Global bifurcation result for the p-biharmonic operator *

Pavel Drábek \& Mitsuharu Ôtani

Abstract

We prove that the nonlinear eigenvalue problem for the p-biharmonic operator with $p>1$, and Ω a bounded domain in \mathbb{R}^{N} with smooth boundary, has principal positive eigenvalue λ_{1} which is simple and isolated. The corresponding eigenfunction is positive in Ω and satisfies $\frac{\partial u}{\partial n}<0$ on $\partial \Omega$, $\Delta u_{1}<0$ in Ω. We also prove that $\left(\lambda_{1}, 0\right)$ is the point of global bifurcation for associated nonhomogeneous problem. In the case $N=1$ we give a description of all eigenvalues and associated eigenfunctions. Every such an eigenvalue is then the point of global bifurcation.

1 Introduction

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with smooth boundary $\partial \Omega$. For $p \in(1,+\infty)$ consider the nonlinear eigenvalue problem

$$
\begin{gather*}
\Delta\left(|\Delta u|^{p-2} \Delta u\right)=\lambda|u|^{p-2} u \quad \text { in } \Omega \tag{1.1}\\
u=\Delta u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

In this paper we prove that (1.1) has a principal positive eigenvalue $\lambda_{1}=$ $\lambda_{1}(p)$ which is simple and isolated. Moreover, we prove that there exists strictly positive eigenfunction $u_{1}=u_{1}(p)$ in Ω associated with $\lambda_{1}(p)$ and satisfying $\frac{\partial u_{1}}{\partial n}<0$ on $\partial \Omega$. We also study the dependence of $\lambda_{1}(p)$ on p and show that $p \mapsto \lambda_{1}(p)$ is a continuous function in $(1,+\infty)$. Making use of this result we prove that $\lambda_{1}(p)$ is a bifurcation point of

$$
\begin{gather*}
\Delta\left(|\Delta u|^{p-2} \Delta u\right)=\lambda|u|^{p-2} u+g(x, \lambda, u) \quad \text { in } \Omega \\
u=\Delta u=0 \quad \text { on } \partial \Omega \tag{1.2}
\end{gather*}
$$

from which a global continuum of nontrivial solutions emanates.

[^0]In one dimensional case $(N=1, \Omega=(0,1))$ we obtain a complete characterization of the spectrum of the eigenvalue problem

$$
\begin{gather*}
\left(\left|u^{\prime \prime}\right|^{p-2} u^{\prime \prime}\right)^{\prime \prime}=\lambda|u|^{p-2} u \quad \text { in }(0,1) \tag{1.3}\\
u(0)=u^{\prime \prime}(0)=u(1)=u^{\prime \prime}(1)=0 .
\end{gather*}
$$

We prove that the spectrum of (1.3) consists of a sequence of simple eigenvalues $0<\lambda_{1}<\ldots<\lambda_{n}<\ldots \rightarrow+\infty$. The eigenfunction u_{n} associated with $\lambda_{n}(n \geq 2)$ has precisely n bumps in $(0,1)$ and it is reproduced from u_{1} by using the symmetry of (1.3). As a simple consequence we then obtain that any λ_{n} is a global bifurcation point of

$$
\begin{gather*}
\left(\left|u^{\prime \prime}\right|^{p-2} u^{\prime \prime}\right)^{\prime \prime}=\lambda|u|^{p-2} u+g(t, \lambda, u) \quad \text { in }(0,1) \tag{1.4}\\
u(0)=u^{\prime \prime}(0)=u(1)=u^{\prime \prime}(1)=0 .
\end{gather*}
$$

Our main results are stated in the following theorems.
Theorem 1.1 The problem (1.1) has the least positive eigenvalue $\lambda_{1}(p)$ which is simple and isolated in the sense that the set of all solutions of (1.1) with $\lambda=$ $\lambda_{1}(p)$ forms a one dimensional linear space spanned by a positive eigenfunction $u_{1}(p)$ associated with $\lambda_{1}(p)$ such that $\Delta u_{1}(p)<0$ in Ω and $\frac{\partial u_{1}(p)}{\partial n}<0$ on $\partial \Omega$ and that there exists a positive number δ so that $\left(\lambda_{1}(p), \lambda_{1}(p)+\delta\right)$ does not contain any eigenvalues of $\left(\mathrm{E}_{\mathrm{N}}\right)_{\mathrm{p}}$. Moreover, (1.1) has a positive solution if and only if $\lambda=\lambda_{1}$ and the function $p \mapsto \lambda_{1}(p)$ is continuous.

Theorem 1.2 Let $p>1$ be fixed and the function $g=g(x, \lambda, s), g(x, \lambda, 0)=0$, represents higher order terms in (1.2) (see Section 4 for precise assumptions). Then there exists a continuum of nontrivial solutions (λ, u) of (1.2) bifurcating from $\left(\lambda_{1}(p), 0\right)$ which is either unbounded or meets the point $\left(\lambda_{e}(p), 0\right)$, where $\lambda_{e}(p)>\lambda_{1}(p)$ is some eigenvalue of (1.1).

Theorem 1.3 The set of all eigenvalues of (1.3) is formed by a sequence

$$
0<\lambda_{1}(p)<\lambda_{2}(p)<\ldots<\lambda_{n}(p)<\ldots \rightarrow+\infty .
$$

For any $n=1,2, \ldots$, the function $p \mapsto \lambda_{n}(p)$ is continuous. Every $\lambda_{n}(p)$ is simple and the corresponding one dimensional space of solutions of (1.3) with $\lambda=\lambda_{n}(p)$ is spanned by a function having precisely n bumps in $(0,1)$. Each n-bump solution is constructed by the reflection and compression of the eigenfunction $u_{1}(p)$ associated with $\lambda_{1}(p)$.

Theorem 1.4 Let $p>1$ be fixed and $g=g(t, \lambda, s), g(t, \lambda, 0)=0$, represents higher order terms in (1.4) (see Section 5 for precise assumptions). Then for every $n=1,2, \ldots$ there exists a continuum of nontrivial solutions (λ, u) of (1.4) bifurcating from $\left(\lambda_{n}(p), 0\right)$ which is either unbounded or meets the point $\left(\lambda_{k}(p), 0\right)$, with $k \neq n$.

The paper is organized as follows. In Section 2 we define the notion of the solution, and prepare some auxiliary results. Section 3 contains the proof of Theorem 1.1. The essential part of it relies on the abstract result of Idogawa and Ôtani [7] and the verification of its assumptions. In Section 4 we prove the bifurcation result stated in Theorem 1.2 using the degree argument and the well-known result of Rabinowitz $[\mathrm{R}]$. The last Section 5 is devoted to the one dimensional case and Theorems 1.3, 1.4 are proved there.

2 Auxiliaries

For $p>1$ we define the function $\psi_{p}: \mathbb{R} \rightarrow \mathbb{R}$ by $\psi_{p}(s)=|s|^{p-2} s, s \neq 0$ and $\psi_{p}(0)=0$. Denoting $p^{\prime}=\frac{p}{p-1}$ we immediately obtain that $z=\psi_{p}(s)$ if and only if $s=\psi_{p^{\prime}}(z)$. The eigenvalue problem (1.1) can be thus written in the form

$$
\begin{gather*}
\Delta \psi_{p}(\Delta u)=\lambda \psi_{p}(u) \quad \text { in } \Omega \\
u=\Delta u=0 \quad \text { on } \partial \Omega . \tag{2.1}
\end{gather*}
$$

Before we define the weak solution to (2.1) we recall some properties of the Dirichlet problem for Poisson equation:

$$
\begin{gather*}
-\Delta w=f \quad \text { in } \Omega \\
w=0 \quad \text { on } \partial \Omega . \tag{2.2}
\end{gather*}
$$

It is well known that (2.2) is uniquely solvable in $L^{p}(\Omega)$ for any $p \in(1, \infty)$ and that the linear solution operator $\Lambda: L^{p}(\Omega) \rightarrow W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega), \Lambda f=w$, has the properties stated in the following lemma, (see, e.g., [6]).

Lemma 2.1 (i) (Continuity) There exists a constant $c_{p}>0$ such that

$$
\|\Lambda f\|_{W^{2, p}} \leq c_{p}\|f\|_{L^{p}}
$$

holds for all $p \in(1, \infty)$ and $f \in L^{p}(\Omega)$.
(ii) (Continuity) Given $k \geq 1, k \in \mathbb{N}$, there exists a constant $c_{p, k}>0$ such that

$$
\|\Lambda f\|_{W^{k+2, p}} \leq c_{p, k}\|f\|_{W^{k, p}}
$$

holds for all $p \in(1, \infty)$ and $f \in W^{k, p}(\Omega)$.
(iii) (Symmetry) The following identity

$$
\int_{\Omega} \Lambda u \cdot v d x=\int_{\Omega} u \cdot \Lambda v d x
$$

holds for all $u \in L^{p}(\Omega)$ and $v \in L^{p^{\prime}}(\Omega)$ with $p \in(1, \infty)$.
(iv) (Regularity) Given $f \in L^{\infty}(\Omega)$, we have $\Lambda f \in C^{1, \alpha}(\bar{\Omega})$ for all $\alpha \in(0,1)$; moreover, there exist $c_{\alpha}>0$ such that

$$
\|\Lambda f\|_{C^{1, \alpha}} \leq c_{\alpha}\|f\|_{L^{\infty}}
$$

(v) (Regularity and Hopf-type maximum principle) Let $f \in C(\bar{\Omega})$ and $f \geq 0$, then $w=\Lambda f \in C^{1, \alpha}(\bar{\Omega})$, for all $\alpha \in(0,1)$ and w satisfies: $w>0$ in $\Omega, \frac{\partial w}{\partial n}<0$ on $\partial \Omega$.
(vi) (Order preserving property) Given $f, g \in L^{p}(\Omega), f \leq g$ in Ω, we have $\Lambda f<\Lambda g$ in Ω.

