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Global bifurcation result for the p-biharmonic

operator ∗

Pavel Drábek & Mitsuharu Ôtani

Abstract

We prove that the nonlinear eigenvalue problem for the p-biharmonic
operator with p > 1, and Ω a bounded domain in RN with smooth bound-
ary, has principal positive eigenvalue λ1 which is simple and isolated. The
corresponding eigenfunction is positive in Ω and satisfies ∂u

∂n
< 0 on ∂Ω,

∆u1 < 0 in Ω. We also prove that (λ1, 0) is the point of global bifurcation
for associated nonhomogeneous problem. In the case N = 1 we give a
description of all eigenvalues and associated eigenfunctions. Every such
an eigenvalue is then the point of global bifurcation.

1 Introduction

Let Ω ⊂ RN be a bounded domain with smooth boundary ∂Ω. For p ∈ (1,+∞)
consider the nonlinear eigenvalue problem

∆(|∆u|p−2∆u) = λ|u|p−2u in Ω
u = ∆u = 0 on ∂Ω

(1.1)

In this paper we prove that (1.1) has a principal positive eigenvalue λ1 =
λ1(p) which is simple and isolated. Moreover, we prove that there exists strictly
positive eigenfunction u1 = u1(p) in Ω associated with λ1(p) and satisfying
∂u1
∂n < 0 on ∂Ω. We also study the dependence of λ1(p) on p and show that
p 7→ λ1(p) is a continuous function in (1,+∞). Making use of this result we
prove that λ1(p) is a bifurcation point of

∆(|∆u|p−2∆u) = λ|u|p−2u+ g(x, λ, u) in Ω
u = ∆u = 0 on ∂Ω,

(1.2)

from which a global continuum of nontrivial solutions emanates.
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2 Global bifurcation result for the p-biharmonic operator EJDE–2001/48

In one dimensional case (N = 1,Ω = (0, 1)) we obtain a complete character-
ization of the spectrum of the eigenvalue problem

(|u′′|p−2u′′)′′ = λ|u|p−2u in (0, 1)
u(0) = u′′(0) = u(1) = u′′(1) = 0.

(1.3)

We prove that the spectrum of (1.3) consists of a sequence of simple eigenvalues
0 < λ1 < . . . < λn < . . . → +∞. The eigenfunction un associated with
λn(n ≥ 2) has precisely n bumps in (0, 1) and it is reproduced from u1 by using
the symmetry of (1.3). As a simple consequence we then obtain that any λn is
a global bifurcation point of

(|u′′|p−2u′′)′′ = λ|u|p−2u+ g(t, λ, u) in (0, 1)
u(0) = u′′(0) = u(1) = u′′(1) = 0.

(1.4)

Our main results are stated in the following theorems.

Theorem 1.1 The problem (1.1) has the least positive eigenvalue λ1(p) which
is simple and isolated in the sense that the set of all solutions of (1.1) with λ =
λ1(p) forms a one dimensional linear space spanned by a positive eigenfunction
u1(p) associated with λ1(p) such that ∆u1(p) < 0 in Ω and ∂u1(p)

∂n < 0 on ∂Ω
and that there exists a positive number δ so that (λ1(p), λ1(p) + δ) does not
contain any eigenvalues of (EN)p. Moreover, (1.1) has a positive solution if and
only if λ = λ1 and the function p 7→ λ1(p) is continuous.

Theorem 1.2 Let p > 1 be fixed and the function g = g(x, λ, s), g(x, λ, 0) = 0,
represents higher order terms in (1.2) (see Section 4 for precise assumptions).
Then there exists a continuum of nontrivial solutions (λ, u) of (1.2) bifurcating
from (λ1(p), 0) which is either unbounded or meets the point (λe(p), 0), where
λe(p) > λ1(p) is some eigenvalue of (1.1).

Theorem 1.3 The set of all eigenvalues of (1.3) is formed by a sequence

0 < λ1(p) < λ2(p) < . . . < λn(p) < . . .→ +∞.

For any n = 1, 2, . . . , the function p 7→ λn(p) is continuous. Every λn(p)
is simple and the corresponding one dimensional space of solutions of (1.3)
with λ = λn(p) is spanned by a function having precisely n bumps in (0, 1).
Each n-bump solution is constructed by the reflection and compression of the
eigenfunction u1(p) associated with λ1(p).

Theorem 1.4 Let p > 1 be fixed and g = g(t, λ, s), g(t, λ, 0) = 0, represents
higher order terms in (1.4) (see Section 5 for precise assumptions). Then for
every n = 1, 2, . . . there exists a continuum of nontrivial solutions (λ, u) of
(1.4) bifurcating from (λn(p), 0) which is either unbounded or meets the point
(λk(p), 0), with k 6= n.
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The paper is organized as follows. In Section 2 we define the notion of the
solution, and prepare some auxiliary results. Section 3 contains the proof of
Theorem 1.1. The essential part of it relies on the abstract result of Idogawa
and Ôtani [7] and the verification of its assumptions. In Section 4 we prove
the bifurcation result stated in Theorem 1.2 using the degree argument and the
well-known result of Rabinowitz [R]. The last Section 5 is devoted to the one
dimensional case and Theorems 1.3, 1.4 are proved there.

2 Auxiliaries

For p > 1 we define the function ψp : R → R by ψp(s) = |s|p−2s, s 6= 0 and
ψp(0) = 0. Denoting p′ = p

p−1 we immediately obtain that z = ψp(s) if and only
if s = ψp′(z). The eigenvalue problem (1.1) can be thus written in the form

∆ψp(∆u) = λψp(u) in Ω
u = ∆u = 0 on ∂Ω.

(2.1)

Before we define the weak solution to (2.1) we recall some properties of the
Dirichlet problem for Poisson equation:

−∆w = f in Ω
w = 0 on ∂Ω.

