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PARABOLIC EQUATIONS WITH VMO COEFFICIENTS IN
MORREY SPACES

LUBOMIRA G. SOFTOVA

Abstract. Global regularity in Morrey spaces is derived for the regular oblique
derivative for linear uniformly parabolic operators. The principal coefficients

of the operator are supposed to be discontinuous, belonging to Sarason’s class
of functions with vanishing mean oscillation (VMO).

1. Introduction

Let Ω be a bounded C1,1 domain in Rn, n ≥ 1, and denote by QT = Ω× (0, T )
a cylinder in Rn+1

+ = R
n × R+. Set ST = ∂Ω × (0, T ) for the lateral boundary of

QT and denote by x = (x′, t) = (x1, . . . , xn, t) a point in Rn+1. We consider the
following regular oblique derivative problem for the uniformly parabolic operator
P with discontinuous coefficients

Pu = ut −
n∑

i,j=1

aij(x)Diju = f(x) in QT ,

Iu = u(x′, 0) = 0 on Ω,

Bu =
n∑
i=1

`i(x)Diu = 0 on ST .

(1.1)

There is a vast number of existence results in Hölder and Sobolev spaces for initial-
boundary value problems for linear elliptic and parabolic operators with Hölder
continuous coefficients aij (see [16], [21], [22]). In our considerations, we suppose
the coefficients aij belong to the Sarason class of functions with vanishing mean
oscillation VMO (cf. [28]).

Recall that the class VMO consists of functions with bounded mean oscillation
BMO (cf. [20]) whose integral oscillation over balls shrinking to a point converges
uniformly to zero. The interest to the space VMO is due mainly to the fact that it
contains as a proper subspace the bounded uniformly continuous functions. This
ensures the extension of the Lp-theory for operators with continuous coefficients
to the case of discontinuous ones. Moreover, the Sobolev spaces W 1,n(Ω) and
W θ,n/θ(Ω), 0 < θ < 1 are also contained in VMO, which makes the discontinuity of
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the coefficients aij ∈ VMO more general than those studied before either for elliptic
(aij ∈W 1,n(Ω), [24]) or parabolic operators (Dxa

ij ∈ Ln+2, Dta
ij ∈ L(n+2)/2, [17],

[18]).
In two innovative articles, Chiarenza, Frasca and Longo ([10], [11]) modify the

classical methods for obtaining Lp-estimates of solutions to Dirichlet boundary
problem for linear elliptic equations. This allow them to move from aij(x) ∈ C0(Ω̄)
into aij(x) ∈ VMO. Roughly speaking, the approach goes back to Calderón and
Zygmund (see [5], [6]) and makes use of an explicit representation formula forD2u in
terms of singular integrals and their commutators with variable Calderón-Zygmund
type kernel. We refer the reader to the survey [8], where an excellent presentation of
the state-of-art and relations with another similar results for linear and quasilinear
(cf. [25]) elliptic operators can be found.

Later on, the articles [4] and [29] consider unique solvability in the Sobolev spaces
W 2,1
p , p ∈ (1,∞) of the Cauchy-Dirichlet and oblique derivative problem for the

operator P, while [30] presents existence results for initial-boundary value problems
for quasilinear parabolic equations of the type ut−aij(x, t, u)Diju = f(x, t, u,Du).
An up-to-date overview of the classical and the modern results regarding elliptic
and parabolic equations with discontinuous data can be found in the monograph
[23].

In the present work we are interested of the Morrey regularity of solutions to
(1.1). Let us note that the parabolic Morrey spaces Lp,λ are subspaces of Lp for
every p ∈ (1,∞) and λ ∈ (0, n + 2) (λ ∈ (0, n) in the elliptic case). Whence the
existence results in the Sobolev spaces W 2,1

p for elliptic and parabolic operators
with right-hand side f ∈ Lp still hold if f ∈ Lp,λ. A natural question which arises
is whether Pu ∈ Lp,λ implies u ∈ W 2,1

p,λ . It is true for elliptic operators, as it is
shown in [27] (see also [14], [13]). For parabolic operators, in a difference, there is
no results concerning the regularizing properties of the operator P in the Morrey
spaces.

The main goal of the present work is to show that the solution of (1.1) belongs
to W 2,1

p,λ(QT ) assuming the coefficients of the uniformly parabolic operator P to be
bounded VMO functions and f ∈ Lp,λ(QT ), p ∈ (1,∞), λ ∈ (0, n+ 2). The crucial
point of our investigations is the establishment of suitable integral estimates of
singular integral operators and their commutators with variable parabolic Calderón–
Zygmund (PCZ) kernel. The expansion of the kernel into spherical harmonics allow
us to reduce our considerations over integral operators with constant PCZ kernel
which possesses good enough regularity. Constructing a diadic partition of the space
subordinated to the utilized parabolic metric (the standard one or that defined in
[15]) we derive the desired Morrey estimates (see Section 3). In Section 4, there
are established analogous Lp,λ estimates for nonsingular integrals and commutators
making use of a generalized reflection similar to the one used for constructing of half
space Green function. These results are applied later in Section 5 to derive Lp,λ(QT )
estimates for the second spatial derivatives of the solution of (1.1). The W 2,1

p,λ(QT )
a priori estimate of the solution is established analogously as the W 2,1

p (QT ) estimate
obtained in [29]. Finally, the Morrey regularity of solution implies Hölder regularity
of its gradient (see Corollary 5.2), which is finer than the one known in the case
Pu ∈ Lp (cf. [29, Corollary 1]).
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2. Definitions and preliminary results

Consider the regular oblique derivative problem

Pu ≡ ut − aij(x)Diju = f(x) in QT ,

Iu ≡ u(x′, 0) = 0 on Ω,

Bu ≡ `i(x)Diu = 0 on ST .