Let us denote $v:=-\Delta u$ in (1.1). Then the problem (1.1) can be restated as an operator equation

$$
\begin{equation*}
\psi_{p}(v)=\lambda \Lambda \psi_{p}(\Lambda v) \quad \text { in } \Omega \tag{2.3}
\end{equation*}
$$

or as

$$
\begin{equation*}
v=\lambda^{\frac{1}{(p-1)}} \psi_{p^{\prime}}\left(\Lambda \psi_{p}(\Lambda v)\right) \quad \text { in } \Omega \tag{2.4}
\end{equation*}
$$

Indeed, let us assume that $v \in L^{p}(\Omega)$ solves (2.3). Then from Lemma 2.1 (i) and the properties of the Nemytskii operator induced by ψ_{p} we obtain:

$$
\begin{aligned}
& u=\Lambda v \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega) \Rightarrow \psi_{p}(\Lambda v) \in L^{p^{\prime}}(\Omega) \Rightarrow \\
& \Rightarrow \Lambda \psi_{p}(\Lambda v) \in W^{2, p^{\prime}}(\Omega) \cap W_{0}^{1, p^{\prime}}(\Omega) \Rightarrow \\
& \Rightarrow \psi_{p}(v) \in W^{2, p^{\prime}}(\Omega) \cap W_{0}^{1, p^{\prime}}(\Omega) \Rightarrow \\
& \Rightarrow-\Delta \psi_{p}(-\Delta u)=\lambda \psi_{p}(u) \text { holds in } L^{p^{\prime}}(\Omega) .
\end{aligned}
$$

This enables us to give the following definition of the solution of (1.1).
Definition 2.2 The function $u \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$ is called a solution of (1.1) if $v=-\Delta u$ solves (2.3) in $L^{p^{\prime}}(\Omega)$. The parameter λ_{e} is called an eigenvalue of (1.1) if there is a nonzero solution u_{e} of (1.1) with $\lambda=\lambda_{e}$. The function u_{e} is then called the eigenfunction associated with the eigenvalue λ_{e}.

Lemma 2.3 (Duality). Let $\lambda_{e}=\lambda_{e}(p) \neq 0$ be the eigenvalue of $\left(E_{N}\right)_{p}$ and $u_{e}(p)$ be the eigenfunction associated with λ_{e}. Define $\lambda_{e}^{\left(p^{\prime}\right)}$ and $u_{e}\left(p^{\prime}\right)$ by $\lambda_{e}^{1 / p}(p)=\lambda_{e}^{1 / p^{\prime}}\left(p^{\prime}\right)$ and $u_{e}\left(p^{\prime}\right)=\lambda_{e}^{-1}(p) \psi_{p}\left(\Delta u_{e}(p)\right)$. Then $\lambda_{e}\left(p^{\prime}\right)$ becomes an eigenvalue of $\left(E_{N}\right)_{p^{\prime}}$ with $p^{\prime}=\frac{p}{p-1}$ and $u_{e}\left(p^{\prime}\right)$ gives the eigenfunction associated with $\lambda_{e}\left(p^{\prime}\right)$.

Proof. We have

$$
\begin{gather*}
\Delta \psi_{p}\left(\Delta u_{e}(p)\right)=\lambda_{e}(p) \psi_{p}\left(u_{e}(p)\right) \quad \text { in } \Omega \\
u_{e}(p)=\Delta u_{e}(p)=0 \quad \text { on } \partial \Omega \tag{2.5}
\end{gather*}
$$

Let $w_{p}:=\psi_{p}\left(\Delta u_{e}(p)\right)$, then $w_{p} \in W^{2, p^{\prime}}(\Omega) \cap W_{0}^{1, p^{\prime}}(\Omega)$. It is easy to see that to solve (2.5) is nothing but to find $\left(u_{e}(p), w_{p}\right)$ satisfying the system

$$
\begin{gather*}
\Delta w_{p}=\lambda_{e}(p) \psi_{p}\left(u_{e}(p)\right) \\
\Delta u_{e}(p)=\psi_{p^{\prime}}\left(w_{p}\right) . \tag{2.6}
\end{gather*}
$$

Since $u_{e}\left(p^{\prime}\right)=\frac{1}{\lambda_{e}(p)} w_{p} \in W^{2, p^{\prime}}(\Omega) \cap W_{0}^{1, p^{\prime}}(\Omega)$ satisfies $\psi_{p^{\prime}}\left(u_{e}\left(p^{\prime}\right)\right)=$ $\lambda_{e}(p)^{1-p^{\prime}} \psi_{p^{\prime}}\left(w_{p}\right)=\lambda_{e}\left(p^{\prime}\right)^{-1} \psi_{p^{\prime}}\left(w_{p}\right)$, we easily find that $\left(u_{e}\left(p^{\prime}\right), w_{p^{\prime}}\right)$ with $w_{p^{\prime}}=$ $u_{e}(p)$ solves (2.6) with $p=p^{\prime}$.

Remark 2.4 The duality proved in the previous lemma enables us to deduce several properties of (1.1) for $p>2$ from those for $p \in(1,2)$ and vice versa.

The following technical lemma will be useful for the verification of certain abstract assumptions in the next section.

Lemma 2.5 Let A, B, C and p be real numbers satisfying $A \geq 0, B \geq 0, C \geq$ $\max \{B-A, 0\}$ and $p>1$. Then

$$
\begin{equation*}
|A+C|^{p}+|B-C|^{p} \geq A^{p}+B^{p} \tag{2.7}
\end{equation*}
$$

Proof. If $C=0$ (i.e, $B \leq A$), then (2.7) is trivial. So it suffices to show (2.7) when $B \geq A$. Due to the strict convexity of the function $s \mapsto s^{p}$, in $(0,+\infty)$ we have

$$
\begin{aligned}
& |A+C|^{p} \geq B^{p}+p B^{p-1}[C-(B-A)] \\
& |B-C|^{p} \geq A^{p}-p A^{p-1}[C-(B-A)]
\end{aligned}
$$

Adding these inequalities, we derive the assertion.

3 Eigenvalue problem

Let us define convex functionals $f_{p}^{1}, f_{p}^{2}: L^{p}(\Omega) \rightarrow \mathbb{R}$ as follows:

$$
f_{p}^{1}(v)=\frac{1}{p} \int_{\Omega}|v|^{p} d x, f_{p}^{2}(v)=\frac{1}{p} \int_{\Omega}|\Lambda v|^{p} d x
$$

Then it is clear that f_{p}^{1} and f_{p}^{2} are Fréchet differentiable in $L^{p}(\Omega)$. Since for every Fréchet differentiable convex functional f, its subdifferential ∂f coincides with its Fréchet derivative f^{\prime}, we get that (2.3) is equivalent to

$$
\begin{equation*}
\partial f_{p}^{1}(v)=\lambda \partial f_{p}^{2}(v) \text { in } L^{p^{\prime}}(\Omega) \tag{3.1}
\end{equation*}
$$

where ∂f_{p}^{i} are the subdifferentials of $f_{p}^{i},(i=1,2)$. We are going to verify the hypotheses $(A 0),(A 0)^{\prime},(6.1)-(6.10)$ of [7] with $A=\partial f_{p}^{1}, B=\partial f_{p}^{2}$ and $V=L^{p}(\Omega)$. The assumptions (6.1) (i)-(iii), (6.2) (i)-(iii), (6.3), (6.4) (i) and (6.5) are clearly satisfied. Concerning (6.4) (ii) we should verify that

$$
\begin{equation*}
f_{p}^{2}(\max \{u, w\})+f_{p}^{2}(\min \{u, w\}) \geq f_{p}^{2}(u)+f_{p}^{2}(w) \tag{3.2}
\end{equation*}
$$

for any $u, w \in L^{p}(\Omega)$ satisfying $u \geq 0$ and $w \geq 0$ a.e. in Ω. We have $\max \{u, w\}=u+(w-u)^{+}$and $\min \{u, w\}=w-(w-u)^{+}$. By Lemma 2.1
(vi), the inequality $w-u \leq(w-u)^{+}$implies $\Lambda(w-u)^{+} \geq \Lambda(w-u)=\Lambda w-\Lambda u$. Hence Lemma 2.5 with $A=\Lambda u, B=\Lambda w$ and $C=\Lambda(w-u)^{+}$gives

$$
\begin{equation*}
\int_{\Omega}\left|\Lambda u+\Lambda(w-u)^{+}\right|^{p} d x+\int_{\Omega}\left|\Lambda w-\Lambda(w-u)^{+}\right|^{p} d x \geq \int_{\Omega}|\Lambda u|^{p} d x+\int_{\Omega}|\Lambda w|^{p} d x \tag{3.3}
\end{equation*}
$$

Then (3.3) implies (3.2). The assumption (6.10) is a consequence of Lemma 2.1 (vi). Hence it remains to verify (A0) and (A0)'.

