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Interfering solutions of a nonhomogeneous

Hamiltonian system ∗

Gregory S. Spradlin

Abstract

A Hamiltonian system is studied which has a term approaching a con-
stant at an exponential rate at infinity . A minimax argument is used
to show that the equation has a positive homoclinic solution. The proof
employs the interaction between translated solutions of the correspond-
ing homogeneous equation. What distinguishes this result from its few
predecessors is that the equation has a nonhomogeneous nonlinearity.

1 Introduction

This paper is inspired by a remarkable result of Bahri and Li [3], which is a
proof of a result of Bahri and Lions [4] employing a minimax method. The
papers treat an elliptic partial differential equation of the form −∆u + u =
b(x)up on RN , with up a superquadratic, subcritical nonlinearity (1 < p, and
p < (N + 2)/(N − 2) for N ≥ 3), and b(x)→ b∞ > 0 as |x| → ∞. One searches
for positive solutions u that decay to zero as |x| → ∞. This nonautonomous
problem on the noncompact domain RN is difficult to solve without assuming
symmetry on b(x). Bahri and Li found decaying positive solutions under the
assumption that b is positive and continuous, and (b(x) − b∞)− (the negative
part of b(x)− b∞) decays exponentially at a fast enough rate as |x| → ∞ (to be
precise, b(x) − b∞ = O(exp(−(2 + δ)) for some δ > 0). Surprisingly, unlike in
other, perturbative results, b(x) − b∞ may be “large” in just about any other
sense, such as Lq norm, 1 ≤ q ≤ ∞.

The proof in [3] is variational. A minimax class is formed using sums of
translates of a solution of the corresponding autonomous problem −∆u + u =
b∞u

p, and exploiting the “interference” between “tails” of that solution. This
idea contrasts with many “multibump” results, in which a multibump solution
is one that resembles a sum of translates of solutions of an equation [6, 7, 12]. In
most of these results, the interference between bumps is a problem that must be
managed by separating the translates by a great distance. There seems to have
been little work done in exploiting interference of solutions in either multibump
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or simple existence results in elliptic PDE. A notable exception is a singularly
perturbed elliptic equation studied by Wei and Xiaosong [13]. They employed
interference between bumps to “hold them together” and counteract the lack of
compactness in the problem and find multibumps. A related result is [8].

Articles [3, 13, 8] all involve an equation with homogeneous, or power lin-
earity. The new paper [1] proves a result similar to [3] for a problem with
nonhomogeneous nonlinearity, but with a symmetry condition on the coefficient
function. We seek to avoid any symmetry assumptions. We begin here by study-
ing an ordinary differential equation, with the aim of extending it later to the
PDE case.

Here is the theorem:

Theorem 1.1 Let f and b satisfy

(f1) f ∈ C([0,∞), [0,∞))

(f2) f(0) = 0, f(q) > 0 for q > 0

(f3) there exists µ > 2 such that f(q)q/µ ≥ F (q) ≡
∫ q

0
f(s) ds for all q ≥ 0,

and

(f4) f(q)/q is an increasing function of q for q > 0, and

(b1) b ∈ C(R, (0,∞))

(b2) b(t)→ b∞ > 0 as |t| → ∞, and

(b3) there exist δ > 2µ/(µ− 2) and A > 0 such that b(t)− b∞ > −Aeδ|t| for all
t ∈ R.

Then the Hamiltonian system

−u′′ + u = b(t)f(u) (1.1)

has a positive solution homoclinic to zero, that is, a solution u with u(t) → 0
and u′(t)→ 0 as |t| → ∞.

Hypotheses (f1)-(f3) imply that F is “superquadratic,” that is, for small q,
F (q) = o(q2) and for large q, F (q) > O(q2). Condition (f4) is due to Nehari
and has many helpful consequences, as we will see. (f1) − (f4) are all satisfied
in the canonical case f(q) = qp, p > 1.

This paper is organized as follows: Section 2 contains the variational frame-
work of the proof and the beginning of the proof. Section 3 contains the con-
clusion, which exploits the fact that g decays exponentially, as do homoclinic
solutions of the autonomous equation associated with (1.1).



