m) such that∫
Ω

m|ϕU |2 ≤ ε
∫

Ω

|∇(ϕU)|2 + cε

∫
Ω

|ϕU |2. (19)

It follows from (17), (18) and (19) that∫
B2r

ϕ2|∇U |2 ≤ ρ(A)
∫
B2r

|ϕU |2 + ε

∫
B2r

|∇U |2ϕ2 +
1
ε

∫
B2r

|∇ϕ|2U2

+ε
∫
B2r

|∇(ϕU)|2 + cε

∫
B2r

|ϕU |2,

and therefore

(1−(ε2+2ε))
∫
B2r

ϕ2|∇U |2 ≤ (ε+1+
1
ε

)
∫
B2r

|(∇ϕ U)|2+(ρ(A)+cε)
∫
B2r

|ϕU |2.

Using the fact that |∇ϕ| ≤ 2
r , |ϕ| ≤ c

r and ϕ = 1 in Br, we have immediately
(16). �

Remark 1 If U has a zero of infinite order at x0 ∈ Ω, then ∇U has also a zero
of infinite order at x0.

Lemma 4 ([21]) Let u ∈W 1,1(Br), where Br is the ball of radius r in RN and
let E = {x ∈ Br : u(x) = 0}. Then there exists a constant β depending only on
N such that ∫

D

|u| ≤ β r
N

|E|
|D|1/N

∫
Br

|∇u|

for all Br, u as above and all measurable sets D ⊂ Br.

Proof of Theorem 3. Let U = (u1, . . . , un) ∈ (H1
loc(Ω))n be a solution of

(14) which vanishes on a set E of positive measure. We know that almost every
point of E is a point of density of E. Let x0 be such a point, i.e.

|Ec ∩Br|
|Br|

→ 0 and
|E ∩Br|
|Br|

→ 1 as r → 0, (20)

where Br is the ball of radius r centered at x0. So, for a given ε > 0 there exists
r0 = r0(ε) > 0 such that for r ≤ r0

|Ec ∩Br|
|Br|

< ε and
|E ∩Br|
|Br|

> 1− ε,

where Ec denotes the complement of E in Ω. Taking r0 smaller if necessary, we
may assume that B2r0 ⊂ Ω. By lemma 4 we have∫

Br

|ui|2 =
∫
Br∩Ec

|ui|2 ≤ β
r2

|E ∩Br|
|Ec ∩Br|1/2

∫
Br

|∇(ui)2|

≤ 2β
r2

|E ∩Br|
|Ec ∩Br|1/2

∫
Br

|ui||∇ui|
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for each i = 1, . . . , n. The Hölder and Youngs’s inequalities lead to∫
Br

|ui|2 ≤ 2β
r2

|E ∩Br|
|Ec ∩Br|1/2

(∫
Br

|ui|2
)1/2(∫

Br

|∇ui|2
)1/2

≤ β
r2

|E ∩Br|
|Ec ∩Br|1/2

(1
r

∫
Br

u2
i + r

∫
Br

|∇ui|2
)
, (21)

for each i = 1, . . . , n. We take the sum for i = 1 to n, we obtain∫
Br

|U |2 ≤ β r2

|E ∩Br|
|Ec ∩Br|1/2

(1
r

∫
Br

|U |2 + r

∫
Br

|∇U |2
)
.

It follows from (16) and (20) that∫
Br

|U |2 ≤ β
r2|Br|

|Br|1/2|E ∩Br|
|Ec ∩Br|1/2

|Br|1/2
(1
r

∫
B2r

|U |2 +
c

r

∫
B2r

|U |2
)

≤ β
cr

|Br|1/2
ε1/2

1− ε

∫
B2r

|U |2

≤ c
ε1/2

1− ε

∫
B2r

|U |2, for r ≤ r0. (22)

Set f(r) =
∫
Br
|U |2. Let us fix n ∈ N, we have ε > 0 such that cε1/2

1−ε = 2−n.
Observe that now r0 depend on n. ¿From (22), we deduce that

f(r) ≤ 2−nf(2r), for r ≤ r0. (23)

Iterating (23), we get

f(ρ) ≤ 2−knf(2kρ) if 2k−1ρ ≤ r0. (24)

Thus, given 0 < r < r0(n) and choosing k ∈ N such that

2−kr0 ≤ r ≤ 2−(k−1)r0.