Lemma 3.1 Let $v \in L^{p}(\Omega)$ solve (2.3) in $L^{p^{\prime}}(\Omega)$. Then $v \in C(\bar{\Omega})$.
Proof. The main part of the proof is to show the following fact: Suppose, that $v \in L^{p_{0}}(\Omega)$, then we find that
(i) $v \in L^{p_{1}}(\Omega)$ with $\frac{1}{p_{1}}=\frac{1}{p_{0}}-\frac{p^{\prime}}{N}$ if $p_{0}<\frac{N}{2 p^{\prime}}$
(ii) $v \in C(\bar{\Omega})$ if $p_{0}>\frac{N}{2 p^{\prime}}, p^{\prime}=\frac{p}{p-1}$.

Let $v \in L^{p_{0}}(\Omega)$, and $p_{0}<\frac{N}{2 p}$, then $\Lambda v \in W^{2, p_{0}}(\Omega)$ by Lemma 2.1(i). Then, by Sobolev's embedding theorem and the property of the Nemytskii operator: $r \mapsto \psi_{p}(r)$, we get $\Lambda v \in L^{r_{0}}(\Omega)$ and $\psi_{p}(\Lambda v) \in L^{\frac{r_{0}}{p-1}}$ with $r_{0}=\frac{N p_{0}}{N-2 p_{0}}$ Again, by Sobolev's embedding theorem and the property of the Nemytskii operator, we obtain

$$
\Lambda \psi_{p}(\Lambda v) \in W^{2, \frac{r_{o}}{p-1}}(\Omega) \hookrightarrow L^{r_{1}}(\Omega)
$$

and

$$
\psi_{p^{\prime}}\left(\Lambda \psi_{p}(\Lambda v)\right) \in L^{\frac{r_{1}}{p^{\prime}-1}}(\Omega)=L^{r_{1}(p-1)}(\Omega)
$$

with $r_{1}=\frac{N r_{0}}{N(p-1)-2 r_{0}}$. Consequently, (2.4) implies that $v \in L^{p_{1}}(\Omega)$ with $p_{1}=$ $r_{1}(p-1)$, i.e., $\frac{1}{p_{1}}=\frac{1}{p_{0}}-\frac{2 p^{\prime}}{N}$, whence follows assertion (i). If $\frac{N}{2}<p_{0}$ it is obvious by Sobolev's embedding theorem that $v \in C(\bar{\Omega})$. As for the case $\frac{N}{2 p^{\prime}}<p_{0}<\frac{N}{2}$ (or $p_{0}=\frac{N}{2}$), noting that $W^{2, \frac{r_{0}}{p-1}}(\Omega) \hookrightarrow C(\bar{\Omega})$ (or $W^{2, \frac{r}{p-1}}(\Omega) \hookrightarrow C(\bar{\Omega})$ for sufficiently large r) we easily see that $v \in C(\bar{\Omega})$. Then assertion (ii) is verified. Now take suitable $p_{0} \in(1, p]$ and $k \in \mathbb{N}$ such that

$$
p_{k-1}<\frac{N}{2 p^{\prime}}<p_{k} \text { with } \frac{1}{p_{k}}=\frac{1}{p_{0}}-\frac{2 p^{\prime}}{N} k .
$$

Then applying assertion (i) with $p_{0}=p_{0}, p_{1} \ldots, p_{k-1}$, we deduce $v \in L^{p_{k}}(\Omega)$. Hence from assertion (ii), $v \in C(\Omega)$ follows.

Remark 3.2 In particular, it follows from above proof that given bounded sequences $\left\{p_{n}\right\} \subset(1, \infty)$ and $\left\{\lambda_{n}\right\} \subset(0, \infty)$, the sequence of elements v_{n} solving (2.3) with $\lambda=\lambda_{n}$ and $p=p_{n}$ which are normalized by $\left\|v_{n}\right\|_{L^{q}}=1, q \in(1, \infty)$, we find a constant $c>0$ (independent of n) such that

$$
\left\|v_{n}\right\|_{L^{\infty}} \leq c
$$

By the same reason, if $\lambda_{n} \rightarrow \lambda_{0}$ and v_{0} solves (2.3) with $\lambda=\lambda_{0},\left\|v_{0}\right\|_{L^{q}}=1$, the proof of Lemma 3.1 implies that

$$
\lim _{n \rightarrow \infty}\left\|v_{n}-v_{0}\right\|_{L^{\infty}}=0
$$

Lemma 3.3 Let $p \geq 2$ and $v \in L^{p}(\Omega), v \geq 0$ a.e. in Ω, and let v solve (2.3) in $L^{p^{\prime}}(\Omega)$. Then $v \in C^{1}(\Omega), v>0$ everywhere in Ω and $\frac{\partial v}{\partial n}=-\infty$ on $\partial \Omega$.

Proof. It follows from Lemma 2.1 (v), Lemma 3.1 and (2.3) that $w:=\psi_{p}(v)$ satisfies $w \in C^{1, \alpha}(\bar{\Omega}), \alpha \in(0,1), w>0$ in Ω and $\frac{\partial w}{\partial n}<0$ on $\partial \Omega$. This fact assures that $v>0$ in Ω and $(p-1)|v|^{p-2} \frac{\partial v}{\partial n}<0$ on $\partial \Omega$. Then $\frac{\partial v}{\partial n}=-\infty$ follows from the fact that $v=0$ on $\partial \Omega$.

For $p \geq 2$ the assumption (A0) now follows from Lemma 3.3 while instead of (A0)' we obtain the following property - (A0)": Every positive solution v of (3.1) satisfies $v \in C^{1}(\Omega), v=0$ on $\partial \Omega$ and $\frac{\partial v}{\partial n}=-\infty$ on $\partial \Omega$.

It is easy to see that the results of [7] remain true even if (A0)' is substituted by (A0)". Applying now the results of [7] we deduce that, for $p \geq 2$,

$$
0<\lambda_{1}(p):=\left(\sup _{v \in L^{p}(\Omega)} \frac{f_{p}^{2}(v)}{f_{p}^{1}(v)}\right)^{-1}
$$

is the least simple eigenvalue of (3.1) with associated positive eigenfunction $v_{1}(p),\left\|v_{1}(p)\right\|_{L^{p}}=1$ and (3.1) has a positive solution if and only if $\lambda=\lambda_{1}(p)$. The assertion for $p \in(1,2)$ now follows from Lemma 2.3 and Remark 2.4.

As a consequence of this fact we find that $u_{1}(p)=\Lambda v_{1}(p)$ is the corresponding first eigenfunction of $\left(\mathrm{E}_{\mathrm{N}}\right)_{\mathrm{p}}$ satisfying $u_{1}(p)>0$ in $\Omega, \Delta u_{1}(p)<0$ in Ω and $\frac{\partial u_{1}(p)}{\partial n}<0$ on $\partial \Omega$ due to Lemma 2.1 (vi). Moreover, if u is another positive solution of $\left(\mathrm{E}_{\mathrm{N}}\right)_{\mathrm{p}}$ then $v=-\Delta u>0$ solves (2.3) in $L^{p^{\prime}}(\Omega)$. Therefore (2.4) holds with $\Lambda v=u$. Hence according to the above mentioned argument, it holds that $\lambda=\lambda_{1}(p)$ and $v=v_{1}(p)$, i.e. $u=u_{1}(p)$.

Lemma 3.4 $\lambda_{1}(p)$ is isolated, i.e. there is $\delta>0$ such that the interval $\left(\lambda_{1}(p), \lambda_{1}\right.$ $(p)+\delta)$ does not contain any eigenvalue of (3.1).

Proof. Assume the contrary, i.e., there are sequences $\left\{\lambda_{n}\right\},\left\{v_{n}\right\}$ such that $\lambda_{n} \rightarrow \lambda_{1}(p),\left\|v_{n}\right\|_{L^{p}}=1$ and that v_{n} solves (3.1) with $\lambda=\lambda_{n}$. Then both v_{n} and Λv_{n} must change sign in Ω and

$$
\lim _{n \rightarrow \infty}\left\|v_{n}-v_{1}(p)\right\|_{L^{\infty}}=0
$$

according to Remark 3.2. But Lemma 2.1 (iv) implies that $\Lambda v_{n} \rightarrow \Lambda v_{1}(p)$ in $C^{1, \alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$ which leads to a contradiction with the fact that $\Lambda v_{1}(p)>0$ in Ω and $\frac{\partial \Lambda v_{1}(p)}{\partial n}<0$ on $\partial \Omega$.