(2.1)

where QT = Ω× (0, T ) is a cylinder in Rn×R+, n ≥ 1, the base Ω is bounded C1,1

domain in Rn and T > 0. Set ST = ∂Ω× (0, T ) for the lateral boundary of QT .
Throughout the paper the standard summation convention on repeated upper

and lower indices is adopted. Moreover, we set Diu = ∂u/∂xi, Diju = ∂2u/∂xi∂xj ,
ut = Dtu = ∂u/∂t, Du = (D1u, . . . ,Dnu) means the spatial gradient of u, D2u =
{Dij}nij=1 stands for its Hessian matrix and x = (x′, t) = (x1, . . . , xn, t) ∈ Rn+1.
In our further considerations we shall use the notations Rn+1 = R

n × R, Rn+1
+ =

R
n × R+, and Dn+1

+ = R
n
+ × R+.

We suppose that P is a uniformly parabolic operator, i.e., there exists a positive
constant Λ such that

Λ−1|ξ|2 ≤ aij(x, t)ξiξj ≤ Λ|ξ|2, a.a. x ∈ QT , ∀ξ ∈ Rn. (2.2)

Besides that, the requirement the coefficients matrix a = {aij}nij=1 to be symmetric,
leads to essential boundedness of aij ’s (cf. [29]).

The boundary operator B is prescribed in terms of a directional derivative with
respect to the unit vector field `(x) = (`1(x), . . . , `n(x), 0) defined on ST . We
suppose that B is a regular oblique derivative operator (cf. [26]), i.e., the field ` is
never tangential to the boundary ST :

`(x) · ν(x′) = `i(x)νi(x′) > 0 on ST , `
i ∈ Lip(S̄T ). (2.3)

Here Lip(S̄T ) is the class of functions which are uniformly Lipschitz continuous on
S̄T and ν(x′) = (ν1(x′), . . . , νn(x′)) stands for the unit inner normal to ∂Ω.

Denote by P0 a linear parabolic operator with constant coefficients aij0 that
satisfy (2.2). It is well known from the linear theory (cf. [21]) that the fundamental
solution of the operator P0 is given by the formula

Γ0(y) =

{
1

(4πτ)n/2
√

det a0
exp

{
− Aij0 yiyj

4τ

}
for τ > 0,

0 for τ < 0,
(2.4)

where a0 = {aij0 } is the matrix of the coefficients of P0 and A0 = {Aij0 } = a−1
0

is its inverse matrix. Hereafter we denote by Γ0
i and Γ0

ij the derivatives ∂Γ0/∂yi
and ∂2Γ0/∂yi∂yj . In the problem under consideration (2.1), the coefficients of the
operator P depend on x. To express this dependence in the fundamental solution
we define

Γ(x; y) =

{
1

(4πτ)n/2
√

det a(x)
exp

{
− Aij(x)yiyj

4τ

}
for τ > 0,

0 for τ < 0,
(2.5)

where a(x) = {aij(x)} is the matrix of the coefficients of P and A(x) = {Aij(x)} =
a(x)−1 is its inverse matrix. The derivatives Γi and Γij are taken with respect to
the second variable y.
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For the goal of our further considerations, besides the standard parabolic metric
ρ̃(x) = max(|x′|, |t|1/2), |x′| =

(∑n
i=1 x

2
i

)1/2 we are going to use the one introduced
by Fabes and Riviére in [15]

ρ(x) =

√
|x′|2 +

√
|x′|4 + 4t2

2
, d(x, y) = ρ(x− y). (2.6)

A ball with respect to the metric d centered at zero and of radius r is simply an
ellipsoid

Er(0) =
{
x ∈ Rn+1 :

|x′|2

r2
+
t2

r4
< 1
}
.

Obviously, the unit sphere with respect to this metric coincides with the unit sphere
in Rn+1, i.e.

∂E1(0) ≡ Σn+1 =
{
x ∈ Rn+1 : |x| =

( n∑
i=1

x2
i + t2

)1/2

= 1
}
.

Let I be a parabolic cylinder centered at some point x and with radius r, that is
I = Ir(x) = {y ∈ Rn+1 : |x′ − y′| < r, |t − τ | < r2}. It is easy to see that for any
ellipsoid Er there exist cylinders I and I with measures comparable to rn+2 and
such that I ⊂ Er ⊂ I. Obviously, that relation gives an equivalence of the both
metrics and the introduced by them topologies. Later we shall use this equivalence
without making reference to, except if it is necessary.

It is worth noting that (2.6) has been employed in the study of singular integral
operators with Calderón-Zygmund kernels of mixed homogeneity (see [15]).
Definition 2.1. A function k(x) is said to be a parabolic Calderón-Zygmund (PCZ)
kernel in the space Rn+1 if

i) k is smooth on Rn+1 \ {0};
ii) k(rx′, r2t) = r−(n+2)k(x′, t) for each r > 0;
iii)

∫
ρ(x)=r

k(x)dσx = 0 for each r > 0.

Definition 2.2. We say that a function k(x; y), x ∈ Rn+1, y ∈ Rn+1 \ {0} is a
variable PCZ kernel , if:

i) k(x; ·) is a PCZ kernel (in the sense of Definition 2.1) for a.a. x ∈ Rn+1;

ii) supρ(y)=1

∣∣∣∣( ∂
∂y

)β
k(x; y)

∣∣∣∣ ≤ C(β) for every multiindex β, independently of
x.

For the sake of the completeness we shall recall here the definitions and some
properties of the spaces we are going to use.
Definition 2.3. We say that the measurable and locally integrable function f be-
longs to BMO if the seminorm

‖f‖∗ = sup
I

1
|I|

∫
I

|f(y)− fI |dy (2.7)

is finite. Here I ranges over all parabolic cylinders in Rn+1 with radius r, and
centered at some point x and fI = 1

|I|
∫
I
f(y)dy. Then ‖f‖∗ is a norm in BMO

modulo constant functions under which BMO is a Banach space.
Definition 2.4. Let f ∈ BMO, r0 > 0 and denote

γf (r0) = sup
Ir

1
|Ir|

∫
Ir

|f(y)− fIr |dy. (2.8)
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We say that f ∈ VMO if γf (r0)→ 0 as r0 → 0 where the supremum is taken over
all parabolic cylinders Ir centered at some point x with radius r ≤ r0. The quantity
γf (r0) is referred to as VMO modulus of f .

The spaces BMO(QT ) and VMO(QT ) can be defined by taking I ∩ QT and
Ir ∩QT instead of I and Ir in the definitions of ‖f‖∗ and γf (r0).

