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Interfering solutions of a nonhomogeneous
Hamiltonian system *

Gregory S. Spradlin

Abstract

A Hamiltonian system is studied which has a term approaching a con-
stant at an exponential rate at infinity . A minimax argument is used
to show that the equation has a positive homoclinic solution. The proof
employs the interaction between translated solutions of the correspond-
ing homogeneous equation. What distinguishes this result from its few
predecessors is that the equation has a nonhomogeneous nonlinearity.

1 Introduction

This paper is inspired by a remarkable result of Bahri and Li [3], which is a
proof of a result of Bahri and Lions [4] employing a minimax method. The
papers treat an elliptic partial differential equation of the form —Au + u =
b(z)uP on RN, with u? a superquadratic, subcritical nonlinearity (1 < p, and
p< (N+2)/(N—-2)for N> 3), and b(x) — by > 0 as |x| — co. One searches
for positive solutions w that decay to zero as |z| — co. This nonautonomous
problem on the noncompact domain R¥ is difficult to solve without assuming
symmetry on b(z). Bahri and Li found decaying positive solutions under the
assumption that b is positive and continuous, and (b(z) — bs)— (the negative
part of b(z) — bs) decays exponentially at a fast enough rate as |z| — oo (to be
precise, b(x) — boo = O(exp(—(2 + 9)) for some 6 > 0). Surprisingly, unlike in
other, perturbative results, b(x) — by may be “large” in just about any other
sense, such as L? norm, 1 < g < oo.

The proof in [3] is variational. A minimax class is formed using sums of
translates of a solution of the corresponding autonomous problem —Au + u =
boot?, and exploiting the “interference” between “tails” of that solution. This
idea contrasts with many “multibump” results, in which a multibump solution
is one that resembles a sum of translates of solutions of an equation [6, 7, 12]. In
most of these results, the interference between bumps is a problem that must be
managed by separating the translates by a great distance. There seems to have
been little work done in exploiting interference of solutions in either multibump
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or simple existence results in elliptic PDE. A notable exception is a singularly
perturbed elliptic equation studied by Wei and Xiaosong [13]. They employed
interference between bumps to “hold them together” and counteract the lack of
compactness in the problem and find multibumps. A related result is [8].

Articles [3, 13, 8] all involve an equation with homogeneous, or power lin-
earity. The new paper [1] proves a result similar to [3] for a problem with
nonhomogeneous nonlinearity, but with a symmetry condition on the coefficient
function. We seek to avoid any symmetry assumptions. We begin here by study-
ing an ordinary differential equation, with the aim of extending it later to the
PDE case.

Here is the theorem:

Theorem 1.1 Let f and b satisfy
(fl) f € C([Oa OO), [Oa OO))
(f2) f(0) =0, f(q) >0 forq>0

(fs) there exists p > 2 such that f(q)q/n > F(q) = foq f(s)ds for all ¢ > 0,
and

(f1) f(q)/q is an increasing function of q for ¢ > 0, and
(b1) b€ C(R, (0,00))
(b2) b(t) = boo > 0 as |t| — oo, and

(b3) there exist & > 2u/(u—2) and A > 0 such that b(t) — bs, > — Al for all
teR.

Then the Hamiltonian system
—u" +u="0(t)f(u) (1.1)

has a positive solution homoclinic to zero, that is, a solution u with u(t) — 0
and u'(t) — 0 as |t| — oco.

Hypotheses (f1)-(f3) imply that F'is “superquadratic,” that is, for small g,
F(q) = o(¢?) and for large g, F(q) > O(q?). Condition (f4) is due to Nehari
and has many helpful consequences, as we will see. (f1) — (f4) are all satisfied
in the canonical case f(¢q) =¢?, p > 1.

This paper is organized as follows: Section 2 contains the variational frame-
work of the proof and the beginning of the proof. Section 3 contains the con-
clusion, which exploits the fact that g decays exponentially, as do homoclinic
solutions of the autonomous equation associated with (1.1).
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2 The variational argument

Let E = WH2(R), with the standard inner product and norm. Extend f to 0
on the negative reals, and define the C? functional I : E — R by

) = gl = [ BOF(o)

By regularity theory, and the maximum principle, all nonzero critical points
of I are positive homoclinic solutions to (1.1), and vice versa. ;From now on,
without loss of generality assume b, = 1. Then the functional corresponding
to the autonomous equation —u” +u = f(u) is

To(w) = 51l = [ Pl dr

An analysis of the equation —u” +u = f(u) in the (u,u’) phase plane shows
that the equation has a unique nonzero homoclinic solution, modulo translation,
which is positive. Let us denote by w the positive solution satisfying w(0) =
maxw. w is even in t and decays exponentially. Iy has a unique nonzero critical
value, ¢ = Ip(w). co is the “mountain pass” value for Iy. That is, defining the
set of paths

P9 = {h € C([0,1], E) | h(0) = 0,Io(h(1)) < 0},
co is the minimax value

co = h1€n<11:o egl[%ﬁ] Iy(h(1)) > 0.