It remains to show the continuity of $p \mapsto \lambda_{1}(p)$. Let us note first that

$$
\lambda_{1}(p)=\inf \frac{1}{f_{p}^{2}(v)}
$$

where the infimum is taken over all $v \in L^{p}(\Omega),\|v\|_{L^{p}}=p$. It follows from Lemma 2.1 (i) that $\lambda_{1}(p)$ is bounded uniformly away from zero and infinity for any p belonging to a compact subinterval of $(1, \infty)$. Let $p_{n} \rightarrow p \in(1, \infty)$. Then $\left\{\lambda_{1}\left(p_{n}\right)\right\}$ is a bounded sequence. Denote by $v_{1}\left(p_{n}\right)$ the positive eigenfunction associated with $\lambda_{1}\left(p_{n}\right)$ and normalized by

$$
\begin{equation*}
\left\|v_{1}\left(p_{n}\right)\right\|_{L^{p}}=p \tag{3.4}
\end{equation*}
$$

Extracting a suitable subsequence we can assume that

$$
\begin{equation*}
\lambda_{1}\left(p_{n}\right) \rightarrow \lambda_{0}, v_{1}\left(p_{n}\right) \rightharpoonup v_{0} \text { in } L^{p}(\Omega) \tag{3.5}
\end{equation*}
$$

In particular, we derive from (3.5) that $v_{0} \geq 0$ a.e. in Ω, and the compactness of Λ (cf. Lemma 2.1 (i)) yields $\Lambda v_{1}\left(p_{n}\right) \rightarrow \Lambda v_{0}$ in $L^{p}(\Omega)$. Extracting again to a subsequence we get

$$
\begin{equation*}
\Lambda v_{1}\left(p_{n}\right) \rightarrow \Lambda v_{0} \text { a.e in } \Omega \tag{3.6}
\end{equation*}
$$

It follows from Remark 3.2 and Lemma 2.1 (iv) that there is a constant $c>0$ independent of n such that

$$
\begin{equation*}
\left|\Lambda v_{1}\left(p_{n}\right)\right| \leq c \tag{3.7}
\end{equation*}
$$

Hence it follows from (3.6), (3.7) and Lemma 2.1 (iv) that

$$
\begin{gather*}
\Lambda \psi_{p_{n}}\left(\Lambda v_{1}\left(p_{n}\right)\right) \rightarrow \Lambda \psi_{p}\left(\Lambda v_{0}\right) \text { a.e. in } \Omega \text {, i.e., } \\
\psi_{p_{n}^{\prime}}\left(\Lambda \psi_{p_{n}}\left(\Lambda v_{1}\left(p_{n}\right)\right)\right) \rightarrow \psi_{p^{\prime}}\left(\Lambda\left(\psi_{p}\left(\Lambda v_{0}\right)\right)\right) \text { a.e. in } \Omega \tag{3.8}
\end{gather*}
$$

Now taking arbitrary $\varphi \in L^{p^{\prime}}(\Omega)$, it follows from (3.4), (3.5), (3.7), (3.8), Lemma 2.1 (iv) and the Lebesgue dominated convergence theorem that

$$
\begin{equation*}
\int_{\Omega} \lambda_{1}^{\frac{1}{p_{n}-1}}\left(p_{n}\right) \psi_{p_{n}^{\prime}}\left(\Lambda \psi_{p_{n}}\left(\Lambda v_{1}\left(p_{n}\right)\right)\right) \varphi d x \rightarrow \int_{\Omega} \lambda_{0}^{\frac{1}{p^{p-1}}} \psi_{p^{\prime}}\left(\Lambda \psi_{p}\left(\Lambda v_{0}\right)\right) \varphi d x \tag{3.9}
\end{equation*}
$$

It also follows from (3.5) that

$$
\begin{equation*}
\int_{\Omega} v_{1}\left(p_{n}\right) \varphi d x \rightarrow \int_{\Omega} v_{0} \varphi d x \tag{3.10}
\end{equation*}
$$

So it follows from (2.4), (3.9) and (3.10) that

$$
\begin{equation*}
v_{0}=\lambda_{0}^{\frac{1}{p-1}} \psi_{p^{\prime}}\left(\Lambda \psi_{p}\left(\Lambda v_{0}\right)\right) \tag{3.11}
\end{equation*}
$$

On the other hand (3.6), (3.7) the definition of λ_{1} and the Lebesgue dominated convergence theorem imply

$$
1=\lim _{n \rightarrow \infty} \lambda_{1}\left(p_{n}\right) \int_{\Omega}\left|\Lambda v_{1}\left(p_{n}\right)\right|^{p_{n}} d x=\lambda_{0} \int_{\Omega}\left|\Lambda v_{0}\right|^{p} d x
$$

i.e. $v_{0} \not \equiv 0$. It follows from here and (3.11) that v_{0} is a positive solution of (2.3) with $\lambda=\lambda_{0}$. According to the first part of Theorem 1.1 (cf.[7]) it must be $\lambda_{0}=\lambda_{1}(p), v_{0}=v_{1}(p)$. Since the above argument does not depend on the choice of subsequences, the continuity of the function

$$
p \mapsto \lambda_{1}(p)
$$

is proved. This also completes the proof of Theorem 1.1

4 Global bifurcation result

For $p>1$ set $X=L^{p}(\Omega)$. Then $X^{*}=L^{p^{\prime}}(\Omega)$ and the Nemytskii operator

$$
\Psi_{p}: v \mapsto \psi_{p}(v)
$$

is one to one mapping between X and X^{*}.
Lemma 4.1 Ψ_{p} satisfies condition $\left(S_{+}\right)$, i.e.

$$
\begin{equation*}
v_{n} \rightharpoonup v_{0} \text { weakly in } X \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{\Omega} \psi_{p}\left(v_{n}\right)\left(v_{n}-v_{0}\right) d x \leq 0 \tag{4.2}
\end{equation*}
$$

imply $v_{n} \rightarrow v_{0}$ strongly in X.

Proof. The monotonicity of ψ_{p}, (4.1) and (4.2) imply

$$
\begin{aligned}
0 \geq & \limsup _{n \rightarrow \infty} \int_{\Omega} \psi_{p}\left(v_{n}\right)\left(v_{n}-v_{0}\right) d x= \\
= & \limsup _{n \rightarrow \infty} \int_{\Omega}\left(\psi_{p}\left(v_{n}\right)-\psi_{p}\left(v_{0}\right)\right)\left(v_{n}-v_{0}\right) d x \geq \\
\geq & \limsup _{n \rightarrow \infty}\left[\left(\int_{\Omega}\left|v_{n}\right|^{p} d x\right)^{1 / p^{\prime}}-\left(\int_{\Omega}\left|v_{0}\right|^{p} d x\right)^{1 / p^{\prime}}\right] \times \\
& \times\left[\left(\int_{\Omega}\left|v_{n}\right|^{p} d x\right)^{1 / p}-\left(\int_{\Omega}\left|v_{0}\right|^{p} d x\right)^{1 / p}\right] \geq 0
\end{aligned}
$$

Hence $\left\|v_{n}\right\|_{X} \rightarrow\left\|v_{0}\right\|_{X}$, which together with (4.1) yields the desired strong convergence.

Let the function $g: \Omega \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a Carathèodory function, i.e. $g(x, \cdot, \cdot)$ is continuous for a.e. $x \in \Omega$ and $g(\cdot, \lambda, s)$ is measurable for all $(\lambda, s) \in \mathbb{R}^{2}$. Moreover, let $g(x, \lambda, 0)=0$ for any $(x, \lambda) \in \Omega \times \mathbb{R}$ and given any bounded interval $J \subset \mathbb{R}$ we assume that there exists an exponent $q \in\left(p, p^{* *}\right)$ with
$p^{* *}=\frac{N p}{N-p}($ for $N>2 p) ; p^{* *}=\infty($ for $N \leq 2 p)$ such that for any $\varepsilon>0$, there exists a constant C_{ε} such that

$$
\begin{equation*}
|g(x, \lambda, s)| \leq \varepsilon|s|^{p-1}+C_{\varepsilon}|s|^{q-1} \text { for a.e. } x \in \Omega \text { and all } \lambda \in J, s \in \mathbb{R} . \tag{4.3}
\end{equation*}
$$

Note that (1.2) can be written in the equivalent form

$$
\begin{equation*}
\psi_{p}(v)=\lambda \Lambda \psi_{p}(\Lambda v)+\Lambda g(x, \lambda, \Lambda v) \tag{4.4}
\end{equation*}
$$