Having a function f defined in QT and belonging to BMO(QT ), it is possible to
extend it to the whole Rn+1 and the BMO norm of the extension could be estimated
by the BMO norm of the original function. If in addition f ∈ VMO(QT ), then we
may extend it preserving its VMO-modulus, as it follows by the results of Jones [19]
and Acquistapace [1, Proposition 1.3]. The next theorem offers several alternative
descriptions of VMO.
Theorem 2.5. ([28, Theorem 1]) For f ∈ BMO, the following conditions are
equivalent:

(i) f is in VMO;
(ii) f is in the BMO-closure of the space of bounded uniformly continuous

functions;
(iii) limy→0 ‖f(x− y)− f(x)‖∗ = 0;
If f is a uniformly continuous function, then its VMO-modulus γf (r) coincides

with the modulus of continuity ωf (r). Moreover, for a given f ∈ VMO we can find
a sequence {fk} ∈ L∞ ∩ C∞(Rn+1) of functions with γfk(r) ≡ ωfk(r), such that
fk → f in VMO as k → ∞ and γfk(r) ≤ γf (r) for all integer numbers k. In what
follows we use these results without explicit reference.

The problem (2.1) has been already studied in the framework of the Sobolev
spaces W 2,1

p (QT ), p ∈ (1,∞) (cf. [29], [23]). Precisely, assuming (2.2), (2.3) and
aij ∈ VMO(QT ), it is proved that for any f ∈ Lp(QT ), p ∈ (1,∞), there exists a
unique weakly differentiable function u belonging to Lp(QT ) with all its derivatives
Dr
tD

s
xu, 0 ≤ 2r+s ≤ 2, such that u satisfies the equation in (2.1) almost everywhere

in QT and the boundary conditions holds in trace sense.
Our goal here is to obtain finer regularity of that solution supposing that Pu

belongs to the Morrey space Lp,λ.
Definition 2.6. We say that a measurable function f ∈ Lploc belongs to the parabolic
Morrey space Lp,λ if for any p ∈ (1,+∞) and λ ∈ (0, n+ 2) the following norm is
finite

‖f‖p,λ =
(

sup
r>0

1
rλ

∫
I

|f(y)|pdy
)1/p

(2.9)

where I ranges over all parabolic cylinders in Rn+1 of radius r.
To define the space Lp,λ(QT ), we insist the norm

‖f‖p,λ;QT =
(

sup
r>0

1
rλ

∫
QT∩I

|f(y)|pdy
)1/p

(2.10)

to be finite.
Definition 2.7. We say that the function u lies in the Morrey space W 2,1

p,λ(QT ),
1 < p < ∞, 0 < λ < n + 2, if it is weakly differentiable and belongs to Lp,λ(QT ),
along with all its derivatives Dr

tD
s
xu, 0 ≤ 2r + s ≤ 2. Then the following norm is

finite
‖u‖W 2,1

p,λ(QT ) = ‖u‖p,λ;QT + ‖D2u‖p,λ;QT + ‖Dtu‖p,λ;QT .
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For a given measurable function f ∈ L1
loc we define the Hardy-Littlewood maximal

operator

Mf(x) = sup
I

1
|I|

∫
I

|f(y)|dy for a.a. x ∈ Rn+1, (2.11)

where the supremum is taken over all parabolic cylinders I centered at the point x.
A variant of it is the sharp maximal operator

f#(x) = sup
I

1
|I|

∫
I

|f(y)− fI |dy for a.a. x ∈ Rn+1. (2.12)

The following lemmas give Lp,λ estimates for f , Mf and f#. Their Lp variants
are proved in [2]. Analogous Lp,λ estimates, but in the space Rn endowed with the
Euclidean metric can be found in [9] and [13]. To prove the Lp,λ estimates below,
we follow the same lines of reasoning as in the paper cited above, making use of the
parabolic metrics ρ̃ or ρ and corresponding to them diadic partition of the space:

R
n+1 = 2I +

∞⋃
k=1

2k+1I \ 2kI

where I is either parabolic cylinder or ellipsoid centered at some point x ∈ Rn+1

with radius r. We note that 2kI means parabolic cylinder (ellipsoid) with the same
center and radius 2kr.

Lemma 2.8. (Maximal inequality) Let f ∈ Lp,λ, p ∈ (1,∞), λ ∈ (0, n+ 2). Then
there exists a constant C independent of f such that

||Mf ||p,λ ≤ C‖f‖p,λ. (2.13)

Lemma 2.9. (Sharp inequality) Let f be the same as in Lemma 2.8. Then there
exists a constant C independent of f such that

‖f‖p,λ ≤ C‖f#‖p,λ (2.14)

Analogous estimates are valid also in Dn+1
+ where the corresponding diadic par-

tition of the space has the form

D
n+1
+ = 2I+ +

∞⋃
k=1

2k+1I+ \ 2kI+

where I+ = I ∩ {xn > 0, t > 0} and I is a parabolic cylinder. Then

‖Mf‖p,λ;Dn+1
+
≤ C‖f‖p,λ;Dn+1

+
, ‖f‖p,λ;Dn+1

+
≤ C‖f#‖p,λ;Dn+1

+
.

Lemma 2.10. (John-Nirenberg type lemma) Let 1 < p <∞, a ∈ BMO and I be
a parabolic cylinder. Then(

1
|I|

∫
I

|a(y)− aI |p dy
)1/p

≤ C(p)‖a‖∗.

Lemma 2.11. [4, Lemma 2.10] Let a ∈ BMO. Then, for any positive integer j
and parabolic cylinder I

|a2jI − aI | ≤ C(n)j‖a‖∗.
The next lemma gives an important property of the Calderón-Zygmund kernels.
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Lemma 2.12. [4, Pointwise Hörmander condition] Let k be a PCZ kernel. Then
for any parabolic cylinder I0 of center x0 one has

|k(x− y)− k(x0 − y)| ≤ C(k)
ρ(x0 − x)

ρ(x0 − y)n+3

for any x ∈ I0 and y 6∈ 2I0.