Define ¢, the mountain pass value for I, by defining the set of paths
® ={h € C([0,1], E) | h(0) = 0,I(h(1)) < 0},

and
¢ = inf max I(h(6)) > 0.
he® 0€(0,1]

We will use a concentration compactness type result to describe Palais-Smale
sequences of I. Recall that a Palais-Smale sequence of I is a sequence (u,,) C E
with I’ (um,) — 0 and (I(um,)) convergent. Define the translation operator 7 as
follows: for typ € R and u : R — R, let 7z, u be u translated ¢y units to the right,
that is, 7, u(t) = u(t — o) for all ¢ € R. The proposition below states that a
Palais-Smale sequence “splits” into the sum of a critical point of I and critical
points of Ij:

Lemma 2.1 If (uy,) C E with I'(uy,) — 0 and I(uy,) — a > 0, there exist
vEE, k>0, and sequences (ti)i<i<i . C R, such that, along a subsequence

— mZ
(also denoted (u.,)),

(i) llum — (v + S5y 7, @)l = 0
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(ii) |t8,| — 00 asm — oo fori=1,....k
(iii) t&Hl —ti — co asm — oo fori=1,...,k—1
(iv) keo + I(v) = a

A proof can be found in [6]. By standard deformation arguments, there exists
[11] a Palais-Smale sequence (u,,) for I along which I converges to c¢. Suppose
¢ < c¢g. Then by applying Lemma 2.1, and the fact that I has no negative
critical values, (iv) implies that the “k” value is zero, so along a subsequence,
(um) converges to a critical point v of I. Since I(v) = ¢ > 0, v is nontrivial.

By (b2), ¢ < ¢p. So from now on, we assume

Cc = Cp.-

By (f4), I has the following property (as does Iy): For any u € E \ {0}, the
mapping s — I(su) is 0 at s = 0, increases for small positive s, attains a
maximum, then decreases to —oo (see [6] for proof). Define the Nehari manifold
S for I by

S={ueFE|u#0, I'(u)u=0}.

Note that a nonzero function u is in S if and only if I(u) = sup,o I(su). Then
c=infl.
s

Define the “location” function £: E'\ {0} — R by

/u2 tan~'(t — L(u))dt = 0.
R

By the Implicit Function Theorem, £ is a well defined, continuous function.
L(w) =0, and L(1zu) = L(u) + ¢t for any v € E \ {0} and ¢t € R. Define

B=inf{I(u) |ueS, L(u)=0}. (2.1)

Clearly 8 > ¢ = ¢p. If B = ¢g, then ¢ is a critical value of I: suppose 8 = cg.
Take (um) C S with L(uy,) = 0 and I(u,) — co. Along a subsequence,
I'|s(um) — 0. By (f1), I'(um) — 0 (see [9] for similar minimax arguments on
a Nehari manifold). Apply Lemma 2.1. (iv) shows, again, that either k = 0,
or k =1 with v = 0. The latter alternative is impossible because L(u,,) = 0.
Therefore (u,,) converges (along a subsequence) to a critical point of I. Thus
we assume from now on that

ﬂ > Cp. (22)
Define P : E\ {0} — S to be radial projection onto S, that is,

P(u) =tu; t >0, tu € S.
For R > 0 define the minimax class

I'r={y€C([0,1],5) [ 7(0) = P(7-gw),7(1) = P(rrw)}
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and the minimax value

= inf 1(7(6)).
clf] = inf max I(y(6))

Theorem 1.1 will follow from the following proposition:

Proposition 2.2 There exists Ry = Ro(f,g) with the following property: if
R > Ry, then

(i) I(P(t_grw)) < B and I(P(trw)) < B
(i1) c[R] = B
(i) c[R] < 2co

To prove Theorem 1.1 from Proposition 2.2, let R > Ry. By (i)-(ii), there
exists a sequence (uy,) C S with I'(uy,) — ¢[R] and I'|s(um) — 0, and I’ (ty,) —
0. Apply Lemma 2.1 to (u,). Since ¢ < 8 < ¢[R] < 2¢q, Lemma 2.1(iv) implies
that ¢[R] or ¢[R]—cp is a critical value of I. Since 0 < ¢[R]—c¢g < ¢, assumption
(f4) implies that c[R] — ¢ is not a critical value of I. Therefore ¢[R] is a positive
critical value of I. Maximum principle arguments show that (1.1) has a positive
homoclinic solution. Theorem 1.1 is proven.