Due to (4.3) the right hand side of (4.4) defines an operator

$$
T_{\lambda, g}: v \mapsto \lambda \Lambda \psi_{p}(\Lambda v)+\Lambda g(x, \lambda, \Lambda v)
$$

from X into X^{*} which is compact. Indeed, by Lemma 2.1 (i) we get $\Lambda v \in$ $W^{2, p}(\Omega)$ and $\Lambda \psi_{p}(\Lambda v) \in W^{2, p^{\prime}}(\Omega)$. Furthermore by using (4.3) and the fact that $W^{2, p}(\Omega) \subset L^{q}(\Omega)$, we find that $\Lambda g(x, \lambda, \Lambda v) \in W^{2, q^{\prime}}(\Omega)$. Thus $T_{\lambda, g}$ maps any bounded set of X onto a bounded set of $W^{2, q^{\prime}}(\Omega)$, which is compactly embedded in X^{*}, since $q<p^{* *}$. Then this fact and Lemma 4.1 imply that $\Psi_{p}-T_{\lambda, g}$ satisfies condition $\left(S_{+}\right)$. So, given an open and bounded set $D \subset X$ such that $\Psi_{p}(v)-T_{\lambda, g}(v) \neq 0$ for any $v \in \partial D$, the generalized degree of Browder and Petryshin

$$
\operatorname{Deg}\left[\Psi_{p}-T_{\lambda, g} ; D, 0\right]
$$

is well defined.
Lemma $4.2\|\Lambda g(x, \lambda, \Lambda v)\|_{X^{*}}=o\left(\|v\|_{X}^{p-1}\right)$ as $\|v\|_{X} \rightarrow 0$.
Proof. Since Λ is symmetric, we have

$$
\begin{equation*}
\|\Lambda g(x, \lambda, \Lambda v)\|_{X^{*}}=\sup _{\|\varphi\|_{X} \leq 1} \int_{\Omega} \Lambda g(x, \lambda, \Lambda v) \varphi d x=\sup _{\|\varphi\|_{X} \leq 1} \int_{\Omega} g(x, \lambda, \Lambda v) \Lambda \varphi d x . \tag{4.5}
\end{equation*}
$$

Then, for any $\varepsilon>0$, by virtue of (4.3) and Lemma 2.1 (i), we find

$$
\begin{align*}
\left|\int_{\Omega} g(x, \lambda, \Lambda v) \Lambda \varphi d x\right| & \leq \int_{\Omega} \varepsilon|\Lambda v|^{p-1}|\Lambda \varphi| d x+\int_{\Omega} C_{\varepsilon}|\Lambda v|^{q-1}|\Lambda \varphi| d x \\
& \leq \varepsilon\|\Lambda v\|_{L^{p}}^{p-1}\|\Lambda \varphi\|_{L^{p}}+C_{\varepsilon}\|\Lambda v\|_{L^{q}}^{q-1}\|\Lambda \varphi\|_{L^{q}} \tag{4.6}\\
& \leq \varepsilon c_{p}^{p}\|v\|_{X}^{p-1}\|\varphi\|_{X}+C_{\varepsilon} c^{q}\|\Lambda v\|_{W^{2, p}}^{q-1}\|\Lambda \varphi\|_{W^{2, p}} \\
& \leq \varepsilon c_{p}^{p}\|v\|_{X}^{p-1}+C_{\varepsilon} c^{q} c_{p}^{q}\|v\|_{X}^{q-1},
\end{align*}
$$

where c_{p} is the constant appearing in Lemma 2.1 (i) and $c>0$ is the embedding constant for $W^{2, p}(\Omega) \hookrightarrow L^{q}(\Omega)$. Thus the assertion follows from (4.5) and (4.6), since $p<q$.

Let $\delta>0$ be as in Lemma 3.4 and consider $\lambda<\lambda_{1}(p)+\delta, \lambda \neq \lambda_{1}(p)$. Then Lemma 4.2 and simple homotopy argument yields

$$
\begin{equation*}
\operatorname{Deg}\left[\Psi_{p}-T_{\lambda, g} ; B_{r}(0), 0\right]=\operatorname{Deg}\left[\Psi_{p}-T_{\lambda, 0} ; B_{\lambda}(0), 0\right] \tag{4.7}
\end{equation*}
$$

if $r>0$ is chosen sufficiently small (cf. [4], [5], [2], [3] or [R]). Here $B_{r}(0)$ is the ball centred at the origin and with radius $r>0$.

Lemma 4.3 $\operatorname{Deg}\left[\Psi_{p}-T_{\lambda, 0} ; B_{r}(0), 0\right]= \pm 1$ for $\lambda<\lambda_{1}(p)+\delta, \lambda \neq \lambda_{1}(p)$ and $\operatorname{sgn}\left(\lambda_{1}(p)-\lambda\right)= \pm 1$.

Proof. To prove the "jump" of the degree we adopt the method developed in [5] (see also [4]). Thus we just sketch the proof and refer to [DKN, Theorem 3.7] or [D , Theorem 14.18] for the details. Consider the functional

$$
F_{\lambda}(v)=\frac{1}{p} \int_{\Omega}|v|^{p} d x-\frac{\lambda}{p} \int_{\Omega}|\Lambda v|^{p} d x
$$

It follows from the variational characterization of $\lambda_{1}(p)$ (see Section 3) that for $\lambda<\lambda_{1}(p)$ we have

$$
\left\langle F_{\lambda}^{\prime}(v), v\right\rangle_{X}>0
$$

for $v \in \partial B_{r}(0)$ and $v=0$ is the only critical point of F_{λ} (here $\langle\cdot, \cdot\rangle_{X}$ denotes the duality between X^{*} and X) and hence

$$
\begin{equation*}
\operatorname{Deg}\left[\Psi_{p}-T_{\lambda, 0} ; B_{r}(0), 0\right]=1 \tag{4.8}
\end{equation*}
$$

by the properties of the degree (cf.[9]). Let now $\lambda \in\left(\lambda_{1}(p), \lambda_{1}(p)+\delta\right)$. As in (DKN, Theorem 3.7] we define a function $\eta: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\eta(t)= \begin{cases}0, & \text { for } t<K \\ \frac{2 \delta}{\lambda_{1}(p)}(t-2 K), & \text { for } t \geq 3 K\end{cases}
$$

The function $\eta(t)$ is continuously differentiable, positive and strictly convex in $(K, 3 K), K>0$. Let us modify F_{λ} as follows

$$
\tilde{F}_{\lambda}(v):=F_{\lambda}(v)+\eta\left(\frac{1}{p} \int_{\Omega}|v|^{p} d x\right) .
$$

The properties of $\lambda_{1}(p)$ stated in Theorem 1.1 now imply the following properties of \tilde{F}_{λ} :

- \tilde{F}_{λ} is continuously Fréchet differentiable and its critical point $v_{0} \in X$ corresponds to a solution of the equation

$$
\psi_{p}\left(v_{0}\right)-\frac{\lambda}{1+\eta^{\prime}\left(\frac{1}{p} \int_{\Omega}\left|v_{0}\right|^{p} d x\right)} \Lambda \psi_{p}\left(\Lambda v_{0}\right)=0
$$

- For $\lambda \in\left(\lambda_{1}(p), \lambda_{1}(p)+\delta\right)$ the only nontrivial critical points of \tilde{F}_{λ} occur if

$$
\eta^{\prime}\left(\frac{1}{p} \int_{\Omega}\left|v_{0}\right|^{p} d x\right)=\frac{\lambda}{\lambda_{1}(p)}-1
$$

- Due to the definition of η we then have

$$
\frac{1}{p} \int_{\Omega}\left|v_{0}\right|^{p} d x \in(K, 3 K)
$$

and due to the simplicity of $\lambda_{1}(p)$, either $v_{0}=-t v_{1}(p)$ or $v_{0}=t v_{1}(p)$, for some $t \in\left((p K)^{1 / p},(3 p K)^{1 / p}\right), v_{1}(p)$ as in the Section 3.

- \tilde{F}_{λ} has precisely three isolated critical points $-t v_{1}(p), 0, t v_{1}(p)$
- \tilde{F}_{λ} is weakly lower semicontinuous and even.
- \tilde{F}_{λ} is coercive, i.e.

$$
\lim _{\|v\|_{X} \rightarrow \infty} \tilde{F}_{\lambda}(v)=\infty
$$

- $-t v_{1}(p), t v_{1}(p)$ are the points of the global minimum of $\tilde{F}_{\lambda} ; 0$ is an isolated critical point of "saddle type".
- $\left\langle\tilde{F}_{\lambda}^{\prime}(v), v\right\rangle_{X}>0$ for $\|v\|_{X}=R$ if $R>0$ is large enough.