¿From (24), we conclude that

f(r) ≤ 2−knf(2kr) ≤ 2−knf(2r0),

and since 2−k ≤ r
r0

, we get

f(r) ≤
(
r

r0

)n
f(2r0).

This shows that f(r) = 0(rn) as r → 0. Consequently x0 is a zero of infinite
order for U . �

Theorem 4 Let Ω be an open subset in R2. Assume that U = (u1, . . . , un) ∈
(H2

loc(Ω))n has a zero of infinite order at x0 ∈ Ω and satisfies

|∆ui(x)| ≤ K
n∑
j=1

|uj(x)|+m(x)|ui(x)| a.e. x ∈ Ω, 1 ≤ i ≤ n, (25)

where m is a positive function belong to a class of LlogLloc(Ω). Then U is
identically null in Ω.
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Proof. The technique used here is due to S. Chanillo and E. Sawyer (see [9]),
we may assume that m ≥ 1. Since m+ 1 also satisfy the hypotheses of theorem
4 when m ∈ LlogLloc(RN ), we have

∫
R2
|I1f |2m ≤ c‖m‖

∫
R2
f2 ∀f ∈ C∞0 (R2), (26)

(cf. [13, 25]), where Iαf denotes the Riesz potential of order 0 < α < n, defined
by

Iα(x) =
∫
RN

|x− y|−n+αf(y)dy,

where one posed to simplify ‖m‖ = ‖m‖LlogL. The inequality (26) is equivalent
to the dual inequality

∫
R2
|I2f |2m ≤ c‖m‖2

∫
R2
|f |2m−1 ∀f ∈ C∞0 (R2). (27)

(cf. [14]) where I2f = φ2 ∗ f denotes the Newton Potential with φ2 is the
elementary solution of −∆. On the other hand, from the result of E.Sawyer (cf.
[23]), if

φ2(x) =
1

2π
log |x|,

then

|φ2(x− y)−
l−1∑
j=0

1
j!

(
∂

∂s

)j
φ2(sx− y)|s=0| ≤ c

(
|x|
|y|

)l
φ2(x− y) ∀l ∈ N. (28)

The constant c does not depend on l, x and y. Let U = (u1, . . . , un) be a solution
of (25) and has a zero of infinite order at x0 ∈ Ω. We may suppose without loss
generality that 0 ∈ Ω and x0 = 0. Let also η and ψ be two functions such that
η ∈ C∞0 (B2r), η = 1 on Br and ψ = 0 on B1, ψ = 1 outside B2 and 0 ≤ ψ ≤ 1.
Set ψk(x) = ψ(kx), k ≥ 0. We also assume that k ≥ 4/r and r < 1/2. Then by
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(27, 28) and [16, Theoremm 4.3], for l ≥ 1 we have∫
Br

|ψk(x)ui(x)|
|x|2l

m(x)dx (29)

=
∫
Br

|x|−2l|
∫
φ2(x− y)∆(ηψkui)dy|2m(x)dx

=
∫
Br

|x|−2l|
∫

(φ2(x− y)−
l−1∑
j=0

1
j!
( ∂
∂s

)j
φ2(sx− y)|s=0)∆(ηψkui)dy|2mdx

≤ c

∫
Br

(∫ φ2(x− y)|∆(ψkηui)|
|y|l

)2

m(x)dx

≤ c

∫
Br

|I2(
∆(ψkηui)
|y|l

)|2m(x)dx

≤ c‖χBrm‖2
∫
B2r

|∆(ψkηui)|2

|x|2l
m−1(x)dx

≤ c‖χBrm‖2(
∫
B2r

|∆ψk|2u2
i

|x|2l
m−1(x)dx+

∫
B2r

|∇ψk|2|∇ui|2

|x|2l
m−1(x)dx

+
∫
Br

|ψk|2|∆(ηui)|2

|x|2l
m−1dx) +

∫
|x|>r

|ψk|2|∆(ηui)|2

|x|2l
m−1dx)