3. Singular integral estimates in Morrey spaces

Let k(x; y) be a variable PCZ kernel. For any functions f ∈ Lp,λ, p ∈ (1,∞),
λ ∈ (0, n+2) and a ∈ L∞ define a singular integral operator Kf and its commutator
C[a, f ] by

Kf(x) = lim
ε→0

∫
ρ(x−y)>ε

k(x;x− y)f(y)dy = lim
ε→0
Kεf(x) (3.1)

C[a, f ](x) = lim
ε→0

∫
ρ(x−y)>ε

k(x;x− y)[a(y)− a(x)]f(y)dy

= lim
ε→0
Cεf(x) = K(af)(x)− a(x)Kf(x). (3.2)

The aim of this section is to derive Lp,λ a priori estimates for the singular opera-
tors Kf and C[a, f ]. For this goal we are going to exploit the well known technique,
based on an expansion into spherical harmonics (cf. [5], [6], [10], [4]).

Any homogeneous polynomial p(x), x ∈ RN of degree m, solution of Laplaces
equation ∆u = 0, is called N -dimensional solid harmonic of degree m. Its restric-
tion to the unit sphere ΣN is called N -dimensional spherical harmonic of degree
m.

Denote by Ym the space of (n+ 1)-dimensional spherical harmonics of degree m.
It is a finite-dimensional space with dimYm = gm where

gm =
(
m+ n

n

)
−
(
m+ n− 2

n

)
≤ C(n)mn−1 (3.3)

and the second binomial coefficient is equal to 0 when m = 0, 1, i.e., g0 = 1, g1 = n+
1. Further, let {Ysm(x)}gms=1 be an orthonormal base of Ym. Then {Ysm(x)}gm, ∞s=1,m=0

is a complete orthonormal base in L2(Σn+1) and

sup
x∈Σn+1

∣∣∣∣∣
(
∂

∂x

)β
Ysm(x)

∣∣∣∣∣ ≤ C(n)m|β|+(n−1)/2, m = 1, 2, . . . . (3.4)

If, for instance, φ ∈ C∞(Σn+1) then φ(x) ∼
∑
s,m bsmYsm(x) is the Fourier series

expansion of φ(x) with respect to {Ysm(x)}, where

bsm =
∫

Σn+1

φ(y)Ysm(y)dσ, |bsm| ≤ C(l)m−2l sup
|β|=2l
y∈Σn+1

∣∣∣∣( ∂∂y)βφ(y)
∣∣∣∣ (3.5)

for every l > 1 and the notation
∑
s,m stands for

∑∞
m=0

∑gm
s=1.

We are in a position now to formulate our result concerning singular operators.
Theorem 3.1. Let k(x; y) be a variable PCZ kernel. Then for any f ∈ Lp,λ,
p ∈ (1,∞), λ ∈ (0, n+ 2) and a ∈ L∞ the integrals Kf and C[a, f ] there exist and

lim
ε→0
‖Kεf −Kf‖p,λ = lim

ε→0
‖Cε[a, f ]− C[a, f ]‖p,λ = 0. (3.6)
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Furthermore, there exists a constant C = C(n, p, k), independent of f , such that

‖Kf‖p,λ ≤ C‖f‖p,λ, ‖C[a, f ]‖p,λ ≤ C‖a‖∗‖f‖p,λ. (3.7)

Proof. By density arguments it is enough to prove the theorem for f ∈ C∞0 (Rn+1).
Let x, y ∈ Rn+1 and ȳ = y

ρ(y) ∈ Σn+1. Having in mind the homogeneity proper-
ties of the variable PCZ kernel, we can write

ρ(y)n+2k(x; y) = k(x; ȳ) =
∑
s,m

bsm(x)Ysm(ȳ).

Hence k(x; y) = ρ(y)−(n+2)
∑
s,m bsm(x)Ysm(ȳ).

¿From the Definition 2.2 ii) and the estimate (3.5) it follows

‖bsm‖∞ ≤ C(l, β)m−2l. (3.8)

Let we note that the function k(x, ȳ) is C∞ with respect to ȳ and hence it is equal
to its series expansion. So we consider the integrals

Kεf(x) =
∫
ρ(x−y)>ε

∑
s,m

bsm(x)Hsm(x− y)f(y)dy, (3.9)

Cε[a, f ](x) =
∫
ρ(x−y)>ε

∑
s,m

bsm(x)Hsm(x− y)[a(y)− a(x)]f(y)dy. (3.10)

where Hsm(x − y) stands for the kernel Ysm(x− y)ρ(x − y)−(n+2). We note that
the series∣∣∑

s,m

bsm(x)Hsm(x− y)f(y)
∣∣ ≤ |f(y)|ε−(n+2)

∑
s,m

‖bsm‖∞‖Ysm‖∞

≤ Cε−(n+2)|f(y)|
∞∑
m=1

m−2lmn−1m(n−1)/2

converges for l > (3n − 1)/4. Hence, by the dominated convergence theorem, we
can write

Kεf(x) =
∑
s,m

bsm(x)
∫
ρ(x−y)>ε

Hsm(x− y)f(y)dy. (3.11)

Identical arguments are valid also for the commutator, so

Cε[a, f ](x) =
∑
s,m

bsm(x)
∫
ρ(x−y)>ε

Hsm(x− y)[a(x)− a(y)]f(y)dy.

It is easy to check that Hsm(x) is PCZ kernel in the sense of Definition 2.1.
Moreover,

sup
x∈Σn+1

|∇x′Hsm(x)| ≤ C(n)m(n+1)/2

according to (3.4). Later on, for all x ∈ Rn+1 we have estimates also for the
derivatives of Hsm(x), that is

DiHsm(x) =Di

(
Ysm

(
x

ρ(x)

)
ρ(x)−(n+2)

)
=DiYsm

( x

ρ(x)
) 1
ρ(x)

ρ(x)−(n+2) − (n+ 2)ρ(x)−(n+3)Diρ(x)Ysm
( x

ρ(x)
)
.

Hence
|DiHsm(x)| ≤ C(n)m(n+1)/2ρ(x)−(n+3). (3.12)
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The derivative with respect to t is calculated analogously

|DtHsm(x)| ≤ C(n)m(n+1)/2ρ(x)−(n+4). (3.13)

Now it is easy to see that Hsm(x) satisfies Hörmander type condition.