(2.2)

It is well known that (2.2) is uniquely solvable in Lp(Ω) for any p ∈ (1,∞) and
that the linear solution operator Λ : Lp(Ω)→W 2,p(Ω)∩W 1,p

0 (Ω), Λf = w, has
the properties stated in the following lemma, (see, e.g., [6]).

Lemma 2.1 (i) (Continuity) There exists a constant cp > 0 such that

‖Λf‖W 2,p ≤ cp‖f‖Lp

holds for all p ∈ (1,∞) and f ∈ Lp(Ω).

(ii) (Continuity) Given k ≥ 1, k ∈ N, there exists a constant cp,k > 0 such
that

‖Λf‖Wk+2,p ≤ cp,k‖f‖Wk,p

holds for all p ∈ (1,∞) and f ∈W k,p(Ω).

(iii) (Symmetry) The following identity∫
Ω

Λu · vdx =
∫

Ω

u · Λvdx

holds for all u ∈ Lp(Ω) and v ∈ Lp′(Ω) with p ∈ (1,∞).

(iv) (Regularity) Given f ∈ L∞(Ω), we have Λf ∈ C1,α(Ω̄) for all α ∈ (0, 1);
moreover, there exist cα > 0 such that

‖Λf‖C1,α ≤ cα‖f‖L∞ .
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(v) (Regularity and Hopf-type maximum principle) Let f ∈ C(Ω̄) and f ≥ 0,
then w = Λf ∈ C1,α(Ω̄), for all α ∈ (0, 1) and w satisfies: w > 0 in
Ω, ∂w∂n < 0 on ∂Ω.

(vi) (Order preserving property) Given f, g ∈ Lp(Ω), f ≤ g in Ω, we have
Λf < Λg in Ω.

Let us denote v := −∆u in (1.1). Then the problem (1.1) can be restated
as an operator equation

ψp(v) = λΛψp(Λv) in Ω (2.3)

or as
v = λ

1
(p−1)ψp′(Λψp(Λv)) in Ω. (2.4)

Indeed, let us assume that v ∈ Lp(Ω) solves (2.3). Then from Lemma 2.1 (i)
and the properties of the Nemytskii operator induced by ψp we obtain:

u = Λv ∈W 2,p(Ω) ∩W 1,p
0 (Ω)⇒ ψp(Λv) ∈ Lp

′
(Ω)⇒

⇒ Λψp(Λv) ∈W 2,p′(Ω) ∩W 1,p′

0 (Ω)⇒

⇒ ψp(v) ∈W 2,p′(Ω) ∩W 1,p′

0 (Ω)⇒
⇒ −∆ψp(−∆u) = λψp(u) holds in Lp

′
(Ω).

This enables us to give the following definition of the solution of (1.1).

Definition 2.2 The function u ∈W 2,p(Ω)∩W 1,p
0 (Ω) is called a solution of (1.1)

if v = −∆u solves (2.3) in Lp
′
(Ω). The parameter λe is called an eigenvalue of

(1.1) if there is a nonzero solution ue of (1.1) with λ = λe. The function ue is
then called the eigenfunction associated with the eigenvalue λe.

Lemma 2.3 (Duality). Let λe = λe(p) 6= 0 be the eigenvalue of (EN )p and
ue(p) be the eigenfunction associated with λe. Define λ

(p′)
e and ue(p′) by

λ
1/p
e (p) = λ

1/p′

e (p′) and ue(p′) = λ−1
e (p)ψp(∆ue(p)). Then λe(p′) becomes an

eigenvalue of (EN )p′ with p′ = p
p−1 and ue(p′) gives the eigenfunction associated

with λe(p′).

Proof. We have

∆ψp(∆ue(p)) = λe(p)ψp(ue(p)) in Ω
ue(p) = ∆ue(p) = 0 on ∂Ω.

(2.5)

Let wp := ψp(∆ue(p)), then wp ∈W 2,p′(Ω)∩W 1,p′

0 (Ω). It is easy to see that to
solve (2.5) is nothing but to find (ue(p), wp) satisfying the system

∆wp = λe(p)ψp(ue(p))
∆ue(p) = ψp′(wp).

(2.6)
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Since ue(p′) = 1
λe(p)

wp ∈W 2,p′(Ω) ∩W 1,p′

0 (Ω) satisfies ψp′(ue(p′)) =

λe(p)1−p′ψp′(wp) = λe(p′)−1ψp′(wp), we easily find that (ue(p′), wp′) with wp′ =
ue(p) solves (2.6) with p = p′.

Remark 2.4 The duality proved in the previous lemma enables us to deduce
several properties of (1.1) for p > 2 from those for p ∈ (1, 2) and vice versa.

The following technical lemma will be useful for the verification of certain
abstract assumptions in the next section.

Lemma 2.5 Let A,B,C and p be real numbers satisfying A ≥ 0, B ≥ 0, C ≥
max{B −A, 0} and p > 1. Then

|A+ C|p + |B − C|p ≥ Ap +Bp. (2.7)

Proof. If C = 0 (i.e, B ≤ A), then (2.7) is trivial. So it suffices to show (2.7)
when B ≥ A. Due to the strict convexity of the function s 7→ sp, in (0,+∞) we
have

|A+ C|p ≥ Bp + pBp−1[C − (B −A)],

|B − C|p ≥ Ap − pAp−1[C − (B −A)].

Adding these inequalities, we derive the assertion. �

3 Eigenvalue problem

Let us define convex functionals f1
p , f

2
p : Lp(Ω)→ R as follows:

f1
p (v) =

1
p

∫
Ω

|v|pdx, f2
p (v) =

1
p

∫
Ω

|Λv|pdx.