= c‖χBrm‖2(Iik + IIik + IIIik + IV ik ), (30)

for each i = 1, . . . , n. Choosing c‖χBrm‖2 < 1
2n (this is possible since the

measure LlogL is absolutely continuous) it follows that

IIIik ≤ 1
2n

∫
|x|<r

|ψk|2|∆ui|2

|x|2l
m−1(x)dx

≤ 1
2n

( n∑
j=1

∫
|x|<r

|ψk|2|uj |2

|x|2l
m−1(x)dx+

∫
|x|<r

|ψk|2|ui|2

|x|2l
m(x)dx

)
.

We have∫
|x|<r

|ψk|2|uj |2

|x|2l
m−1(x)dx ≤

∫
|x|<r

|ψk|2|uj |2

|x|2l
m(x)dx whenever m ≥ 1.

So

IIIik ≤
1

2n

( n∑
j=1

∫
|x|<r

|ψk||uj |2

|x|2l
m(x)dx+

∫
|x|<r

|ψk|2|ui|2

|x|2l
m(x)dx

)
. (31)

As U = (u1, . . . , un) is a solution of (25), from (29) and (31), we conclude that

(1− 1
2n

)
∫
Br

|ψk|2|ui|2

|x|2l
m(x)dx− 1

2n

n∑
j=1

∫
Br

|ψk|2|uj |2

|x|2l
m(x)dx ≤ Iik+IIik. (32)
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On the other hand, we have

Iik ≤
∫

1
k≤|x|≤

2
k

|ψk|2|ui|2

|x|2l
m−1(x)dx ≤ ck2l+4

∫
|x|≤ 2

k

|ui|2dx,

for each i = 1, . . . , n. Hence limk→+∞ Iik = 0 ∀1 ≤ i ≤ n, since U has a zero
of infinite order at 0 by hypothesis. On the other side

IIik ≤ ck2l+2

∫
|x|≤ 2

k

|∇ui|2dx.

By Remark 1, it follows that limk→+∞ IIik = 0 ∀1 ≤ i ≤ n. The sum from
i = 1 to n in the inequality (32), yields

n− 1
2n

n∑
i=1

∫
Br

|ψkui|2

|x|2l
m(x)dx ≤

n∑
i=1

(Iik + IIik + IV ik ).

So that∫
|x|<r

|ψkU |2m ≤ r2l

∫
Br

|ψkU |2

|x|2l
≤ 2n
n− 1

r2l
n∑
i=1

(Iik + IIik + IV ik ). (33)

Taking the limit as k and l→ +∞ in (33), we conclude that U = 0 on Br. �

Remark 2 In the following sections we take m in M which is obviously a
subspace of Fα,p and LlogL. Also for those bounded potential we can use the
Carleman inequality of N. Arnsajn [5].

4 Strict monotonicity of eigenvalues for linear
elliptic systems

In this section we study the strict monotonicity of eigenvalues for the linear
elliptic system

−∆ui =
n∑
j=1

aijuj + µm(x)ui in Ω,

ui = 0 on ∂Ω, i = 1, . . . , n .

(34)

We will assume that
λ1 > ρ(A), (35)

where ρ(A) is the largest eigenvalue of the matrix A and λ1 the smallest eigen-
value of −∆ .

As it is well Known [1, 17, 10, 2], that the eigenvalues in (34) form a sequence
of positive eigenvalues, which can be written as

µ1(m) < µ2(m) ≤ . . . .

Here we use the symbol � to indicate inequality a.e. with strict inequality
on a set of positive measure.
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Proposition 1 Let m1 and m2 be two weights of M with m1 � m2 and let
j ∈ N. If the eigenfunctions associated to µj(m1) enjoy the unique continuation
property, then µj(m1) > µj(m2).