Lemma 3.2. Let I0 be a cylinder centered at x0 with radius r. Consider x ∈ I0
and y 6∈ 2I0. Then the PCZ kernel Hsm(x) satisfies

|Hsm(x− y)−Hsm(x0 − y)| ≤ C(n)m(n+1)/2 ρ(x0 − x)
ρ(x0 − y)n+3

. (3.14)

The proof is analogous to that of Lemma 2.12 making use of (3.12) and (3.13).

Lemma 3.3. Let f and a be the same as above. Then the singular integrals

Ksmf(x) = P.V.

∫
Rn+1

Hsm(x− y)f(y)dy,

Csm[a, f ](x) = P.V.

∫
Rn+1

Hsm(x− y)[a(y)− a(x)]f(y)dy

satisfy the estimates

(Ksmf)#(x) ≤ Cm
n+1

2
(
M(|f |p)(x)

) 1
p , (3.15)

(Csm[a, f ])#(x) ≤ C‖a‖∗
{(
M(|Ksmf |p)(x)

) 1
p +m

n+1
2
(
M(|f |p)(x)

) 1
p

}
, (3.16)

where the constants depend on n, p, λ but not on f .

Proof. For arbitrary x0 ∈ Rn+1 and cylinder I centered at x0 with radius r, we
construct the operator

J =
1
|I|

∫
I

|Ksmf(y)− (Ksmf)I | dx

=
1
|I|

∫
I

|Ksmf(y)−Ksm2rf(x0) +Ksm2rf(x0)− (Ksmf)I | dx

≤ 2
|I|

∫
I

|Ksmf(y)−Ksm2rf(x0)| dx,

where Ksm2rf(x0) =
∫
ρ(y−x0)>2r

Hsm(x0 − y)f(y)dy. We define (2I)c = R
n+1 \ 2I

and write f(x) = f(x)χ2I(x) + f(x)χ(2I)c(x) = f1(x) + f2(x). Hence

(Ksmf)#(x0) ≤ C
|I|

∫
I

|Ksmf1(y)|dy

+
C

|I|

∫
I

|Ksmf2(y)−Ksm2rf(x0)|dy = J1 + J2.

Thus,

J1 ≤
C

|I|

(∫
I

1dy
)1/p′ (∫

I

|Ksmf1(y)|pdy
)1/p

=
C

|I|1/p
‖Ksmf1‖p

≤ C

|I|1/p
‖f1‖p ≤ C

(
M(|f |p)(x0)

)1/p
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after applying [15, Theorem 1] and taking the supremum with respect to I. The
second integral gives

J2 ≤
C

|I|

∫
I

( ∫
(2I)c

|Hsm(y − ξ)−Hsm(x0 − ξ)| |f(ξ)|dξ

)
dy

≤ Cm(n+1)/2 1
|I|

∫
I

(∫
(2I)c

ρ(x0 − y)
ρ(x0 − ξ)n+3

|f(ξ)|dξ

)
dy

≤ Cm(n+1)/2r
∞∑
k=1

∫
2k+1I\2kI

|f(ξ)|
ρ(x0 − ξ)n+3

dξ

≤ Cm(n+1)/2r
∞∑
k=1

1
(2kr)n+3

(∫
2k+1I

1dξ
)1/p′ (∫

2k+1I

|f(ξ)|pdξ
)1/p

≤ Cm(n+1)/2 1
rn+2

∞∑
k=1

1
(2k(n+3)

|2k+1I|
(

1
|2k+1I|

∫
2k+1I

|f(ξ)|pdξ
)1/p

≤ Cm(n+1)/2
(
M(|f |p)(x0)

)1/p
,

where we have applied Lemma 3.2 for the cylinder I centered at x0 and containing
y while ξ ∈ (2I)c. The final inequality has been reached after taking the supremum
with respect to I. Since x0 was chosen arbitrary, the estimate (3.15) holds true for
any x ∈ Rn+1.

As it concerns the commutator we shall employ the idea of Stromberg (see [31])
which consists of expressing Csm[a, f ] as a sum of integral operators and estimating
their sharp functions. Precisely

Csm[a, f ](x) = Ksm(a− aI)f(x)− (a(x)− aI)Ksmf(x)

= Ksm(a− aI)fχ2I(x) +Ksm(a− aI)fχ2Ic(x)− (a(x)− aI)Ksmf(x)

= A(x) +B(x) + C(x).

Now for any p > 1 and q ∈ (1, p) we have

G1 =
1
|I|

∫
I

|A(x)−AI |dx ≤
2
|I|

∫
I

|Ksm(a− aI)fχ2I(x)|dx

≤ C

|I|

(∫
I

|Ksm(a− aI)fχ2I(x)|qdx
)1/q (∫

I

1q
′
dx

)1/q′

≤ |I|−1/q

(∫
2I

|f(y)|pdy
)1/p(∫

2I

|a(y)− aI |pq/(p−q)dy
)(p−q)/pq

,

as follows from [15, Theorem 1]. Further the John-Nirenberg type lemma and
Lemma 2.11 applied to the second integral yield∫

2I

|a(y)− aI |pq/(p−q)dy ≤
∫

2I

|a(y)− a2I |pq/(p−q)dy +
∫

2I

|a2I − aI |pq/(p−q)dy

≤ C(p, q)‖a‖pq/(p−q)∗

and hence

G1 ≤ C‖a‖∗
(

1
|2I|

∫
2I

|f(y)|pdy
)1/p

≤ C‖a‖∗
(
M(|f |p)(x0)

)1/p
.
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To estimate the sharp function of B(x) we proceed analogously as we did for Ksmf

G2 =
1
|I|

∫
I

|B(x)−BI |dx ≤
2
|I|

∫
I

|B(x)−B(x0)|dx.