The properties of the degree now imply that for small $\rho>0$ and large $R>0$ we have

$$
\operatorname{Deg}\left[\tilde{F}_{\lambda}^{\prime} ; B_{\rho}\left(\pm t v_{1}(p)\right), 0\right]=\operatorname{Deg}\left[\tilde{F}_{\lambda}^{\prime} ; B_{R}(0), 0\right]=1
$$

The additivity property of the degree then yields for $0<r<(p K)^{1 / p}$,

$$
\begin{equation*}
\operatorname{Deg}\left[\Psi_{p}-T_{\lambda, 0} ; B_{r}(0), 0\right]=\operatorname{Deg}\left[\tilde{F}_{\lambda}^{\prime} ; B_{r}(0), 0\right]=-1 \tag{4.9}
\end{equation*}
$$

The assertion of Lemma 4.3 follows now from (4.8) and (4.9).
If we combine (4.7) with Lemma 4.3 we come to the following conclusion: for $r>0$ sufficiently small

$$
\operatorname{Deg}\left[\Psi_{p}-T_{\lambda, g} ; B_{r}(0), 0\right]= \pm 1
$$

for $\operatorname{sgn}\left(\lambda_{1}(p)-\lambda\right)= \pm 1$. Following the proof of $[\mathrm{R}$, Theorem 1.3] we prove that continuum of nontrivial solutions $(\lambda, v) \in \mathbb{R} \times X$ of (4.4) bifurcates from $\left(\lambda_{1}(p), 0\right)$ and it is either unbounded in $\mathbb{R} \times X$ or meets the point $\left(\lambda_{e}(p), 0\right)$, where $\lambda_{e}(p)>\lambda_{1}(p)$ is an eigenvalue of (3.1). The assertion of Theorem 1.2 now follows from the fact that (λ, u) solves $\left(\mathrm{BP}_{\mathrm{N}}\right)_{\mathrm{p}}$ if and only if $(\lambda,-\Delta u)$ solves (4.4).

5 One-dimensional problem

Let $N=1$ and $\Omega=(0,1)$. Then $\left(\mathrm{E}_{\mathrm{N}}\right)_{\mathrm{p}}$ reduces to (1.3) and obviously the assertions of Theorems 1.1, 1.2 remain true. We point out that $W^{2, p}(0,1) \hookrightarrow \hookrightarrow$ $C^{1}([0,1])$ in the case $N=1$, and so $\psi_{p}(v) \in C^{1}([0,1]), v(0)=v(1)=0$ for any solution v of (2.3). Hence we do not need Lemmas 3.1 and 3.3 in this case. For the sake of brevity we shall write $\lambda_{1}:=\lambda_{1}(p), u_{1}:=u_{1}(p)$. It follows from the symmetry of (1.3) and Theorem 1.1 (simplicity of λ_{1}) that $u_{1}(t)=u_{1}(1-t)$ for $t \in[0,1]$, i.e. u_{1} is even with respect to $\frac{1}{2}$. Making use of this observation, we give a precise description of all eigenvalues and eigenfunctions of $\left(E_{1}\right)_{p}$. Indeed,
set

$$
\begin{gathered}
u_{n}(t)=u_{1}(n t) ; t \in\left[0, \frac{1}{n}\right], \\
u_{n}(t)=-u_{1}(n t-1), t \in\left[\frac{1}{n}, \frac{2}{n}\right], \\
\cdots \\
u_{n}(t)=(-1)^{n} u_{1}(n t-n+1), t \in\left[\frac{n-1}{n}, 1\right] .
\end{gathered}
$$

Then $u_{n}=u_{n}(t), t \in[0,1]$, is an eigenfunction of (1.3) associated with the eigenvalue $\lambda_{n}=n^{2 p} \lambda_{1}$. On the other hand, let $u=u(t)$ be an eigenfunction of $\left(\mathrm{E}_{1}\right)_{\mathrm{p}}$ associated with some eigenvalue λ_{e}. According to Theorem 1.1 it must be $\lambda_{e}>\lambda_{1}$ and u changes sign in $(0,1)$. By Lemma A. 4 the number of nodes of u in $(0,1)$ is finite. Assume first that $\lambda_{e}=\lambda_{n}$, for some $n>1$. Let us normalize u as follows: $u^{\prime}(0)=u_{n}^{\prime}(0)>0$. Note that since u and u_{n} are oscillatory, we must have, according to Lemma A.3, that

$$
\left.\left(\psi_{p}\left(u^{\prime \prime}(t)\right)\right)^{\prime}\right|_{t=0}<0 \quad \text { and }\left.\quad\left(\psi_{p}\left(u_{n}^{\prime \prime}(t)\right)\right)^{\prime}\right|_{t=0}<0
$$

respectively. Let $\left.\left(\psi_{p}\left(u^{\prime \prime}(t)\right)\right)^{\prime}\right|_{t=0}=\left.\left(\psi_{p}\left(u_{n}^{\prime \prime}(t)\right)\right)^{\prime}\right|_{t=0}$. Then Lemma A. 1 implies that $u(t)=u_{n}(t), t \in[0,1]$. Let $\left.\left(\psi_{p}\left(u^{\prime \prime}(t)\right)\right)^{\prime}\right|_{t=0} \neq\left.\left(\psi_{p}\left(u_{n}^{\prime \prime}(t)\right)\right)^{\prime}\right|_{t=0}$. Then Lemma A. 2 implies that $u(1) \neq 0$, a contradiction. Let $\lambda_{e} \neq \lambda_{k}$ for any $k \geq 2$. Define

$$
\begin{gathered}
\tilde{u}(t)=u_{1}\left(\left(\frac{\lambda_{e}}{\lambda_{1}}\right)^{1 /(2 p)} t\right), t \in\left[0,\left(\frac{\lambda_{1}}{\lambda_{e}}\right)^{1 /(2 p)}\right] \\
\tilde{u}(t)=-u_{1}\left(\left(\frac{\lambda_{e}}{\lambda_{1}}\right)^{1 /(2 p)} t-1\right), t \in\left[\left(\frac{\lambda_{1}}{\lambda_{e}}\right)^{1 /(2 p)}, 2\left(\frac{\lambda_{1}}{\lambda_{e}}\right)^{1 /(2 p)}\right], \text { etc. }
\end{gathered}
$$

Then $\tilde{u}(1) \tilde{u}^{\prime \prime}(1)<0$. Let us normalize u as $u^{\prime}(0)=\tilde{u}^{\prime}(0)>0$. Then it follows from Lemma A. 2 that $u(1)=u^{\prime \prime}(1)=0$ cannot hold at the same time. Thus Theorem 1.3 is proved.

Let $X=C([0,1])$. Let $g:[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a continuous function satisfying $g(t, \lambda, 0)=0$ for any $(t, \lambda) \in(0,1) \times \mathbb{R}$ and given any bounded interval $J \subset \mathbb{R}$ we assume that

$$
\begin{equation*}
|g(t, \lambda, s)|=o\left(|s|^{p-1}\right) \tag{5.1}
\end{equation*}
$$

holds near $s=0$ uniformly for all $(t, \lambda) \in[0,1] \times J$. Note that $\left(\mathrm{BP}_{1}\right)_{\mathrm{p}}$ can be written in the equivalent form

$$
\begin{equation*}
v=\psi_{p^{\prime}}\left(\lambda \Lambda \psi_{p}(\Lambda v)+\Lambda g(t, \lambda, \Lambda v)\right) \tag{5.2}
\end{equation*}
$$

Due to Lemma 2.1 (i), the right hand side of (5.2) defines an operator

$$
R_{p, \lambda, g}:(p, \lambda, v) \mapsto \psi_{p^{\prime}}\left(\lambda \Lambda \psi_{p}(\Lambda v)+\Lambda g(t, \lambda, \lambda v)\right)
$$

which is compact from $(1, \infty) \times \mathbb{R} \times X$ into X. If $I: X \rightarrow X$ denotes the identity mapping, the Leray-Schauder degree

$$
\operatorname{deg}\left[I-R_{p, \lambda, g} ; D, 0\right]
$$

is well defined for any open bounded set D such that $v-R_{p, \lambda, g}(v) \neq 0$ for $v \in \partial D$.

Lemma 5.1 Let $\lambda \neq \lambda_{n}$. Then there is $r>0$ (sufficiently small) such that

$$
\begin{equation*}
\operatorname{deg}\left[I-R_{p, \lambda, g} ; B_{r}(0), 0\right]=\operatorname{deg}\left[I-R_{p, \lambda, 0} ; B_{r}(0), 0\right] \tag{5.3}
\end{equation*}
$$

Proof. Standard argument based on (5.1) yields that the homotopy

$$
H(\tau, v)=v-\psi_{p^{\prime}}\left(\lambda \Lambda \psi_{p}(\Lambda v)+\tau \Lambda g(t, \lambda, \Lambda v)\right)
$$

satisfies $H(\tau, v) \neq 0$ for all $\tau \in[0,1]$ and $v \in \partial B_{r}(0)$ if $r>0$ is small enough. So (5.3) follows from the homotopy invariance property of the Leray-Schauder degree.