Proof. We proceed by the similar arguments which has been developed by
D.G. de Figueiredo and J.P. Gossez [12]. µj(m1) is given by the variational
characterization

1
µj(m1)

= sup
Fj

inf{
∫

Ω

m1|U |2dx;U ∈ Fj and L(U,U) = 1}, (36)

where L(U,U) =
∫

Ω
|∇U |2 −

∫
Ω
AU.Udx and Fj varies over all j-dimensional

subspace of (H1
0 (Ω))n (cf. [1, 17, 10]). Since the extrema in (36) are achieved

[11], there exists Fj ⊂ (H1
0 (Ω))n of dimension j such that

1
µj(m1)

= inf{
∫

Ω

m1|U |2dx;U ∈ Fj and L(U,U) = 1}. (37)

Pick U ∈ Fj with L(U,U) = 1. Either U achieves tits infimum in (37) or not.
In the first case, U is an eigenfunction associated to µj(m1) (cf. [11]), and so,
by the unique continuation property

1
µj(m1)

=
∫

Ω

m1|U |2 <
∫

Ω

m2|U |2.

In the second case
1

µj(m1)
<

∫
Ω

m1|U |2 ≤
∫

Ω

m2|U |2.

Thus, in any case
1

µj(m1)
<

∫
Ω

m2|U |2.

It follows, by a simple compactness argument that

1
µj(m1)

< inf{
∫

Ω

m2|U |2;U ∈ Fj and L(U,U) = 1}.

This yields the desired inequality

1
µj(m1)

<
1

µj(m2)
.

5 Spectrum for linear elliptic systems

First order spectrum

Theorem 5 a) Λn(., A,m) : RN → R is the positive function characterized
in a variational form by

1
Λn(β,A,m)

= sup
Fn∈Fn((H1

0 (Ω))n)

min
{∫

Ω

eβ.xm(x)|U |2dx, U ∈ Fn∩Sβ(A)
}
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for all β ∈ RN , with

Sβ(A) =
{
U ∈ (H1

0 (Ω))n : ‖U‖21,2,β −
∫

Ω

eβ.xAU.Udx = 1
}
,

and Fn((H1
0 (Ω))n) is the set of n-dimensional subspaces of (H1

0 (Ω))n.

b) For all U ∈ (H1
0 (Ω))n,

Λ1(β,A,m)
∫

Ω

eβ.xm(x)|U |2dx ≤ ‖U‖21,2,β −
∫

Ω

eβ.xAU.U dx .

c) For all β ∈ RN , limn→+∞ Λn(β,A,m) = +∞.

For the proof of this theorem see [2].

Strict monotonicity of eigensurfaces for linear elliptic sys-
tems

By theorem 5 it seems that the following result may be proved by arguments
similar to those in proposition 1 (see section 4).

Proposition 2 Let m1,m2 ∈M , if m1 � m2 then Λj(β,A,m1) > Λj(β,A,m2)
for all j ∈ N∗.

6 Nonresonance between consecutives eigensur-
faces

In this section, we study the existence of solutions for the quasilinear elliptic
system

−
−→
∆U = AU + F (x,U,∇U) in Ω,

U = 0 on ∂Ω.
(38)

Let us consider the situation where the nonlinearity F is asymptotically between
two consecutive eigensurfaces in the following sense: we assume that there exists
α1 < α2 ∈ R, β ∈ RN and for all δ > 0 there exist aδ ∈ L2(Ω) such that

α1|s|2 + (βξ).s− δ(|ξ|2 + aδ(x))|s| ≤ s.F (x, s, ξ) (39)
≤ α2|s|2 + (βξ).s+ δ(|ξ|2 + aδ(x))|s|

a.e. ∈ Ω and for all (ξ, s) ∈ R2N × R2.
A function U in (H1

0 (Ω))n is said to be a solution of (38) if U satisfies (38)
in the sense of distributions. With this definition, we state the main result of
this section.

Theorem 6 Let (39) be satisfied with Λk(β,A, 1) < α1 < α2 < Λk+1(β,A, 1)
for some k ≥ 1, then (38) admits a solution.
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Remark 3 It is clear that by (39) there exist b1 > 0 such that for all δ > 0
there exists aδ ∈ L2(Ω) such that

|F (x, s, ξ)− (βξ)| ≤ b1|s|+ δb1(|ξ|+ aδ(x)) (40)

a.e. x ∈ Ω and for all (ξ, s) ∈ R2N × R2.