Then it is clear that f1
p and f2

p are Fréchet differentiable in Lp(Ω). Since for
every Fréchet differentiable convex functional f , its subdifferential ∂f coincides
with its Fréchet derivative f ′, we get that (2.3) is equivalent to

∂f1
p (v) = λ∂f2

p (v) in Lp
′
(Ω), (3.1)

where ∂f ip are the subdifferentials of f ip, (i = 1, 2). We are going to verify
the hypotheses (A0), (A0)′, (6.1) − (6.10) of [7] with A = ∂f1

p , B = ∂f2
p and

V = Lp(Ω). The assumptions (6.1) (i)–(iii), (6.2) (i)–(iii), (6.3), (6.4) (i) and
(6.5) are clearly satisfied. Concerning (6.4) (ii) we should verify that

f2
p (max{u,w}) + f2

p (min{u,w}) ≥ f2
p (u) + f2

p (w) (3.2)

for any u,w ∈ Lp(Ω) satisfying u ≥ 0 and w ≥ 0 a.e. in Ω. We have
max{u,w} = u + (w − u)+ and min{u,w} = w − (w − u)+. By Lemma 2.1
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(vi), the inequality w−u ≤ (w−u)+ implies Λ(w−u)+ ≥ Λ(w−u) = Λw−Λu.
Hence Lemma 2.5 with A = Λu,B = Λw and C = Λ(w − u)+ gives∫

Ω

|Λu+ Λ(w− u)+|pdx+
∫

Ω

|Λw−Λ(w− u)+|pdx ≥
∫

Ω

|Λu|pdx+
∫

Ω

|Λw|pdx.

(3.3)
Then (3.3) implies (3.2). The assumption (6.10) is a consequence of Lemma 2.1
(vi). Hence it remains to verify (A0) and (A0)’.

Lemma 3.1 Let v ∈ Lp(Ω) solve (2.3) in Lp
′
(Ω). Then v ∈ C(Ω̄).

Proof. The main part of the proof is to show the following fact:
Suppose, that v ∈ Lp0(Ω), then we find that

(i) v ∈ Lp1(Ω) with 1
p1

= 1
p0
− p′

N if p0 <
N
2p′

(ii) v ∈ C(Ω̄) if p0 >
N
2p′ , p

′ = p
p−1 .

Let v ∈ Lp0(Ω), and p0 <
N
2p , then Λv ∈ W 2,p0(Ω) by Lemma 2.1(i). Then,

by Sobolev’s embedding theorem and the property of the Nemytskii operator:
r 7→ ψp(r), we get Λv ∈ Lr0(Ω) and ψp(Λv) ∈ L

r0
p−1 with r0 = Np0

N−2p0
Again, by

Sobolev’s embedding theorem and the property of the Nemytskii operator, we
obtain

Λψp(Λv) ∈W 2, rop−1 (Ω) ↪→ Lr1(Ω)

and
ψp′(Λψp(Λv)) ∈ L

r1
p′−1 (Ω) = Lr1(p−1)(Ω)

with r1 = Nr0
N(p−1)−2r0

. Consequently, (2.4) implies that v ∈ Lp1(Ω) with p1 =

r1(p−1), i.e., 1
p1

= 1
p0
− 2p′

N , whence follows assertion (i). If N2 < p0 it is obvious
by Sobolev’s embedding theorem that v ∈ C(Ω̄). As for the case N

2p′ < p0 <
N
2

(or p0 = N
2 ), noting that W 2,

r0
p−1 (Ω) ↪→ C(Ω̄) (or W 2, r

p−1 (Ω) ↪→ C(Ω̄) for
sufficiently large r) we easily see that v ∈ C(Ω̄). Then assertion (ii) is verified.
Now take suitable p0 ∈ (1, p] and k ∈ N such that

pk−1 <
N

2p′
< pk with

1
pk

=
1
p0
− 2p′

N
k.

Then applying assertion (i) with p0 = p0, p1 . . . , pk−1, we deduce v ∈ Lpk(Ω).
Hence from assertion (ii), v ∈ C(Ω̄) follows. �

Remark 3.2 In particular, it follows from above proof that given bounded
sequences {pn} ⊂ (1,∞) and {λn} ⊂ (0,∞), the sequence of elements vn solving
(2.3) with λ = λn and p = pn which are normalized by ‖vn‖Lq = 1, q ∈ (1,∞),
we find a constant c > 0 (independent of n) such that

‖vn‖L∞ ≤ c.
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By the same reason, if λn → λ0 and v0 solves (2.3) with λ = λ0, ‖v0‖Lq = 1,
the proof of Lemma 3.1 implies that

lim
n→∞

‖vn − v0‖L∞ = 0.

Lemma 3.3 Let p ≥ 2 and v ∈ Lp(Ω), v ≥ 0 a.e. in Ω, and let v solve (2.3) in
Lp
′
(Ω). Then v ∈ C1(Ω), v > 0 everywhere in Ω and ∂v

∂n = −∞ on ∂Ω.

Proof. It follows from Lemma 2.1 (v), Lemma 3.1 and (2.3) that w := ψp(v)
satisfies w ∈ C1,α(Ω̄), α ∈ (0, 1), w > 0 in Ω and ∂w

∂n < 0 on ∂Ω. This fact
assures that v > 0 in Ω and (p− 1)|v|p−2 ∂v

∂n < 0 on ∂Ω. Then ∂v
∂n = −∞ follows

from the fact that v = 0 on ∂Ω. �

For p ≥ 2 the assumption (A0) now follows from Lemma 3.3 while instead
of (A0)’ we obtain the following property - (A0)”: Every positive solution v of
(3.1) satisfies v ∈ C1(Ω), v = 0 on ∂Ω and ∂v

∂n = −∞ on ∂Ω.
It is easy to see that the results of [7] remain true even if (A0)’ is substituted
by (A0)”. Applying now the results of [7] we deduce that, for p ≥ 2,

0 < λ1(p) :=

(
sup

v∈Lp(Ω) v 6=0

f2
p (v)
f1
p (v)

)−1

,

is the least simple eigenvalue of (3.1) with associated positive eigenfunction
v1(p), ‖v1(p)‖Lp = 1 and (3.1) has a positive solution if and only if λ = λ1(p).
The assertion for p ∈ (1, 2) now follows from Lemma 2.3 and Remark 2.4.