Let $\lambda \in\left(\lambda_{n}(p), \lambda_{n+1}(p)\right), n=0,1,2, \ldots$, where we set $\lambda_{0}(p)=-\infty$ and $\lambda_{1}(p), \lambda_{2}(p), \ldots$ are as above, then we have.
Lemma $5.2 \operatorname{deg}\left[I-R_{p, \lambda, 0} ; B_{r}(0), 0\right]=(-1)^{n}$.
Proof. We follow the idea in [2]. Note that it follows from Theorems 1.1, 1.3 that

$$
\lambda_{n}: p \mapsto \lambda_{n}(p), n=1,2, \ldots,
$$

are continuous functions on $(1, \infty)$. Assume that $p<2$. Define $\lambda(q), q \in[p, 2]$, by the following way

$$
\begin{aligned}
& \lambda(q):=\frac{\lambda-\lambda_{n}(p)}{\lambda_{n+1}(p)-\lambda_{n}(p)} \cdot\left(\lambda_{n+1}(q)-\lambda_{n}(q)\right)+\lambda_{n}(q), \quad n \geq 1, \\
& \lambda(q):=\lambda_{1}(q)-\left(\lambda_{1}(p)-\lambda\right), n=0 .
\end{aligned}
$$

Then

$$
H(q, v):=v-R_{q, \lambda(q), 0}(v)=v-\psi_{q^{\prime}}\left(\lambda(q) \Lambda \psi_{q}(\Lambda v)\right)
$$

satisfies $H(q, v) \neq 0$ for all $q \in[p, 2]$ and $v \in \partial B_{r}(0)$. It follows from the homotopy invariance property of the Leray-Schauder degree that

$$
\begin{equation*}
\operatorname{deg}\left[I-R_{p, \lambda, 0} ; B_{r}(0), 0\right]=\operatorname{deg}\left[I-R_{2, \lambda(2), 0} ; B_{r}(0), 0\right] \tag{5.4}
\end{equation*}
$$

The same approach but in the interval [2, p] yields to the same conclusion also for $p>2$. Since $\lambda_{n}(2)<\lambda(2)<\lambda_{n+1}(2)$, the classical Leray-Schauder index formula implies that

$$
\begin{equation*}
\operatorname{deg}\left[I-R_{2, \lambda(2), 0} ; B_{r}(0), 0\right]=(-1)^{n} \tag{5.5}
\end{equation*}
$$

The assertion of lemma follows now from (5.4) and (5.5).
With Lemmas 5.1 and 5.2 in hand we can follow the proof of [R, Theorem 1.3] to prove that continua of nontrivial solutions $(\lambda, v) \in \mathbb{R} \times X$ of (5.2) bifurcate from $\left(\lambda_{n}(p), 0\right), n=1,2 \ldots$, and they are either unbounded in $\mathbb{R} \times X$ or meet the point $\left(\lambda_{m}(p), 0\right)$ with $m \neq n$. The assertion of Theorem 1.4 follows from the fact that (λ, u) solves (1.4) if and only if $(\lambda,-\Delta u)$ solves (5.2).

6 Appendix

To justify some statements in Section 5 we present here a brief study of the initial value problem associated with the equation in $\left(E_{1}\right)_{p}$ with $\lambda>0$:

$$
\begin{array}{ccc}
u^{\prime \prime}=\psi_{p^{\prime}}(w), & u\left(t_{0}\right)=\alpha, & u^{\prime}\left(t_{0}\right)=\beta \\
w^{\prime \prime}=\lambda \psi_{p}(u), & w\left(t_{0}\right)=\gamma, & w^{\prime}\left(t_{0}\right)=\delta \tag{6.1}
\end{array}
$$

By a solution of (6.1) we understand a couple of functions (u, w) which are of class C^{2} and fulfil the equations and initial conditions in (6.1).

Lemma 6.1 The solution to (6.1) is locally unique.
Proof. Without loss of generality we can restrict ourselves to $t_{0}=0$ and $p \in(1,2)$ (the case $p>2$ is treated similarly). Local existence is a consequence of the Schauder fixed point theorem. For its uniqueness we have to distinguish among several cases:
(I) $\alpha \neq 0$ implies that both functions $\psi_{p}(u(t))$ and $\psi_{p^{\prime}}(w(t))$ are of class C^{1} in the neighbourhood of $t=0$ and so the assertion follows from the classical theory.
(II) $\alpha=0$, in this case $\psi_{p}(u(t))$ is not C^{1} in $t=0$.
(II)(i) $\alpha=0, \beta \neq 0$. Let $\left(u, w_{1}\right),\left(v, w_{2}\right)$ be two solutions of (6.1) in $(0, \varepsilon)$ with some $\varepsilon>0$. Then

$$
\begin{equation*}
\psi_{p}\left(u^{\prime \prime}(t)\right)-\psi_{p}\left(v^{\prime \prime}(t)\right)=\lambda \int_{0}^{t}(t-\tau)\left(\psi_{p}(u(\tau))-\psi_{p}(v(\tau))\right) d \tau \tag{6.2}
\end{equation*}
$$

By the assumption, $\frac{u(\tau)}{\tau}, \frac{v(\tau)}{\tau}$ lie in the neighbourhood of $\beta \neq 0$ for $\tau \in$ $(0, \varepsilon)$ wiht ε small enough. We thus have $K_{1}>0$ such that

$$
\begin{equation*}
\left|\psi_{p}\left(\frac{u(\tau)}{\tau}\right)-\psi_{p}\left(\frac{v(\tau)}{\tau}\right)\right| \leq K_{1}\left|\frac{u(\tau)}{\tau}-\frac{v(\tau)}{\tau}\right|, \tag{6.3}
\end{equation*}
$$

$\tau \in(0, \varepsilon), K_{1}$ independent of $\varepsilon \ll 1$. On the other hand there is $K_{2}>0$ such that

$$
\begin{equation*}
\left|\psi_{p}\left(u^{\prime \prime}(t)\right)-\psi_{p}\left(v^{\prime \prime}(t)\right)\right| \geq K_{2}\left|u^{\prime \prime}(t)-v^{\prime \prime}(t)\right| \tag{6.4}
\end{equation*}
$$

$t \in(0, \varepsilon)$. Now, it follows from (6.2)-(6.4)

$$
K_{2}\left|u^{\prime \prime}(t)-v^{\prime \prime}(t)\right| \leq \lambda \int_{0}^{t}(t-\tau) \tau^{p-1} K_{1}\left|\frac{u(\tau)}{\tau}-\frac{v(\tau)}{\tau}\right| d \tau
$$

Taking into account

$$
u(\tau)-v(\tau)=\int_{0}^{\tau}(\tau-\sigma)\left(u^{\prime \prime}(\sigma)-v^{\prime \prime}(\sigma)\right) d \sigma
$$

we arrive at

$$
\begin{equation*}
\left\|u^{\prime \prime}-v^{\prime \prime}\right\|_{\varepsilon} \leq \lambda \frac{K_{1}}{K_{2}} \varepsilon^{p+2}\left\|u^{\prime \prime}-v^{\prime \prime}\right\|_{\varepsilon} \tag{6.5}
\end{equation*}
$$

where $\|\cdot\|_{\varepsilon}$ is the sup norm on $[0, \varepsilon]$. This implies $u=v$ (and thus $w_{1}=w_{2}$) for ε small enough.
(II) (ii) $\alpha=\beta=0, \gamma \neq 0$ and (iii) $\alpha=\beta=\gamma=0, \delta \neq 0$. Instead of (6.2) we use the following fact
$\psi_{p^{\prime}}\left(w_{1}^{\prime \prime}(t)\right)-\psi_{p^{\prime}}\left(w_{2}^{\prime \prime}(t)\right)=\psi_{p^{\prime}}(\lambda) \int_{0}^{t}(t-\tau)\left(\psi_{p^{\prime}}\left(w_{1}(\tau)\right)-\psi_{p^{\prime}}\left(w_{2}(\tau)\right)\right) d \tau$.
Since $p^{\prime}>2$, we have

$$
\left|\psi_{p^{\prime}}\left(w_{1}(\tau)\right)-\psi_{p^{\prime}}\left(w_{2}(\tau)\right)\right| \leq K_{1}\left|w_{1}(\tau)-w_{2}(\tau)\right|
$$

$\tau \in(0, \varepsilon)$. Hence

$$
\begin{equation*}
\left|\int_{0}^{t}(t-\tau)\left(\psi_{p^{\prime}}\left(w_{1}(\tau)\right)-\psi_{p^{\prime}}\left(w_{2}(\tau)\right)\right) d \tau\right| \leq K_{1} \varepsilon^{2}\left\|w_{1}-w_{2}\right\|_{\varepsilon} \tag{6.7}
\end{equation*}
$$