The integrand above satisfies

|B(x)−B(x0)| = |Ksm(a− aI)fχ(2I)c(x)−Ksm(a− aI)fχ(2I)c(x0)|

≤
∫

(2I)c
|Hsm(x− y)−Hsm(x0 − y)| |a(y)− aI ||f(y)|dy

≤ C(n)m(n+1)/2ρ(x0 − x)
∫

(2I)c

|a(y)− aI ||f(y)|
ρ(x0 − y)n+3

dy

≤ C(n)m(n+1)/2r

(∫
(2I)c

|f(y)|p

ρ(x0 − y)n+3
dy

)1/p(∫
(2I)c

|a(y)− aI |p
′

ρ(x0 − y)n+3
dy

)1/p′

,

1
p + 1

p′ = 1, as consequence from the Hörmander pointwise estimate since x ∈ I and
y ∈ (2I)c. The first integral above is estimated directly∫

(2I)c

|f(y)|p

ρ(x0 − y)n+3
dy =

∞∑
k=1

∫
2k+1I\2kI

|f(y)|p

ρ(x0 − y)n+3
dy

≤
∞∑
k=1

(2k+1r)n+2

(2kr)n+3

1
|2k+1I|

∫
2k+1I

|f(y)|pdy ≤ 2n+2

r
M(|f |p)(x0),

while the second one is estimated by the help of Lemmas 2.10 and 2.11∫
(2I)c

|a(y)− aI |p
′

ρ(x0 − y)n+3
dy =

∞∑
k=1

∫
2k+1I\2kI

|a(y)− aI |p
′

ρ(x0 − y)n+3
dy

≤
∞∑
k=1

1
(2kr)n+3

∫
2k+1I

|a(y)− aI |p
′
dy

≤
∞∑
k=1

1
(2kr)n+3

(∫
2k+1I

|a(y)− a2k+1I |p
′
dy +

∫
2k+1I

|a2k+1I − aI |p
′
dy

)

≤ C(n, p′)
r

‖a‖p
′

∗

∞∑
k=1

(k + 1)p
′

2k
≤ C(n, p′)

r
‖a‖p

′

∗ .

Hence
G2 ≤ C(n, p)m(n+1)/2‖a‖∗

(
M(|f |p)(x0)

)1/p
.

Finally,

G3 =
1
|I|

∫
I

|C(x)− CI |dx ≤
2
|I|

∫
I

|a(x)− aI ||Ksmf(x)|dx

≤ 2
(

1
|I|

∫
I

|a(x)− aI |p
′
dx

)1/p′ ( 1
|I|

∫
I

|Ksmf(x)|pdx
)1/p

≤ C(p)‖a‖∗
(
M(|Ksmf |p)(x0)

)1/p
.

Combining G1, G2, G3, taking the supremum with respect to I and having in mind
that the point was chosen arbitrary we get (3.16). �
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The above lemma and the sharp inequality yield Lp,λ estimates for the integral
operator Ksmf and its commutator.

Lemma 3.4. Let f , a, Ksmf and Csm[a, f ] be as above. Then

‖Ksmf‖p,λ ≤ Cm(n+1)/2‖f‖p,λ (3.17)

‖Csm[a, f ]‖p,λ ≤ Cm(n+1)/2‖a‖∗‖f‖p,λ (3.18)

where the constants depend on n, p, λ but not on f .

Proof. We are going to estimate the Lp,λ norms of the sharp functions of the cor-
responding operators in order to employ the sharp inequality (Lemma 2.9). Let we
note that (3.15) holds true for any q ∈ (1, p). Therefore, the maximal inequality
(Lemma 2.8) asserts∫

I

|(Ksmf)#(x)|pdx ≤ Cm(n+1)p/2

∫
I

|M(|f |p)|p/q(x)dx

≤ Cm(n+1)p/2rλ‖M(|f |q)‖p/qp/q,λ,≤ Cm
(n+1)p/2rλ‖|f |q‖p/qp/q,λ

≤ Cm(n+1)p/2rλ‖f‖pp,λ.

Dividing of rλ and taking the supremum with respect to r we get

‖(Ksmf)#‖p,λ ≤ C(n, p)m(n+1)/2‖f‖p,λ

and the assertion follows from Lemma 2.9.
The Lp,λ estimate for the commutator follows analogously. After using (3.16)

for q ∈ (1, p) and applying the maximal inequality we arrive to∫
I

|(Csm[a, f ])#(x)|pdx ≤ C(n, p)‖a‖p∗rλ
{
‖Ksmf‖pp,λ +m(n+1)p/2‖f‖pp,λ

}
and by the help of (3.17) we get

‖(Csm[a, f ])#‖p,λ ≤ C(n, p)‖a‖∗m(n+1)/2‖f‖p,λ

which leads to the assertion after applying Lemma 2.9. �

Lemma 3.5. Denote by Ksmεf and Csmε[a, f ] the nonsingular integral operators
with constant PCZ kernel

Hsmε(x− y) =

{
Hsm(x− y) for ρ(x− y) ≥ ε
0 for ρ(x− y) < ε.

Then for any functions a and f as above, we have

‖Ksmεf‖p,λ ≤ C(n, p)m(n+1)/2‖f‖p,λ (3.19)

‖Csmε[a, f ]‖p,λ ≤ C(n, p)m(n+1)/2‖a‖∗‖f‖p,λ. (3.20)

Moreover

lim
ε→0
‖Ksmεf −Ksmf‖p,λ = lim

ε→0
‖Csmε[a, f ]− Csm[a, f ]‖p,λ = 0. (3.21)



EJDE–2001/51 PARABOLIC EQUATIONS WITH VMO COEFFICIENTS 13

Proof. Fix an ellipsoid Eε ≡ Eε(x0) = {y ∈ Rn+1 : ρ(x0 − y) < ε} and set for Eε/2
the ellipsoid centered at the same point with radius ε/2. Hence

Ksmεf(x0) =
C

εn+2

∫
Eε/2
|Ksmεf(x0)|dy

≤ C

εn+2

∫
Eε/2
|Ksmf(y)|dy +

C

εn+2

∫
Eε/2
|Ksmεf(x0)−Ksmf(y)|dy.

The density f could be written as a sum of the kind

f(x) = f(x)χEε(x) + f(x)χEcε (x) = f1(x) + f2(x)

which allows us to write Ksmf = Ksmf1 +Ksmf2 and hence

Ksmεf(x0) =
C

εn+2

∫
Eε/2

∣∣Ksmf1(y)
∣∣dy

+
C

εn+2

∫
Eε/2

∣∣Ksmf2(y)−Ksmεf(x0)
∣∣dy = E1 + E2.