Proof of Theorem 6 Let (Tt)t∈[0,1] be a family of operators from (H1
0 (Ω))n

to (H−1(Ω))n:

Tt(U) = −
−→
∆β(U)− eβ.x(t(F (x,U,∇U) + (1− t)αU − t(β∇U))

where α1 < α < α2. Since F verifies (39), the operator Tt is of the type (S+).
Now, we show the a priori estimate:

∃r > 0 such that ∀t ∈ [0, 1],∀U ∈ (∂B(0, r))n, we have Tt(U) 6= 0.

We proceed by contradiction, if the a priori estimate is not true, then

∀n ∈ N, ∃tn ∈ [0, 1], ∃Un ∈ (∂B(0, n))n (‖Un‖1,2 = n), such that Ttn(Un) = 0,

so that

−
−→
∆β(Un) = eβ.x(tnF (x,Un,∇Un) + (1− tn)αUn − tn(β∇Un)). (41)

Set Vn = Un
‖Un‖1,2 , the sequence (Vn) is bounded in (H1

0 (Ω))n. Therefore, there
exists a subsequence of (Vn) (also noted (Vn)) such that: Vn ⇀ V in (H1

0 (Ω))n,
Vn → V in (Lq(Ω))n for all q ∈ [1, 2∗[, with 2∗ = 2N

N−2 . Then we proceed in
several steps.

Step 1: The sequence of functions defined a.e. x ∈ Ω by

Gn(x) =
F (x,Un,∇Un)
‖Un‖1,2

− (β∇Vn)

is bounded in (L2(Ω))n.
To prove this statement we divide (40) by ‖Un‖1,2. Then

|Gn(x)| ≤ b1|Vn|+ δb1(|∇Vn|+
aδ(x)
n

).

and

‖Gn‖ ≤ b1‖Vn‖2 + δb1(‖Vn‖1,2 +
‖aδ‖2
n

)

≤ b1
(λ1)1/2

+ δb1(1 +
‖aδ‖2
n

),

which proves step 1.
Since (L2(Ω))n is a reflexive space, there exists a subsequence of (Gn), also

denoted by (Gn), and F̃ ∈ (L2(Ω))n such that

Gn ⇀ F̃ in (L2(Ω))n. (42)
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Step 2. F̃ (x) = 0 a.e. in A := {x ∈ Ω : V (x) = 0 a.e.}
To prove this statement, we define φ(x) = sgn(F̃ (x))χA. By (40), we have

|Gn(x)φ(x)| ≤ b1(|Vn|+ δ(|∇Vn|+
aδ(x)
n

))χA(x)

and

‖Gnφ‖2 ≤ a(‖VnχA‖2 + δ(1 +
‖aδχA‖2

n
)).

Since Vn → V in (L2(Ω))n, we have VnχA → 0 in (L2(Ω))n. Passing to the
limit, we obtain

lim sup ‖Gnφ‖2 ≤ δb1.
As δ is arbitrary, it follows that

Gnφ→ 0 in (L2(Ω))n.

On the other hand, (42) implies∫
Ω

Gn.φ→
∫

Ω

F̃ .φ =
∫

Ω

|F̃ (x)|χA(x).

So
∫
A |F̃ (x)| = 0, which completes the proof of step 2.

Now, we define the function

D(x) =

{
F̃ (x).V (x)
|V (x)|2 a.e. x ∈ Ω \ A,

α a.e. x ∈ A.

Step 3. α1 ≤ D(x) ≤ α2 a.e. x ∈ Ω.
First, we prove that α1 ≤ F̃ (x).V (x)

|V (x)|2 a.e. x ∈ Ω \ A. then analogously we

prove that F̃ (x).V (x)
|V (x)|2 ≤ α2 a.e. x ∈ Ω \ A).