It follows from the initial conditions that $\frac{w_{i}^{\prime \prime}(t)}{t^{2(p-1)}}, i=1,2$, lie near $\lambda \gamma \psi_{p}\left(\frac{1}{2}\right) \neq 0$ in the case (ii) and $\frac{w_{i}(t)}{t^{2 p-1}}, i=1,2$, lie near $\lambda \delta \psi_{p}\left(\frac{1}{p^{\prime}\left(p^{\prime}+1\right)}\right) \neq$ 0 in the case (iii). Hence there exists $K_{2}>0$ such that

$$
\begin{equation*}
\left|\psi_{p^{\prime}}\left(\frac{w_{1}^{\prime \prime}(t)}{t^{2(p-1)}}\right)-\psi_{p^{\prime}}\left(\frac{w_{2}^{\prime \prime}(t)}{t^{2(p-1)}}\right)\right| \geq K_{2}\left|\frac{w_{1}^{\prime \prime}(t)}{t^{2(p-1)}}-\frac{w_{2}^{\prime \prime}(t)}{t^{2(p-1)}}\right| \tag{6.8}
\end{equation*}
$$

in the case (ii) and

$$
\begin{equation*}
\left|\psi_{p^{\prime}}\left(\frac{w_{1}^{\prime \prime}(t)}{t^{2 p-1}}\right)-\psi_{p^{\prime}}\left(\frac{w_{2}^{\prime \prime}(t)}{t^{2 p-1}}\right)\right| \geq K_{2}\left|\frac{w_{1}^{\prime \prime}(t)}{t^{2 p-1}}-\frac{w_{2}^{\prime \prime}(t)}{t^{2 p-1}}\right| \tag{6.9}
\end{equation*}
$$

in the case (iii). Taking into account

$$
w_{1}(t)-w_{2}(t)=\int_{0}^{t}(t-\tau)\left(w_{1}^{\prime \prime}(\tau)-w_{2}^{\prime \prime}(\tau)\right) d \tau
$$

we derive from (6.6), (6.7), (6.8) and (6.9) that

$$
\left\|w_{1}-w_{2}\right\|_{\varepsilon} \leq \frac{K_{1}}{K_{2}} \psi_{p^{\prime}}(\lambda) \varepsilon^{2 p+2}\left\|w_{1}-w_{2}\right\|_{\varepsilon}
$$

in the case (ii) and

$$
\left\|w_{1}-w_{2}\right\|_{\varepsilon} \leq \frac{K_{1}}{K_{2}} \psi_{p^{\prime}}(\lambda) \varepsilon^{2 p+3}\left\|w_{1}-w_{2}\right\|_{\varepsilon}
$$

in the case (iii).
(II)(iv) $\alpha=\beta=\gamma=\delta=0$. In this case (6.1) has always the trivial solution $u_{0}=w_{0}=0$. Let (u, w) be a nontrivial solution. Then

$$
\left|\psi_{p}\left(u^{\prime \prime}(t)\right)\right| \leq \lambda \int_{0}^{t}(t-\tau) \psi_{p}(|u(\tau)|) d \tau \leq \lambda \varepsilon^{2}\|u\|_{\varepsilon}^{p-1}, t \in(0, \varepsilon)
$$

which yields

$$
\left\|u^{\prime \prime}\right\|_{\varepsilon}^{p-1} \leq \lambda \varepsilon^{2 p}\left\|u^{\prime \prime}\right\|_{\varepsilon}^{p-1}
$$

i.e. $u=w=0$. This completes the proof.

Lemma 6.2 Let (u, w) and (\tilde{u}, \tilde{w}) be solutions of (6.1) defined on [0,1], respectively, $u(0)=w(0)=\tilde{u}(0)=\tilde{w}(0)=0, u^{\prime}(0)=\tilde{u}^{\prime}(0)>0, w^{\prime}(0)<\tilde{w}^{\prime}(0)$. Then $u(t)<\tilde{u}(t)$ and $w(t)<\tilde{w}(t)$ for any $t \in(0,1]$.

Proof. Assume that the assertion is not true. Then it follows from Lemma A. 1 that there is $t_{1}>0$ such that $u\left(t_{1}\right)=\tilde{u}\left(t_{1}\right)$ and $u(t)<\tilde{u}(t), t \in\left(0, t_{1}\right)$. Simultaneously, the fact that both u and \tilde{u} solve $\left(E_{1}\right)_{p}$ imply that

$$
\begin{aligned}
& \int_{0}^{t_{1}}\left(t_{1}-\tau\right) \psi_{p^{\prime}}\left(\lambda \int_{0}^{\tau}(\tau-\sigma) \psi_{p}(u(\sigma)) d \sigma+w^{\prime}(0) \tau\right) d \tau \\
& \quad=\int_{0}^{t_{1}}\left(t_{1}-\tau\right) \psi_{p^{\prime}}\left(\lambda \int_{0}^{\tau}(\tau-\sigma) \psi_{p}(\tilde{u}(\sigma)) d \sigma+\tilde{w}^{\prime}(0) \tau\right) d \tau
\end{aligned}
$$

which contradicts the monotone character of the functions ψ_{p} and $\psi_{p^{\prime}}$. The same argument applies for w and \tilde{w}.

Lemma 6.3 Let (u, w) be a nonzero solution of (6.1) defined on $[0,1]$ and satisfying $u(0)=w(0)=u(1)=w(1)=0$. Then $u^{\prime}(0) w^{\prime}(0)<0$.

Proof. Multiply the first (second) equation in (6.1) by $w^{\prime}\left(u^{\prime}\right)$ and add to get

$$
\begin{equation*}
u^{\prime}(x) w^{\prime}(x)=\frac{|w(x)|^{p^{\prime}}}{p^{\prime}}+\lambda \frac{|u(x)|^{p}}{p}-C \quad \text { for all } \quad x \in[0,1] \tag{6.10}
\end{equation*}
$$

Let $x_{0} \in(0,1)$ be the point satisfying

$$
\left|u\left(x_{0}\right)\right|=\max _{x \in[0,1]}|u(x)|>0 .
$$

Then (6.10) implies

$$
0=\frac{\left|w\left(x_{0}\right)\right|^{p^{\prime}}}{p^{\prime}}+\lambda \frac{\left|u\left(x_{0}\right)\right|^{p}}{p}-C
$$

i.e. $C>0$. Hence $u^{\prime}(0) w^{\prime}(0)<0$ by (6.10).

Lemma 6.4 Let us assume the same as in the previous lemma. Then u (and also w) changes sign in $(0,1)$ at most finitely many times.

Proof. Let u have an infinite number of bumps in $(0,1)$. Then there exist sequences x_{n}, y_{n} such that $u\left(x_{n}\right)=u^{\prime}\left(y_{n}\right)=0, x_{n} \rightarrow x_{0}, y_{n} \rightarrow x_{0}, x_{n}, y_{n}, x_{0} \in$ [0,1$]$. Then $u\left(x_{0}\right)=u^{\prime}\left(x_{0}\right)=0$, hence (6.10) gives

$$
0=\frac{\left|w\left(x_{0}\right)\right|^{p^{\prime}}}{p^{\prime}}-C .
$$

Since $C>0$, we have

$$
w\left(x_{0}\right)>0 \quad \text { or } \quad w\left(x_{0}\right)<0
$$

Due to

$$
u^{\prime}(x)=\int_{x_{0}}^{x} \psi_{p^{\prime}}(w(y)) d y+\psi_{p^{\prime}}\left(w\left(x_{0}\right)\right)
$$

the function $u^{\prime}(x)$ should be of definite sign in a neighbourhood of $x=x_{0}$, which contradicts the observation that $u^{\prime}\left(y_{n}\right)=0, y_{n} \rightarrow x_{0}$.

Acknowledgements The first author is partially supported by grant number 201/00/0376 from the Grant Agency of the Czech Republic. The second author is supported by grant number 09440070 from the Grant-in-Aid for Scientific Research, Ministry of Education, Science, Sports and Culture, Japan and by Waseda University Grant number 99B-013 for Special Research Projects.

References

[1] A. Anane: Simplicité et isolation de la premiére valeur propre du p-Laplacien avec poids, C. R. Acad. Sci. Paris 305 (1987), 725-728.
[2] M. delPino, M. Elgueta, R. Manásevich: A homotopic deformation along p of a Leray-Schauder degree result and existence for $\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+f(t, u)=$ $0, u(0)=u(T)=0, p>1$, J. Differential Equations 80 (1989), 1-13.
[3] M. delPino, R. Manásevich: Global bifurcation from the eigenvalues of the p-Laplacian, J. Differential Equations 92 (1991), 226-251.
[4] P. Drábek, A. Kufner, F. Nicolosi: Quasilinear Elliptic Equations with Degenerations and Singularities, de Gruyter Series in Nonlinear Analysis and Applications 5, Walter de Gruyter, Berlin-New York 1977.
[5] P. Drábek: Solvability and Bifurcations of Nonlinear Equations, Pitman Res. Notes Math. Ser. 232, Longman Scientific \& Technical, Harlow 1992.
[6] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order, Second Ed., Springer-Verlag, Berlin Heidelberg New York Tokyo 1983.
[7] T. Idogawa, M. Ôtani: The first eigenvalues of some abstract elliptic operator, Funkcialaj Ekvacioj 38 (1995), 1-9.
[8] P. H. Rabinowitz: Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487-513.
[9] I. V. Skrypnik:Nonlinear Elliptic Boundary Value Problems, Teubner, Leipzig 1986.

Pavel Drábek
Centre of Applied Mathematics
University of West Bohemia
Univerzitní22, 30614 Plzeň
Czech Republic
e-mail: pdrabek@kma.zcu.cz
Mitsuharu Ôtani
Department of Applied Physics
School of Science and Engineering
Waseda University
3-4-1, Okubo Tokyo, Japan, 169-8555
e-mail: otani@mn.waseda.ac.jp

[^0]: * Mathematics Subject Classifications: 35P30, 34C23.

 Key words: p-biharmonic operator, principal eigenvalue, global bifurcation.
 © 2001 Southwest Texas State University.
 Submitted February 9, 2001. Published July 3, 2001.