As a consequence of this fact we find that u1(p) = Λv1(p) is the correspond-
ing first eigenfunction of (EN)p satisfying u1(p) > 0 in Ω,∆u1(p) < 0 in Ω and
∂u1(p)
∂n < 0 on ∂Ω due to Lemma 2.1 (vi). Moreover, if u is another positive

solution of (EN)p then v = −∆u > 0 solves (2.3) in Lp
′
(Ω). Therefore (2.4)

holds with Λv = u. Hence according to the above mentioned argument, it holds
that λ = λ1(p) and v = v1(p), i.e. u = u1(p).

Lemma 3.4 λ1(p) is isolated, i.e. there is δ > 0 such that the interval (λ1(p), λ1

(p) + δ) does not contain any eigenvalue of (3.1).

Proof. Assume the contrary, i.e., there are sequences {λn}, {vn} such that
λn → λ1(p), ‖vn‖Lp = 1 and that vn solves (3.1) with λ = λn. Then both vn
and Λvn must change sign in Ω and

lim
n→∞

‖vn − v1(p)‖L∞ = 0

according to Remark 3.2. But Lemma 2.1 (iv) implies that Λvn → Λv1(p) in
C1,α(Ω̄) for some α ∈ (0, 1) which leads to a contradiction with the fact that
Λv1(p) > 0 in Ω and ∂Λv1(p)

∂n < 0 on ∂Ω. �
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It remains to show the continuity of p 7→ λ1(p). Let us note first that

λ1(p) = inf
1

f2
p (v)

,

where the infimum is taken over all v ∈ Lp(Ω), ‖v‖Lp = p. It follows from
Lemma 2.1 (i) that λ1(p) is bounded uniformly away from zero and infinity for
any p belonging to a compact subinterval of (1,∞). Let pn → p ∈ (1,∞). Then
{λ1(pn)} is a bounded sequence. Denote by v1(pn) the positive eigenfunction
associated with λ1(pn) and normalized by

‖v1(pn)‖Lp = p. (3.4)

Extracting a suitable subsequence we can assume that

λ1(pn)→ λ0, v1(pn) ⇀ v0 in Lp(Ω). (3.5)

In particular, we derive from (3.5) that v0 ≥ 0 a.e. in Ω, and the compactness
of Λ (cf. Lemma 2.1 (i)) yields Λv1(pn)→ Λv0 in Lp(Ω). Extracting again to a
subsequence we get

Λv1(pn)→ Λv0 a.e in Ω. (3.6)

It follows from Remark 3.2 and Lemma 2.1 (iv) that there is a constant c > 0
independent of n such that

|Λv1(pn)| ≤ c. (3.7)

Hence it follows from (3.6), (3.7) and Lemma 2.1 (iv) that

Λψpn(Λv1(pn))→ Λψp(Λv0) a.e. in Ω, i.e.,

ψp′n(Λψpn(Λv1(pn)))→ ψp′(Λ(ψp(Λv0))) a.e. in Ω. (3.8)

Now taking arbitrary ϕ ∈ Lp′(Ω), it follows from (3.4), (3.5), (3.7), (3.8), Lemma
2.1 (iv) and the Lebesgue dominated convergence theorem that∫

Ω

λ
1

pn−1
1 (pn)ψp′n(Λψpn(Λv1(pn)))ϕdx→

∫
Ω

λ
1
p−1
0 ψp′(Λψp(Λv0))ϕdx. (3.9)

It also follows from (3.5) that∫
Ω

v1(pn)ϕdx→
∫

Ω

v0ϕdx. (3.10)

So it follows from (2.4), (3.9) and (3.10) that

v0 = λ
1
p−1
0 ψp′(Λψp(Λv0)). (3.11)

On the other hand (3.6), (3.7) the definition of λ1 and the Lebesgue dominated
convergence theorem imply

1 = lim
n→∞

λ1(pn)
∫

Ω

|Λv1(pn)|pndx = λ0

∫
Ω

|Λv0|pdx,



EJDE–2001/48 Pavel Drábek & Mitsuharu Ôtani 9

i.e. v0 6≡ 0. It follows from here and (3.11) that v0 is a positive solution of
(2.3) with λ = λ0. According to the first part of Theorem 1.1 (cf.[7]) it must
be λ0 = λ1(p), v0 = v1(p). Since the above argument does not depend on the
choice of subsequences, the continuity of the function

p 7→ λ1(p)

is proved. This also completes the proof of Theorem 1.1

4 Global bifurcation result

For p > 1 set X = Lp(Ω). Then X∗ = Lp
′
(Ω) and the Nemytskii operator

Ψp : v 7→ ψp(v)

is one to one mapping between X and X∗.

Lemma 4.1 Ψp satisfies condition (S+), i.e.

vn ⇀ v0 weakly in X. (4.1)

and

lim sup
n→∞

∫
Ω

ψp(vn)(vn − v0)dx ≤ 0 (4.2)

imply vn → v0 strongly in X.