Set B = {x ∈ Ω \ A : α1|V (x)|2 > F̃ (x).V (x) a.e.}. It is sufficient to show
that measB = 0. Indeed, the assumption (39) yields

α1|Un|2 − δ(|∇Un|+ aδ(x))|Un| ≤ Un.F (x,Un,∇Un)− (β∇Un).Un, (43)

dividing by ‖Un‖21.2, we obtain

α1|Vn|2 − δ(|∇Vn|+
aδ(x)
n

)|Vn| ≤ Vn.Gn(x).

Multiplying (43) by χB and integrating over Ω, we have

α1

∫
Ω

|Vn|2χB

≤ δ

∫
Ω

(|∇Vn|+
aδ(x)
n

)|Vn|χB +
∫

Ω

Vn.Gn(x)χB

≤
∫

Ω

Vn.GnχB + δ
(

(
∫

Ω

|∇Vn|2)1/2(
∫

Ω

|Vn|2)1/2 +
‖aδ‖2
n
‖Vn‖2

)
≤

∫
Ω

Vn.Gn(x)χB + δ
( 1

λ
1/2
1

+
‖aδ‖2
nλ

1/2
1

)
.
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Passing to the limit (Knowing that Gn ⇀ F̃ and Vn → V in (L2(Ω))n), we get

α1

∫
Ω

|V (x)|2χB ≤
∫

Ω

V (x).F̃ (x)χB +
δ

λ
1/2
1

,

for all δ > 0. Then ∫
Ω

(
V (x).F̃ (x)− α1|V (x)|2

)
χBdx ≥ 0.

Finally, by the definition of B, we deduce that measB = 0, and the proof of
step 3 concludes.

It is clear that we can suppose that tn → t. Set m(x) = tD(x) + (1− t)α.

Step 4. 1) The function V is a solution of

−
−→
∆βU = eβ.xAU + eβ.xm(x)U in Ω,

U = 0 on ∂Ω.

2) α1 ≤ m(x) ≤ α2 a.e. x ∈ Ω.
To prove 1), we dividing (41) by n = ‖Un‖1,2. Then

−
−→
∆βVn = eβ.xAVn + eβ.x(tnGn(x) + (1− tn)αVn). (44)

Since Vn ⇀ V in (H1
0 (Ω))n,∫

Ω

eβ.x∇Vn.∇Φ→
∫

Ω

eβ.x∇V.∇Φ for all Φ ∈ (H1
0 (Ω))n.

On the other hand, multiplying (44) by Φ ∈ (H1
0 (Ω))n, as n→ +∞ we obtain∫

Ω

eβ.x∇V.∇Φ =
∫

Ω

AV.Φ +
∫

Ω

eβ.x(tF̃ (x) + (1− t)αV (x)).Φ,

=
∫

Ω

eβ.xAV.Φ +
∫

Ω

eβ.x
(
t
F̃ (x).V (x)
|V (x)|2

+ (1− t)α
)
V (x).Φ

=
∫

Ω

eβ.xAV.Φ +
∫

Ω

eβ.x (tD(x) + (1− t)α)V (x).Φ

From the second step and the definition of D(x) it follows that

−
−→
∆βV = eβ.xAV + eβ.xm(x)V in (H−1(Ω))n.

Then assertion 1) follows.
To prove 2), we combine the result of step 3 and the fact that α1 < α < α2.
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Step 5. V 6≡ 0.
To prove this statement, we multiplying (44) by Vn. Then∫

Ω

eβ.x(tnGn(x).Vn + (1− tn)α|Vn|2) +
∫

Ω

eβ.xAVn.Vn =
∫

Ω

eβ.x|∇Vn|2 ≥M,

where M = min
Ω

eβ.x > 0. Passing to the limit, we get

∫
Ω

eβ.x(tF̃ (x) + (1− t)α|V (x)|2) +
∫

Ω

eβ.xAV.V ≥M > 0.

This which completes the proof of step 5.
Finally, from the step 4 and step 5, we conclude that (β, 1) is a first order

eigenvalue of the problem, with

Λk(β,A, 1) < α1 ≤ m(x) ≤ α2 < Λk+1(β,A, 1).

By the strict monotonicity with respect to weight (see proposition 2.), we have

Λk(β,A,m) < 1 < Λk+1(β,A,m),

which is absurd, and present proof is complete. �
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