3 Interfering Tails

This section contains the proof of Proposition 2.2. Parts (i) and (ii) are easy. Us-
ing (be), it is straightforward to show that I(P(7_gw)) — ¢o and I(P(Trw)) —
¢p as R — 00, and we assumed in (2.2) that ¢ < . (ii) holds for all R > 0, not
necessarily large: let v € I'g. Since L(P(7-rw)) = —R, L(P(7gw)) = R, and L
is continuous, there exists 8* € [0, 1] with £(y(0*)) = 0, so by the definition of
B, I(v(0*)) > B. The remainder of this section is devoted to the proof of (iii),
which is more difficult.

We adopt a construction similar to that of [3]. For R > 0, define vg : [0, 1] —
E\ {0} by

vr(0) = max((1 — 6)7_gw, O0Trw)
and A € I'r by
Yr(0) = P(vr(0))

We will show that for large enough R,

I(3R(0)) < 2co, 3.1
Jmax [(3r(0)) < 2o (3.1)
proving Proposition 2.2(iii).
To avoid the complications in working with the manifold S, we have the
following lemma. “For large enough R” means there exists Ry = Ro(f,g) such
that if R > Ry, etc., as in Proposition 2.2.

Lemma 3.1 There exists T = T(f,g) such that for large enough R, and all
0 €[0,1],
I(Tyr(6)) < 0.
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Proof: let T > 0 be large enough so that Ip(Tw) < —co — 2. Then for all
0 € [0,1], Ip(Tw) + In((1 — )Tw) < —2. Let @ € E have compact support in
R and be close enough to w that In(0To) + In((1—0)Tw) < —1 for all 6 € [0,1].
I is Lipschitz on bounded subsets of E (see [11] for a proof in a similar setting),
so for large enough R, and all 6 € [0, 1], I(Tyr(0)) < —1+1/2 < 0.

By Lemma 3.1, in order to prove (3.1), it suffices to show that for large
enough R, all § € [0,1] and s € [0, 7],

I(svr(0)) < 2¢o. (3.2)
We will treat separately the case where 6 is close to 0 or 1:
Lemma 3.2 For large enough R, all s € [0,T] and all 6 € [0,1/4] U [3/4,1],

I(svr(9)) < 2co. (3.3)

Proof: without loss of generality let 6 € [0,1/4]. If Iy(s6w) < In(w/2), then
In(sbw) + In((1 — O)sw) < ¢o + Ip(w/2). If Iy(sbw) > Ip(w/2), then s >
1/2, 50 (1 = 0)s = (5 — 1)(s8) > 3(3) > 3/2, s0 Ip((1 — O)sw) < Io(3w),
Io(sw) + Io((1 — 0)sw) < co + Io(3w). Assume that R is large enough so that
for all s € [0, T,

[ (s7r(0) — (Io(s(1 = O)w) + Io(sbw))| < %min(co —Io(w/2),co — Io(3w/2)).

Then the triangle inequality gives (3.3).

Now we must prove (3.2) for § € [1/4,3/4]. For all R > 0 and s > 0,
Iy(sT—gpw) < ¢g and Ip(sTrw) < co. So it suffices to show that for large enough
R, s€[0,T),and 6 € (1/4,3/4),

2¢o — I(svr(9))

> [(IO((l —0)sT_gw) + Ip(0strw)) — (I((1 — 0)sT_gw) + I(fsTRw))
+[(I((1 = 0)s7—gw) + I(OsTrw)) — I(syr(0))] (3.4)
A(R,60,s)+ B(R,0,s) > 0.

We begin with B(R, 6, s). To analyze I(syr(6)), we have the following lemma:

Lemma 3.3 For large enough R, and 6 € (1/4,3/4), there exists a unique t € R
with (1 — 0)T_gw(t) = O7gw(t). Calling this value of t, tr g,

tro/R— 0 as R — oo.

Proof: let ¢ € (0,1). Let R be large enough so that w(t + 2R) < w(t)/4
for all t > —(1 — €)R. This is possible because w decays exponentially. Now
(1-0)7_gw = (1—0)w(-+ R) is decreasing on [—€eR, eR] and O7rw is increasing
on [—eR, eR]. Thus, to prove the existence and uniqueness of ¢ g, it now suffices
to prove that for large R and 6 € (1/4,3/4),
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(i) (1 = 0)7_gw > 07w on (—oo0, —€eR] , and
(i) OTpw > (1 — 0)7_Rw on [eR, 00).
By the symmetry of the problem, the proof of (i) and (ii) are practically the

same, so we prove (ii). Let ¢ > eR. Thent — R > —(1 —¢)R, so w(T' + R) <
w(t — R)/4, and

(1—0)r_nw(t) = (1— O)w(t + R) < 3(1 Ot —R) < iw(t _R) < frau(t).