Proof. The monotonicity of ψp, (4.1) and (4.2) imply

0 ≥ lim sup
n→∞

∫
Ω

ψp(vn)(vn − v0)dx =

= lim sup
n→∞

∫
Ω

(ψp(vn)− ψp(v0))(vn − v0)dx ≥

≥ lim sup
n→∞

[(∫
Ω

|vn|pdx
)1/p′

−
(∫

Ω

|v0|pdx
)1/p′

]
×

×

[(∫
Ω

|vn|pdx
)1/p

−
(∫

Ω

|v0|pdx
)1/p

]
≥ 0

Hence ‖vn‖X → ‖v0‖X , which together with (4.1) yields the desired strong
convergence. �

Let the function g : Ω × R2 → R be a Carathèodory function, i.e. g(x, ·, ·)
is continuous for a.e. x ∈ Ω and g(·, λ, s) is measurable for all (λ, s) ∈ R2.
Moreover, let g(x, λ, 0) = 0 for any (x, λ) ∈ Ω × R and given any bounded
interval J ⊂ R we assume that there exists an exponent q ∈ (p, p∗∗) with
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p∗∗ = Np
N−p (for N > 2p); p∗∗ = ∞ (for N ≤ 2p) such that for any ε > 0, there

exists a constant Cε such that

|g(x, λ, s)| ≤ ε|s|p−1 + Cε|s|q−1 for a.e. x ∈ Ω and all λ ∈ J, s ∈ R. (4.3)

Note that (1.2) can be written in the equivalent form

ψp(v) = λΛψp(Λv) + Λg(x, λ,Λv). (4.4)

Due to (4.3) the right hand side of (4.4) defines an operator

Tλ,g : v 7→ λΛψp(Λv) + Λg(x, λ,Λv)

from X into X∗ which is compact. Indeed, by Lemma 2.1 (i) we get Λv ∈
W 2,p(Ω) and Λψp(Λv) ∈ W 2,p′(Ω). Furthermore by using (4.3) and the fact
that W 2,p(Ω) ⊂ Lq(Ω), we find that Λg(x, λ,Λv) ∈ W 2,q′(Ω). Thus Tλ,g maps
any bounded set of X onto a bounded set of W 2,q′(Ω), which is compactly
embedded in X∗, since q < p∗∗. Then this fact and Lemma 4.1 imply that
Ψp − Tλ,g satisfies condition (S+). So, given an open and bounded set D ⊂ X
such that Ψp(v)−Tλ,g(v) 6= 0 for any v ∈ ∂D, the generalized degree of Browder
and Petryshin

Deg[Ψp − Tλ,g;D, 0]

is well defined.

Lemma 4.2 ‖Λg(x, λ,Λv)‖X∗ = o(‖v‖p−1
X ) as ‖v‖X → 0.

Proof. Since Λ is symmetric, we have

‖Λg(x, λ,Λv)‖X∗ = sup
‖ϕ‖X≤1

∫
Ω

Λg(x, λ,Λv)ϕdx = sup
‖ϕ‖X≤1

∫
Ω

g(x, λ,Λv)Λϕdx.

(4.5)
Then, for any ε > 0, by virtue of (4.3) and Lemma 2.1 (i), we find∣∣∣ ∫

Ω

g(x, λ,Λv)Λϕdx
∣∣∣ ≤∫

Ω

ε|Λv|p−1|Λϕ|dx+
∫

Ω

Cε|Λv|q−1|Λϕ|dx

≤ε‖Λv‖p−1
Lp ‖Λϕ‖Lp + Cε‖Λv‖q−1

Lq ‖Λϕ‖Lq

≤εcpp‖v‖
p−1
X ‖ϕ‖X + Cεc

q‖Λv‖q−1
W 2,p‖Λϕ‖W 2,p

≤εcpp‖v‖
p−1
X + Cεc

qcqp‖v‖
q−1
X ,

(4.6)

where cp is the constant appearing in Lemma 2.1 (i) and c > 0 is the embedding
constant for W 2,p(Ω) ↪→ Lq(Ω). Thus the assertion follows from (4.5) and (4.6),
since p < q. �

Let δ > 0 be as in Lemma 3.4 and consider λ < λ1(p) + δ, λ 6= λ1(p). Then
Lemma 4.2 and simple homotopy argument yields

Deg[Ψp − Tλ,g;Br(0), 0] = Deg[Ψp − Tλ,0;Bλ(0), 0] (4.7)

if r > 0 is chosen sufficiently small (cf. [4], [5], [2], [3] or [R]). Here Br(0) is the
ball centred at the origin and with radius r > 0.
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Lemma 4.3 Deg[Ψp − Tλ,0;Br(0), 0] = ±1 for λ < λ1(p) + δ, λ 6= λ1(p) and
sgn(λ1(p)− λ) = ±1.

Proof. To prove the “jump” of the degree we adopt the method developed in
[5] (see also [4]). Thus we just sketch the proof and refer to [DKN, Theorem
3.7] or [D, Theorem 14.18] for the details. Consider the functional

Fλ(v) =
1
p

∫
Ω

|v|pdx− λ

p

∫
Ω

|Λv|pdx.

It follows from the variational characterization of λ1(p) (see Section 3) that for
λ < λ1(p) we have

〈F ′λ(v), v〉X > 0

for v ∈ ∂Br(0) and v = 0 is the only critical point of Fλ (here 〈·, ·〉X denotes
the duality between X∗ and X) and hence

Deg[Ψp − Tλ,0;Br(0), 0] = 1 (4.8)

by the properties of the degree (cf.[9]). Let now λ ∈ (λ1(p), λ1(p) + δ). As in
(DKN, Theorem 3.7] we define a function η : R→ R by

η(t) =
{

0, for t < K,
2δ

λ1(p) (t− 2K), for t ≥ 3K,

The function η(t) is continuously differentiable, positive and strictly convex in
(K, 3K),K > 0. Let us modify Fλ as follows

F̃λ(v) := Fλ(v) + η(
1
p

∫
Ω

|v|pdx).

The properties of λ1(p) stated in Theorem 1.1 now imply the following properties
of F̃λ :

• F̃λ is continuously Fréchet differentiable and its critical point v0 ∈ X
corresponds to a solution of the equation

ψp(v0)− λ

1 + η′( 1
p

∫
Ω
|v0|pdx)

Λψp(Λv0) = 0.