The first integral is analogous to J1 from Lemma 3.3 and hence

E1 ≤ C
(
M(|f |q)(x0)

)1/q
for any q ∈ (1, p).

The second integral is analogous to J2 and hence

E2 ≤ Cm(n+2)/2
(
M(|f |q)(x0)

)1/q
for any q ∈ (1, p).

Since the point x0 was chosen arbitrary, the estimates hold true for any x ∈ Rn+1.
Using the same arguments as in the proof of Lemma 3.4 we get the desired estimates
(3.19) and (3.20).

It is known from [15] and [4] that the limits

lim
ε→0
Ksmεf(x) = Ksmf(x), lim

ε→0
Csmε[a, f ](x) = Csm[a, f ](x),

there exist in Lp. This allows us to assert that taking ε → 0 in (3.19) and (3.20)
we get exactly (3.17) and (3.18), respectively, and the assertion (3.21) follows. �

Now, after giving the proofs of several helpful results, we shall turn back to the
proof of Theorem 3.1.

First of all, the spherical expansion of the kernel leads to expansions of the
nonsingular integrals Kεf and Cε[a, f ], that is

Kεf(x) =
∑
s,m

bsm(x)Ksmεf(x), (3.22)

Cε[a, f ](x) =
∑
s,m

bsm(x)Csmε[a, f ](x) (3.23)

In Lemma 3.5 we show that Ksmεf and Csmε[a, f ] are bounded in Lp,λ uniformly
with respect to ε. Moreover, the series∑

s,m

‖bsmKsmεf‖p,λ ≤ C‖f‖p,λ
∞∑
m=1

m−2l+(n+1)/2+(n−1),
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∑
s,m

‖bsmCsmε[a, f ]‖p,λ ≤ C‖a‖∗‖f‖p,λ
∞∑
m=1

m−2l+(n+1)/2+(n−1)

are totally convergent in Lp,λ, uniformly in ε for l > (3n+ 1)/4. Whence

‖Kεf‖p,λ ≤ ‖f‖p,λ, ‖Cε[a, f ]‖p,λ ≤ C‖a‖∗‖f‖p,λ
with C = C(n, p, λ, k). Setting

Kf(x) =
∑
s,m

bsm(x)Ksmf(x), C[a, f ](x) =
∑
s,m

bsm(x)Csm[a, f ](x),

we obtain through Lemma 3.4

‖Kf‖p,λ ≤ C‖f‖p,λ, ‖C[a, f ]‖p,λ ≤ C‖a‖∗‖f‖p,λ.

Finally, the dominated convergence theorem, applied in Lp,λ to the series expansions
(3.22) and (3.23) gives

lim
ε→0
Kεf(x) = lim

ε→0

∑
s,m

bsm(x)Ksmεf(x) =
∑
s,m

bsm(x) lim
ε→0
Ksmεf(x)

=
∑
s,m

bsm(x)Ksmf(x) = Kf(x),

lim
ε→0
Cε[a, f ](x) =

∑
s,m

bsm(x) lim
ε→0
Csmε[a, f ](x) = C[a, f ](x).

This completes the proof of Theorem 3.1. �

Theorem 3.6. Let Q be a cylinder in Rn+1 and k(x; y) be a variable PCZ kernel
defined in Q. Let f ∈ Lp,λ(Q), 1 < p <∞, 0 < λ < n+2 and a ∈ BMO(Q). Then
Kf and C[a, f ] belong to Lp,λ(Q) and

lim
ε→0
‖Kεf −Kf‖p,λ;Q = 0 (3.24)

lim
ε→0
‖Cε[a, f ]− C[a, f ]‖p,λ;Q = 0 (3.25)

uniformly with respect to ε. Moreover, the following estimates hold true

‖Kf‖p,λ;Q ≤ C‖f‖p,λ;Q (3.26)

‖C[a, f ]‖p,λ;Q ≤ C‖a‖∗‖f‖p,λ;Q (3.27)

where the constants depend on n, p, λ and the kernel k.
Proof. Define the functions

k̄(x; y) =

{
k(x; y) for x ∈ Q, y ∈ Rn+1 \ {0},
0 elsewhere,

f̄(x) =

{
f(x) for x ∈ Q,
0 for x 6∈ Q.

Define the operator K̄f̄(x) =
∫
Rn+1 k̄(x, x− y)f̄(y)dy. So we can consider Kf as a

restriction of K̄f̄ on Q which means

‖Kεf −Kf‖p,λ;Q ≤ ‖K̄εf̄ − K̄f̄‖p,λ.

Then (3.24) follows from (3.6).
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The extension theorems for BMO functions (cf. [19], [1]) allow to define ā ∈
BMO(Rn+1) such that ā|Q = a. Arguments similar to those already applied for
Kf lead to (3.25). Finally

‖Kf‖p,λ;Q ≤ ‖K̄f̄‖p,λ ≤ C‖f̄‖p,λ = C‖f‖p,λ;Q.

The estimate (3.27) follows in the same manner. �

Theorem 3.7. Let k(x; y) be a variable PCZ kernel and a ∈ VMO ∩ L∞(Q) with
VMO modulus γa(r) defined by (2.8). Then for any ε > 0 there exists a positive
number r0 = r0(ε, γa) such that for any r ∈ (0, r0) and any parabolic cylinder
Ir ⊂ Q one has

‖C[a, f ]‖p,λ;Ir ≤ Cε‖f‖p,λ;Ir (3.28)

for any function f ∈ Lp,λ(Ir).
Proof. As it was pointed out above, by the equivalence of the topologies induced
by the standard parabolic metric and the metric (2.6), we may prove the theorem
in ellipsoids instead of parabolic cylinders. For this goal we consider Er centered at
x0 and of radius r

Er =
{
x ∈ Rn+1 :

(x′ − x′0)2

r2
+

(t− t0)2

r4
< 1
}

and Ecr = R
n+1 \ Er.