EJDE–2001/47 Gregory S. Spradlin 3

2 The variational argument

Let E ≡ W 1,2(R), with the standard inner product and norm. Extend f to 0
on the negative reals, and define the C2 functional I : E → R by

I(u) =
1
2
‖u‖2 −

∫
R

b(t)F (u(t)) dt.

By regularity theory, and the maximum principle, all nonzero critical points
of I are positive homoclinic solutions to (1.1), and vice versa. ¿From now on,
without loss of generality assume b∞ = 1. Then the functional corresponding
to the autonomous equation −u′′ + u = f(u) is

I0(u) =
1
2
‖u‖2 −

∫
R

F (u(t)) dt.

An analysis of the equation −u′′ + u = f(u) in the (u, u′) phase plane shows
that the equation has a unique nonzero homoclinic solution, modulo translation,
which is positive. Let us denote by ω the positive solution satisfying ω(0) =
maxω. ω is even in t and decays exponentially. I0 has a unique nonzero critical
value, c0 = I0(ω). c0 is the “mountain pass” value for I0. That is, defining the
set of paths

Φ0 = {h ∈ C([0, 1], E) | h(0) = 0, I0(h(1)) < 0},

c0 is the minimax value

c0 = inf
h∈Φ0

max
θ∈[0,1]

I0(h(1)) > 0.

Define c, the mountain pass value for I, by defining the set of paths

Φ = {h ∈ C([0, 1], E) | h(0) = 0, I(h(1)) < 0},

and
c = inf

h∈Φ
max
θ∈[0,1]

I(h(θ)) > 0.

We will use a concentration compactness type result to describe Palais-Smale
sequences of I. Recall that a Palais-Smale sequence of I is a sequence (um) ⊂ E
with I ′(um)→ 0 and (I(um)) convergent. Define the translation operator τ as
follows: for t0 ∈ R and u : R→ R, let τt0u be u translated t0 units to the right,
that is, τt0u(t) = u(t − t0) for all t ∈ R. The proposition below states that a
Palais-Smale sequence “splits” into the sum of a critical point of I and critical
points of I0:

Lemma 2.1 If (um) ⊂ E with I ′(um) → 0 and I(um) → a > 0, there exist
v ∈ E, k ≥ 0, and sequences (tim)1≤i≤k→ m≥1

⊂ R, such that, along a subsequence

(also denoted (um)),

(i) ‖um − (v +
∑k
i=1 τtimω)‖ → 0
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(ii) |tim| → ∞ as m→∞ for i = 1, . . . , k

(iii) ti+1
m − tim →∞ as m→∞ for i = 1, . . . , k − 1

(iv) kc0 + I(v) = a

A proof can be found in [6]. By standard deformation arguments, there exists
[11] a Palais-Smale sequence (um) for I along which I converges to c. Suppose
c < c0. Then by applying Lemma 2.1, and the fact that I has no negative
critical values, (iv) implies that the “k” value is zero, so along a subsequence,
(um) converges to a critical point v of I. Since I(v) = c > 0, v is nontrivial.

By (b2), c ≤ c0. So from now on, we assume

c = c0.

By (f4), I has the following property (as does I0): For any u ∈ E \ {0}, the
mapping s 7→ I(su) is 0 at s = 0, increases for small positive s, attains a
maximum, then decreases to −∞ (see [6] for proof). Define the Nehari manifold
S for I by

S = {u ∈ E | u 6= 0, I ′(u)u = 0}.

Note that a nonzero function u is in S if and only if I(u) = sups>0 I(su). Then

c = inf
S
I.

Define the “location” function L : E \ {0} → R by∫
R

u2 tan−1(t− L(u)) dt = 0.

By the Implicit Function Theorem, L is a well defined, continuous function.
L(ω) = 0, and L(τtu) = L(u) + t for any u ∈ E \ {0} and t ∈ R. Define

β = inf{I(u) | u ∈ S, L(u) = 0}. (2.1)

Clearly β ≥ c = c0. If β = c0, then c0 is a critical value of I: suppose β = c0.
Take (um) ⊂ S with L(um) = 0 and I(um) → c0. Along a subsequence,
I ′|S(um) → 0. By (f4), I ′(um) → 0 (see [9] for similar minimax arguments on
a Nehari manifold). Apply Lemma 2.1. (iv) shows, again, that either k = 0,
or k = 1 with v = 0. The latter alternative is impossible because L(um) = 0.
Therefore (um) converges (along a subsequence) to a critical point of I. Thus
we assume from now on that

β > c0. (2.2)

Define P : E \ {0} → S to be radial projection onto S, that is,

P(u) = tu; t > 0, tu ∈ S.