• For λ ∈ (λ1(p), λ1(p) + δ) the only nontrivial critical points of F̃λ occur if

η′
(

1
p

∫
Ω

|v0|pdx
)

=
λ

λ1(p)
− 1.

• Due to the definition of η we then have

1
p

∫
Ω

|v0|pdx ∈ (K, 3K)

and due to the simplicity of λ1(p), either v0 = −tv1(p) or v0 = tv1(p), for
some t ∈ ((pK)1/p, (3pK)1/p), v1(p) as in the Section 3.
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• F̃λ has precisely three isolated critical points −tv1(p), 0, tv1(p).

• F̃λ is weakly lower semicontinuous and even.

• F̃λ is coercive, i.e.
lim

‖v‖X→∞
F̃λ(v) =∞

• −tv1(p), tv1(p) are the points of the global minimum of F̃λ; 0 is an isolated
critical point of “saddle type”.

• 〈F̃ ′λ(v), v〉X > 0 for ‖v‖X = R if R > 0 is large enough.

The properties of the degree now imply that for small ρ > 0 and large R > 0
we have

Deg[F̃ ′λ;Bρ(±tv1(p)), 0] = Deg[F̃ ′λ;BR(0), 0] = 1 .

The additivity property of the degree then yields for 0 < r < (pK)1/p,

Deg[Ψp − Tλ,0;Br(0), 0] = Deg[F̃ ′λ;Br(0), 0] = −1 . (4.9)

The assertion of Lemma 4.3 follows now from (4.8) and (4.9). �

If we combine (4.7) with Lemma 4.3 we come to the following conclusion:
for r > 0 sufficiently small

Deg[Ψp − Tλ,g;Br(0), 0] = ±1

for sgn(λ1(p) − λ) = ±1. Following the proof of [R, Theorem 1.3] we prove
that continuum of nontrivial solutions (λ, v) ∈ R × X of (4.4) bifurcates from
(λ1(p), 0) and it is either unbounded in R × X or meets the point (λe(p), 0),
where λe(p) > λ1(p) is an eigenvalue of (3.1). The assertion of Theorem 1.2
now follows from the fact that (λ, u) solves (BPN)p if and only if (λ,−∆u)
solves (4.4).

5 One-dimensional problem

Let N = 1 and Ω = (0, 1). Then (EN)p reduces to (1.3) and obviously the
assertions of Theorems 1.1, 1.2 remain true. We point out that W 2,p(0, 1) ↪→↪→
C1([0, 1]) in the case N = 1, and so ψp(v) ∈ C1([0, 1]), v(0) = v(1) = 0 for any
solution v of (2.3). Hence we do not need Lemmas 3.1 and 3.3 in this case. For
the sake of brevity we shall write λ1 := λ1(p), u1 := u1(p). It follows from the
symmetry of (1.3) and Theorem 1.1 (simplicity of λ1) that u1(t) = u1(1− t) for
t ∈ [0, 1], i.e. u1 is even with respect to 1

2 . Making use of this observation, we
give a precise description of all eigenvalues and eigenfunctions of (E1)p. Indeed,
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set
un(t) = u1(nt); t ∈ [0,

1
n

],

un(t) = −u1(nt− 1), t ∈ [
1
n
,

2
n

],

. . .

un(t) = (−1)nu1(nt− n+ 1), t ∈ [
n− 1
n

, 1].

Then un = un(t), t ∈ [0, 1], is an eigenfunction of (1.3) associated with the
eigenvalue λn = n2pλ1. On the other hand, let u = u(t) be an eigenfunction of
(E1)p associated with some eigenvalue λe. According to Theorem 1.1 it must
be λe > λ1 and u changes sign in (0, 1). By Lemma A.4 the number of nodes of
u in (0,1) is finite. Assume first that λe = λn, for some n > 1. Let us normalize
u as follows: u′(0) = u′n(0) > 0. Note that since u and un are oscillatory, we
must have, according to Lemma A.3, that

(ψp(u′′(t)))′|t=0 < 0 and (ψp(u′′n(t)))′|t=0 < 0,

respectively. Let (ψp(u′′(t)))′|t=0 = (ψp(u′′n(t)))′|t=0. Then Lemma A.1 implies
that u(t) = un(t), t ∈ [0, 1]. Let (ψp(u′′(t)))′|t=0 6= (ψp(u′′n(t)))′|t=0. Then
Lemma A.2 implies that u(1) 6= 0, a contradiction. Let λe 6= λk for any k ≥ 2.
Define

ũ(t) = u1

((
λe
λ1

)1/(2p)

t

)
, t ∈

[
0,
(
λ1

λe

)1/(2p)
]
,

ũ(t) = −u1

((
λe
λ1

)1/(2p)

t− 1

)
, t ∈

[(
λ1

λe

)1/(2p)

, 2
(
λ1

λe

)1/(2p)
]
, etc.

Then ũ(1)ũ′′(1) < 0. Let us normalize u as u′(0) = ũ′(0) > 0. Then it follows
from Lemma A.2 that u(1) = u′′(1) = 0 cannot hold at the same time. Thus
Theorem 1.3 is proved.

Let X = C([0, 1]). Let g : [0, 1]×R2 → R be a continuous function satisfying
g(t, λ, 0) = 0 for any (t, λ) ∈ (0, 1) × R and given any bounded interval J ⊂ R
we assume that

|g(t, λ, s)| = o(|s|p−1) (5.1)

holds near s = 0 uniformly for all (t, λ) ∈ [0, 1] × J . Note that (BP1)p can be
written in the equivalent form

v = ψp′(λΛψp(Λv) + Λg(t, λ,Λv)). (5.2)

Due to Lemma 2.1 (i), the right hand side of (5.2) defines an operator

Rp,λ,g : (p, λ, v) 7→ ψp′(λΛψp(Λv) + Λg(t, λ, λv))

which is compact from (1,∞)×R×X into X. If I : X → X denotes the identity
mapping, the Leray-Schauder degree

deg[I −Rp,λ,g;D, 0]
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is well defined for any open bounded set D such that v − Rp,λ,g(v) 6= 0 for
v ∈ ∂D.