For U C R, define ||ul|y = ||ullw1.2(). For large R and s € [0, 77,

B(R,0,s) =I((1 —0)sT_gpw) + I(0sTrw) — I(syr(9))

1 1
= 5(1 — 0)252”7'_360“[215&9’00) + 50232||7-Rw||%_007t&6] (35)
oo tr,0
_ / b)Y F(s(1 — 0))7_ e — / b(t) F (500) 7re.
tr,0 —00

Assume that R is large enough so that |tgrs| < R/2 and that for all 6 €
(1/4,3/4), s € [0,T] and t > R/2,

b(t)F(s(1 — O)w(t)) < ~s2(1 — 0)%w(t)>. (3.6)

=

Since trg > —R/2,t+ R > R/2, so (3.6) gives, for all t > tr g,

b(t)F(s(1 —0)r_rw(t)) < 252(1 —0)%7_rw(t)?. (3.7
Similarly, for all ¢t < tp g,
bt F(s0mne(t)) < is%%m(t)?, (3.9)

so (3.5), (3.7), (3.8) and the Sobolev inequality [|u[| L (0,00) < [[u]lw1.2(0,00) glVe

s [(1 = 01T rwllft, o) + O ITROIT sc 141

> s*(W(R+trg)? +w(R—trg)?)/16.

(3.9)

Since d > 2u/(p — 2) ((bs)), we may choose
Since (1 —d)pu > 2 and dé > 2, we may choose €; € (0,1) and small enough so

that
2(1 4 €1)? < min((1 — e)p(1 — d), 6d). (3.10)
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By the maximum principle, and the superlinear growth of f near 0, there exists
[ > 0 such that
w(t) > le~(AFeallt]

for all ¢ € R. Assume R is large enough (Lemma 3.3) so
|tR’.9| <eR.

Then ,
T pw(tpe) = w(R+tre) > w((l+e)R) > le”Fa) R

so by (3.9),
B(R,0,s) > s?12e 20F)F /g, (3.11)

Next, let us estimate A(R, 0, s) from (3.4), still assuming 6 € (1/4,3/4) and
s € [0,T]. (From now on, C' will denote a large positive constant depending
only on f, b, and the already chosen T. The value of C' may change from line
to line. By (f3), for all ¢ € [0,T maxw],

F(q) < C¢".

By the form of A(R,,s), all of the “|| ||*” terms in A(R,#,s) cancel out. Since
f >0, it is easy to show, by comparing w to a solution v of —v” + v = 0, that
w(t) < Ce~ ™ for all t € R. Therefore,

A(R,0,s) = /

(b(t) — 1)F((1 — 0)s7_pw) + / (b(t) — 1) F(0s7rw)
R

R

> —C[/Re“”t‘F((l — 0)sw(t+ R))dt + /Re—‘”“F(esw(t — R))dt]

Y

—C'st [/e“sltle_“‘t_Rl dt + /e_‘sltle_“‘t"’m dt]
R R

Y

—6’82/6_5“'6_““_}zl dt.
R

The integral can be estimated by

dR )
/e—éme—un—m dtS/ o nlt=R| dt+/ ool g
R —00 dR

_ eh(t—R) |t:dR e~ 0t |t:oo < C[eiﬂ(lid)R _|_€7d6R]_

1 t=—00 -4 t=dR —

By (3.11) and (3), for large R, s € [0,T], and 0 € (1/4,3/4),

A(R,0,s) > —Cs?[e 1= DU—e)R 4 o=ddR]  4nq
B(R, 0, s) > l252e—2(1+61)2R/8.

By (3.10), A(R,0,s)+B(R,0,s) > 0 for large R. By (3.4), Lemma 3.2 is proven,
from which follow Proposition 2.2 and Theorem 1.1.
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The proof of Theorem 1.1 was indirect, and we can not say much about the
positive homoclinic solution of (1.1). We do know that if ¢ < ¢g, then I has a
critical point at critical level ¢. If the alternative ¢ = ¢y holds, then if 5 = ¢
(see (2.1)), cis a critical level of I. If ¢ = ¢g and 8 > ¢g, then for large enough R,
c[R] (€ (co,2¢p)) is a critical level of I (assuming otherwise, then a deformation
argument yields a contradiction to the definition of ¢[R]).

The proof of Theorem 1.1 suggests that, under additional conditions on b,
(1.1) may have “two-bump” solutions, with parts resembling translations of w
to the left and to the right of zero.
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