For R > 0 define the minimax class

ΓR = {γ ∈ C([0, 1],S) | γ(0) = P(τ−Rω), γ(1) = P(τRω)}
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and the minimax value

c[R] = inf
γ∈ΓR

max
θ∈[0,1]

I(γ(θ)).

Theorem 1.1 will follow from the following proposition:

Proposition 2.2 There exists R0 = R0(f, g) with the following property: if
R ≥ R0, then

(i) I(P(τ−Rω)) < β and I(P(τRω)) < β

(ii) c[R] ≥ β

(i) c[R] < 2c0

To prove Theorem 1.1 from Proposition 2.2, let R ≥ R0. By (i)-(ii), there
exists a sequence (um) ⊂ S with I(um)→ c[R] and I ′|S(um)→ 0, and I ′(um)→
0. Apply Lemma 2.1 to (um). Since c0 < β < c[R] < 2c0, Lemma 2.1(iv) implies
that c[R] or c[R]−c0 is a critical value of I. Since 0 < c[R]−c0 < c0, assumption
(f4) implies that c[R]−c0 is not a critical value of I. Therefore c[R] is a positive
critical value of I. Maximum principle arguments show that (1.1) has a positive
homoclinic solution. Theorem 1.1 is proven.

3 Interfering Tails

This section contains the proof of Proposition 2.2. Parts (i) and (ii) are easy. Us-
ing (b2), it is straightforward to show that I(P(τ−Rω))→ c0 and I(P(τRω))→
c0 as R→∞, and we assumed in (2.2) that c0 < β. (ii) holds for all R > 0, not
necessarily large: let γ ∈ ΓR. Since L(P(τ−Rω)) = −R, L(P(τRω)) = R, and L
is continuous, there exists θ∗ ∈ [0, 1] with L(γ(θ∗)) = 0, so by the definition of
β, I(γ(θ∗)) ≥ β. The remainder of this section is devoted to the proof of (iii),
which is more difficult.

We adopt a construction similar to that of [3]. For R > 0, define γR : [0, 1]→
E \ {0} by

γR(θ) = max((1− θ)τ−Rω, θτRω)

and γ̂R ∈ ΓR by
γ̂R(θ) = P(γR(θ))

We will show that for large enough R,

max
θ∈[0,1]

I(γ̂R(θ)) < 2c0, (3.1)

proving Proposition 2.2(iii).
To avoid the complications in working with the manifold S, we have the

following lemma. “For large enough R” means there exists R0 = R0(f, g) such
that if R ≥ R0, etc., as in Proposition 2.2.

Lemma 3.1 There exists T = T (f, g) such that for large enough R, and all
θ ∈ [0, 1],

I(TγR(θ)) < 0.
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Proof: let T > 0 be large enough so that I0(Tω) < −c0 − 2. Then for all
θ ∈ [0, 1], I0(θTω) + I0((1 − θ)Tω) < −2. Let ω̃ ∈ E have compact support in
R and be close enough to ω that I0(θT ω̃) + I0((1− θ)T ω̃) < −1 for all θ ∈ [0, 1].
I is Lipschitz on bounded subsets of E (see [11] for a proof in a similar setting),
so for large enough R, and all θ ∈ [0, 1], I(TγR(θ)) < −1 + 1/2 < 0.