Lemma 5.1 Let λ 6= λn. Then there is r > 0 (sufficiently small) such that

deg[I −Rp,λ,g;Br(0), 0] = deg[I −Rp,λ,0;Br(0), 0]. (5.3)

Proof. Standard argument based on (5.1) yields that the homotopy

H(τ, v) = v − ψp′(λΛψp(Λv) + τΛg(t, λ,Λv))

satisfies H(τ, v) 6= 0 for all τ ∈ [0, 1] and v ∈ ∂Br(0) if r > 0 is small enough.
So (5.3) follows from the homotopy invariance property of the Leray-Schauder
degree. �

Let λ ∈ (λn(p), λn+1(p)), n = 0, 1, 2, . . ., where we set λ0(p) = −∞ and
λ1(p), λ2(p), . . . are as above, then we have.

Lemma 5.2 deg[I −Rp,λ,0;Br(0), 0] = (−1)n.

Proof. We follow the idea in [2]. Note that it follows from Theorems 1.1, 1.3
that

λn : p 7→ λn(p), n = 1, 2, . . . ,

are continuous functions on (1,∞). Assume that p < 2. Define λ(q), q ∈ [p, 2],
by the following way

λ(q) :=
λ− λn(p)

λn+1(p)− λn(p)
· (λn+1(q)− λn(q)) + λn(q), n ≥ 1,

λ(q) :=λ1(q)− (λ1(p)− λ), n = 0.

Then
H(q, v) := v −Rq,λ(q),0(v) = v − ψq′(λ(q)Λψq(Λv))

satisfies H(q, v) 6= 0 for all q ∈ [p, 2] and v ∈ ∂Br(0). It follows from the
homotopy invariance property of the Leray-Schauder degree that

deg[I −Rp,λ,0;Br(0), 0] = deg[I −R2,λ(2),0;Br(0), 0]. (5.4)

The same approach but in the interval [2, p] yields to the same conclusion also
for p > 2. Since λn(2) < λ(2) < λn+1(2), the classical Leray-Schauder index
formula implies that

deg[I −R2,λ(2),0;Br(0), 0] = (−1)n. (5.5)

The assertion of lemma follows now from (5.4) and (5.5). �

With Lemmas 5.1 and 5.2 in hand we can follow the proof of [R, Theorem 1.3]
to prove that continua of nontrivial solutions (λ, v) ∈ R ×X of (5.2) bifurcate
from (λn(p), 0), n = 1, 2 . . ., and they are either unbounded in R × X or meet
the point (λm(p), 0) with m 6= n. The assertion of Theorem 1.4 follows from
the fact that (λ, u) solves (1.4) if and only if (λ,−∆u) solves (5.2).
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6 Appendix

To justify some statements in Section 5 we present here a brief study of the
initial value problem associated with the equation in (E1)p with λ > 0:

u′′ = ψp′(w), u(t0) = α, u′(t0) = β,

w′′ = λψp(u), w(t0) = γ, w′(t0) = δ .
(6.1)

By a solution of (6.1) we understand a couple of functions (u,w) which are of
class C2 and fulfil the equations and initial conditions in (6.1).

Lemma 6.1 The solution to (6.1) is locally unique.

Proof. Without loss of generality we can restrict ourselves to t0 = 0 and
p ∈ (1, 2) (the case p > 2 is treated similarly). Local existence is a consequence
of the Schauder fixed point theorem. For its uniqueness we have to distinguish
among several cases:

(I) α 6= 0 implies that both functions ψp(u(t)) and ψp′(w(t)) are of class C1 in
the neighbourhood of t = 0 and so the assertion follows from the classical
theory.

(II) α = 0, in this case ψp(u(t)) is not C1 in t = 0.

(II)(i) α = 0, β 6= 0. Let (u,w1), (v, w2) be two solutions of (6.1) in (0, ε) with
some ε > 0. Then

ψp(u′′(t))− ψp(v′′(t)) = λ

∫ t

0

(t− τ)(ψp(u(τ))− ψp(v(τ)))dτ. (6.2)

By the assumption, u(τ)
τ , v(τ)

τ lie in the neighbourhood of β 6= 0 for τ ∈
(0, ε) wiht ε small enough. We thus have K1 > 0 such that∣∣∣∣ψp(u(τ)

τ

)
− ψp

(
v(τ)
τ

)∣∣∣∣ ≤ K1

∣∣∣∣u(τ)
τ
− v(τ)

τ

∣∣∣∣ , (6.3)

τ ∈ (0, ε),K1 independent of ε << 1. On the other hand there is K2 > 0
such that

|ψp(u′′(t))− ψp(v′′(t))| ≥ K2|u′′(t)− v′′(t)|, (6.4)

t ∈ (0, ε). Now, it follows from (6.2)–(6.4)

K2|u′′(t)− v′′(t)| ≤ λ
∫ t

0

(t− τ)τp−1K1

∣∣∣∣u(τ)
τ
− v(τ)

τ

∣∣∣∣ dτ.
Taking into account

u(τ)− v(τ) =
∫ τ

0

(τ − σ)(u′′(σ)− v′′(σ))dσ,
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we arrive at
‖u′′ − v′′‖ε ≤ λ

K1

K2
εp+2‖u′′ − v′′‖ε, (6.5)

where ‖ · ‖ε is the sup norm on [0, ε]. This implies u = v (and thus
w1 = w2) for ε small enough.