By Lemma 3.1, in order to prove (3.1), it suffices to show that for large
enough R, all θ ∈ [0, 1] and s ∈ [0, T ],

I(sγR(θ)) < 2c0. (3.2)

We will treat separately the case where θ is close to 0 or 1:

Lemma 3.2 For large enough R, all s ∈ [0, T ] and all θ ∈ [0, 1/4] ∪ [3/4, 1],

I(sγR(θ)) < 2c0. (3.3)

Proof: without loss of generality let θ ∈ [0, 1/4]. If I0(sθω) < I0(ω/2), then
I0(sθω) + I0((1 − θ)sω) < c0 + I0(ω/2). If I0(sθω) ≥ I0(ω/2), then sθ ≥
1/2, so (1 − θ)s = ( 1

θ − 1)(sθ) ≥ 3( 1
2 ) ≥ 3/2, so I0((1 − θ)sω) ≤ I0( 3

2ω),
I0(sθω) + I0((1− θ)sω) < c0 + I0( 3

2ω). Assume that R is large enough so that
for all s ∈ [0, T ],

|I(sγR(θ)− (I0(s(1− θ)ω) + I0(sθω))| < 1
2

min(c0 − I0(ω/2), c0 − I0(3ω/2)).

Then the triangle inequality gives (3.3).
Now we must prove (3.2) for θ ∈ [1/4, 3/4]. For all R > 0 and s ≥ 0,

I0(sτ−Rω) ≤ c0 and I0(sτRω) ≤ c0. So it suffices to show that for large enough
R, s ∈ [0, T ], and θ ∈ (1/4, 3/4),

2c0 − I(sγR(θ))

≥
[
(I0((1− θ)sτ−Rω) + I0(θsτRω))− (I((1− θ)sτ−Rω) + I(θsτRω))

]
+
[
(I((1− θ)sτ−Rω) + I(θsτRω))− I(sγR(θ))

]
(3.4)

≡ A(R, θ, s) +B(R, θ, s) > 0 .

We begin with B(R, θ, s). To analyze I(sγR(θ)), we have the following lemma:

Lemma 3.3 For large enough R, and θ ∈ (1/4, 3/4), there exists a unique t ∈ R
with (1− θ)τ−Rω(t) = θτRω(t). Calling this value of t, tR,θ,

tR,θ/R→ 0 as R→∞.

Proof: let ε ∈ (0, 1). Let R be large enough so that ω(t + 2R) < ω(t)/4
for all t ≥ −(1 − ε)R. This is possible because ω decays exponentially. Now
(1− θ)τ−Rω ≡ (1− θ)ω(·+R) is decreasing on [−εR, εR] and θτRω is increasing
on [−εR, εR]. Thus, to prove the existence and uniqueness of tR,θ, it now suffices
to prove that for large R and θ ∈ (1/4, 3/4),



EJDE–2001/47 Gregory S. Spradlin 7

(i) (1− θ)τ−Rω > θτRω on (−∞,−εR] , and

(ii) θτRω > (1− θ)τ−Rω on [εR,∞).

By the symmetry of the problem, the proof of (i) and (ii) are practically the
same, so we prove (ii). Let t ≥ εR. Then t − R ≥ −(1 − ε)R, so ω(T + R) <
ω(t−R)/4, and

(1− θ)τ−Rω(t) ≡ (1− θ)ω(t+R) <
1
4

(1− θ)ω(t−R) <
1
4
ω(t−R) < θτRω(t).

For U ⊂ R, define ‖u‖U = ‖u‖W 1,2(U). For large R and s ∈ [0, T ],

B(R, θ, s) = I((1− θ)sτ−Rω) + I(θsτRω)− I(sγR(θ))

=
1
2

(1− θ)2s2‖τ−Rω‖2[tR,θ,∞) +
1
2
θ2s2‖τRω‖2(−∞,tR,θ ]

−
∫ ∞
tR,θ

b(t)F (s(1− θ)ω)τ−Rω −
∫ tR,θ

−∞
b(t)F (sθω)τRω.

(3.5)

Assume that R is large enough so that |tR,θ| < R/2 and that for all θ ∈
(1/4, 3/4), s ∈ [0, T ] and t ≥ R/2,

b(t)F (s(1− θ)ω(t)) ≤ 1
4
s2(1− θ)2ω(t)2. (3.6)

Since tR,θ > −R/2, t+R > R/2, so (3.6) gives, for all t ≥ tR,θ,

b(t)F (s(1− θ)τ−Rω(t)) ≤ 1
4
s2(1− θ)2τ−Rω(t)2. (3.7)

Similarly, for all t ≤ tR,θ,

b(t)F (sθτRω(t)) ≤ 1
4
s2θ2τRω(t)2, (3.8)

so (3.5), (3.7), (3.8) and the Sobolev inequality ‖u‖L∞(0,∞) ≤ ‖u‖W 1,2(0,∞) give

B(R, θ, s) ≥ 1
4
s2
[
(1− θ)2‖τ−Rω‖2[tR,θ,∞) + θ2‖τRω‖2(−∞,tR,θ ]

]
≥ s2(ω(R+ tR,θ)2 + ω(R− tR,θ)2)/16.

(3.9)

Since δ > 2µ/(µ− 2) ((b3)), we may choose

d ∈ (
2
δ
, 1− 2

µ
).

Since (1− d)µ > 2 and dδ > 2, we may choose ε1 ∈ (0, 1) and small enough so
that

2(1 + ε1)2 < min((1− ε1)µ(1− d), δd). (3.10)
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By the maximum principle, and the superlinear growth of f near 0, there exists
l > 0 such that

ω(t) > le−(1+ε1)|t|

for all t ∈ R. Assume R is large enough (Lemma 3.3) so

|tR,θ| < ε1R .

Then
τ−Rω(tR,θ) = ω(R+ tR,θ) ≥ ω((1 + ε1)R) > le−(1+ε1)2R,

so by (3.9),
B(R, θ, s) ≥ s2l2e−2(1+ε1)R/8. (3.11)

Next, let us estimate A(R, θ, s) from (3.4), still assuming θ ∈ (1/4, 3/4) and
s ∈ [0, T ]. ¿From now on, C will denote a large positive constant depending
only on f , b, and the already chosen T . The value of C may change from line
to line. By (f3), for all q ∈ [0, T maxω],

F (q) ≤ Cqµ.

By the form of A(R, θ, s), all of the “‖ ‖2” terms in A(R, θ, s) cancel out. Since
f ≥ 0, it is easy to show, by comparing ω to a solution v of −v′′ + v = 0, that
ω(t) ≤ Ce−|t| for all t ∈ R. Therefore,

A(R, θ, s) =
∫
R

(b(t)− 1)F ((1− θ)sτ−Rω) +
∫
R

(b(t)− 1)F (θsτRω)

≥ −C
[∫
R

e−δ|t|F ((1− θ)sω(t+R)) dt+
∫
R

e−δ|t|F (θsω(t−R)) dt
]

≥ −Csµ
[∫
R

e−δ|t|e−µ|t−R| dt+
∫
R

e−δ|t|e−µ|t+R| dt
]

≥ −Cs2

∫
R

e−δ|t|e−µ|t−R| dt.

The integral can be estimated by∫
R

e−δ|t|e−µ|t−R| dt ≤
∫ dR

−∞
e−µ|t−R| dt+

∫ ∞
dR

e−δ|t| dt

=
eµ(t−R)

µ

∣∣t=dR
t=−∞ +

e−δt

−δ
∣∣t=∞
t=dR

≤ C
[
e−µ(1−d)R + e−dδR

]
.

By (3.11) and (3), for large R, s ∈ [0, T ], and θ ∈ (1/4, 3/4),

A(R, θ, s) ≥ −Cs2[e−µ(1−d)(1−ε1)R + e−dδR] and

B(R, θ, s) ≥ l2s2e−2(1+ε1)2R/8.

By (3.10), A(R, θ, s)+B(R, θ, s) > 0 for large R. By (3.4), Lemma 3.2 is proven,
from which follow Proposition 2.2 and Theorem 1.1.
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The proof of Theorem 1.1 was indirect, and we can not say much about the
positive homoclinic solution of (1.1). We do know that if c < c0, then I has a
critical point at critical level c. If the alternative c = c0 holds, then if β = c0
(see (2.1)), c is a critical level of I. If c = c0 and β > c0, then for large enough R,
c[R] (∈ (c0, 2c0)) is a critical level of I (assuming otherwise, then a deformation
argument yields a contradiction to the definition of c[R]).

The proof of Theorem 1.1 suggests that, under additional conditions on b,
(1.1) may have “two-bump” solutions, with parts resembling translations of ω
to the left and to the right of zero.
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