(II) (ii) α = β = 0, γ 6= 0 and (iii) α = β = γ = 0, δ 6= 0. Instead of (6.2) we use
the following fact

ψp′(w′′1 (t))− ψp′(w′′2 (t)) = ψp′(λ)
∫ t

0

(t− τ)(ψp′(w1(τ))− ψp′(w2(τ)))dτ.

(6.6)
Since p′ > 2, we have

|ψp′(w1(τ))− ψp′(w2(τ))| ≤ K1|w1(τ)− w2(τ)|,

τ ∈ (0, ε). Hence∣∣∣ ∫ t

0

(t− τ)(ψp′(w1(τ))− ψp′(w2(τ)))dτ
∣∣∣ ≤ K1ε

2‖w1 − w2‖ε. (6.7)

It follows from the initial conditions that w′′i (t)

t2(p−1) , i = 1, 2, lie near

λγψp( 1
2 ) 6= 0 in the case (ii) and wi(t)

t2p−1 , i = 1, 2, lie near λδψp
(

1
p′(p′+1)

)
6=

0 in the case (iii). Hence there exists K2 > 0 such that∣∣∣∣ψp′ ( w′′1 (t)
t2(p−1)

)
− ψp′

(
w′′2 (t)
t2(p−1)

)∣∣∣∣ ≥ K2

∣∣∣∣ w′′1 (t)
t2(p−1)

− w′′2 (t)
t2(p−1)

∣∣∣∣ (6.8)

in the case (ii) and∣∣∣∣ψp′ (w′′1 (t)
t2p−1

)
− ψp′

(
w′′2 (t)
t2p−1

)∣∣∣∣ ≥ K2

∣∣∣∣w′′1 (t)
t2p−1

− w′′2 (t)
t2p−1

∣∣∣∣ (6.9)

in the case (iii). Taking into account

w1(t)− w2(t) =
∫ t

0

(t− τ)(w′′1 (τ)− w′′2 (τ))dτ

we derive from (6.6), (6.7), (6.8) and (6.9) that

‖w1 − w2‖ε ≤
K1

K2
ψp′(λ)ε2p+2‖w1 − w2‖ε

in the case (ii) and

‖w1 − w2‖ε ≤
K1

K2
ψp′(λ)ε2p+3‖w1 − w2‖ε

in the case (iii).
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(II)(iv) α = β = γ = δ = 0. In this case (6.1) has always the trivial solution
u0 = w0 = 0. Let (u,w) be a nontrivial solution. Then

|ψp(u′′(t))| ≤ λ
∫ t

0

(t− τ)ψp(|u(τ)|)dτ ≤ λε2‖u‖p−1
ε , t ∈ (0, ε),

which yields
‖u′′‖p−1

ε ≤ λε2p‖u′′‖p−1
ε ,

i.e. u = w = 0. This completes the proof. �

Lemma 6.2 Let (u,w) and (ũ, w̃) be solutions of (6.1) defined on [0,1], respec-
tively, u(0) = w(0) = ũ(0) = w̃(0) = 0, u′(0) = ũ′(0) > 0, w′(0) < w̃′(0). Then
u(t) < ũ(t) and w(t) < w̃(t) for any t ∈ (0, 1].

Proof. Assume that the assertion is not true . Then it follows from Lemma
A.1 that there is t1 > 0 such that u(t1) = ũ(t1) and u(t) < ũ(t), t ∈ (0, t1).
Simultaneously, the fact that both u and ũ solve (E1)p imply that∫ t1

0

(t1 − τ)ψp′
(
λ

∫ τ

0

(τ − σ)ψp(u(σ))dσ + w′(0)τ
)
dτ

=
∫ t1

0

(t1 − τ)ψp′
(
λ

∫ τ

0

(τ − σ)ψp(ũ(σ))dσ + w̃′(0)τ
)
dτ

which contradicts the monotone character of the functions ψp and ψp′ . The
same argument applies for w and w̃. �

Lemma 6.3 Let (u,w) be a nonzero solution of (6.1) defined on [0, 1] and sat-
isfying u(0) = w(0) = u(1) = w(1) = 0. Then u′(0)w′(0) < 0.

Proof. Multiply the first (second) equation in (6.1) by w′(u′) and add to get

u′(x)w′(x) =
|w(x)|p′

p′
+ λ
|u(x)|p

p
− C for all x ∈ [0, 1]. (6.10)

Let x0 ∈ (0, 1) be the point satisfying

|u(x0)| = max
x∈[0,1]

|u(x)| > 0 .

Then (6.10) implies

0 =
|w(x0)|p′

p′
+ λ
|u(x0)|p

p
− C,

i.e. C > 0. Hence u′(0)w′(0) < 0 by (6.10). �

Lemma 6.4 Let us assume the same as in the previous lemma. Then u (and
also w) changes sign in (0, 1) at most finitely many times.
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Proof. Let u have an infinite number of bumps in (0, 1). Then there exist
sequences xn, yn such that u(xn) = u′(yn) = 0, xn → x0, yn → x0, xn, yn, x0 ∈
[0, 1]. Then u(x0) = u′(x0) = 0, hence (6.10) gives

0 =
|w(x0)|p′

p′
− C.

Since C > 0, we have
w(x0) > 0 or w(x0) < 0.

Due to

u′(x) =
∫ x

x0

ψp′(w(y))dy + ψp′(w(x0)),

the function u′(x) should be of definite sign in a neighbourhood of x = x0, which
contradicts the observation that u′(yn) = 0, yn → x0. �
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[5] P. Drábek: Solvability and Bifurcations of Nonlinear Equations, Pitman Res.
Notes Math. Ser. 232, Longman Scientific & Technical , Harlow 1992.

[6] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Sec-
ond Order, Second Ed., Springer-Verlag, Berlin Heidelberg New York Tokyo
1983.
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