From the properties of BMO and VMO functions (see Theorem 2.5), it follows
that for any ε > 0 there exists a number r0(ε, γa) and a continuous and uniformly
bounded function g with modulus of continuity ωg(r0) < ε/2 and ‖a − g‖∗ < ε/2.
Fix an ellipsoid Er ⊂ Q, such that r ∈ (0, r0) and construct a function

h(x) =

{
g(x) for x ∈ Er,
g
(
x′0 + r

x′−x′0
ρ(x−x0) , t0 + r2 t−t0

ρ(x0−x)2

)
for x ∈ Ecr

which is uniformly continuous in Rn+1 and its oscillation in Ecr equals the oscillation
of g over the surface ∂Er. Then the oscillation of h in Rn+1 is no greater than the
oscillation of g in Er0 . Then

‖C[a, f ]‖p,λ;Er ≤ ‖C[a− g, f ]‖p,λ;Er + ‖C[g, f ]‖p,λ;Er .

The first norm could be estimated according to (3.27). For the second one we
employ the constructed above function. Whence

‖C[a, f ]‖p,λ;Er ≤ C (‖a− g‖∗ + ‖h‖∗) ‖f‖p,λ;Er

≤ C (‖a− g‖∗ + ωg(r0)) ‖f‖p,λ;Er ≤ Cε‖f‖p,λ;Er .

4. Nonsingular integral estimates in Morrey spaces

Suppose now that the coefficients of the operator P are defined in Dn+1
+ and

construct a generalized reflection T in the next manner. Denote by an(y) the last
row of the matrix a = {aij} and define

T (x′, t; y′, t) = x′ − 2xn
an(y′, t)
ann(y′, t)

, T (x) = T (x′, t;x′, t), (4.1)

for any x′, y′ ∈ Rn+ and any fixed t ∈ R+. Obviously, T maps Rn+ into Rn− and
k(x, T (x)−y) turns out to be nonsingular kernel for any x, y ∈ Dn+1

+ . The following
Lp,λ estimates concerns integrals with kernels like that.



16 LUBOMIRA G. SOFTOVA EJDE–2001/51

Theorem 4.1. Let f ∈ Lp,λ(Dn+1
+ ), a ∈ L∞(Dn+1

+ ) and

K̃f(x) =
∫
D
n+1
+

k(x, T (x)− y)f(y)dy

C̃[a, f ](x) =
∫
D
n+1
+

k(x, T (x)− y)[a(y)− a(x)]f(y)dy

be integral operators with nonsingular kernels. Then there exist constants depending
on n, p and λ, such that

‖K̃f‖p,λ;Dn+1
+
≤ C‖f‖p,λ;Dn+1

+
(4.2)

‖C̃[a, f ]‖p,λ;Dn+1
+
≤ C‖a‖∗‖f‖p,λ;Dn+1

+
. (4.3)

Proof. For all x = (x1, . . . , xn, t), xn > 0 we define x̃ = (x1, . . . ,−xn, t) for any
t ∈ R+. Then there exist two positive constants C1 and C2 depending on n and Λ,
such that

C1ρ(x̃− y) ≤ ρ(T (x)− y) ≤ C2ρ(x̃− y)

for every x, y ∈ Dn+1
+ (cf. [10], [4]). We consider again the expansion in spherical

harmonics of k(x;T (x) − y). For the numbers s and m as in (3.3) and (3.4), we
have

k(x, T (x)− y) =
∑
s,m

bsm(x)
Ysm(T (x)− y)
ρ(T (x)− y)n+2

=
∑
s,m

bsm(x)Hsm(T (x)− y).

Hence

K̃f(x) =
∑
s,m

bsm(x)
∫
D
n+1
+

Hsm(T (x)− y)f(y)dy =
∑
s,m

bsm(x)K̃smf(x).

¿From the properties of the spherical harmonics (3.3) and (3.4), it follows

|Hsm(T (x)− y)| ≤ C m(n−1)/2

ρ(T (x)− y)n+2
≤ C m(n−1)/2

ρ(x̃− y)n+2
.

Consider the operator

Rf(x) =
∫
D
n+1
+

f(y)
ρ(x̃− y)n+2

dy (4.4)

for which |K̃smf | ≤ C(n,Λ)m(n−1)/2|Rf |. We choose x0 = (x′′, 0, t), x′′ ∈ Rn−1, t ∈
R+ and consider a cylinder I = Ir(x0) centered at x0 with radius r. As usual 2kI
means I2kr(x0) for any integer k, I+ = I ∩ {xn > 0, t > 0} and I− = I ∩ {xn <
0, t > 0}. Then we can write f(x) as

f(x) = f(x)χ2I+(x) +
∞∑
k=1

f(x)χ2k+1I+\2kI+(x) =
∞∑
k=0

fk(x).

It follows from [4, Lemma 3.3] that,

‖Rf0‖pp,I+ ≤ ‖Rf0‖pp,Dn+1
+
≤ C(n, p)‖f0‖pp,Dn+1

+

= C

∫
2I+

|f(y)|pdy ≤ C(n, p, λ)rλ‖f‖p
p,λ;Dn+1

+
.



EJDE–2001/51 PARABOLIC EQUATIONS WITH VMO COEFFICIENTS 17

Later on,

|Rfk(x)| ≤
∫
D
n+1
+

|fk(y)|
ρ(x̃− y)n+2

dy

where ρ(x̃ − y) ≥ ρ(x − y) ≥ r(2k − 1) ≥ 2k−1r since x ∈ I+, x̃ ∈ I− and
y ∈ 2k+1I+ \ 2kI+. Hence

|Rfk(x)|p ≤

(∫
D
n+1
+

|f(y)|χ2k+1I+\2kI+(y)
ρ(x̃− y)n+2

dy

)p

≤ 1
(2k−1r)p(n+2)

(∫
2k+1I+

|f(y)|dy

)p

≤ 1
(2k−1r)p(n+2)

(∫
2k+1I+

1dy

)p/p′ (∫
2k+1I+

|f(y)|pdy

)
≤ C(n, p, λ)2k(λ−(n+2))rλ−(n+2)‖f‖p

p,λ;Dn+1
+

and ∫
I+

|Rf(y)|pdy ≤ Crλ
∞∑
k=0

2k(λ−(n+2))‖f‖p
p,λ;Dn+1

+
.

The series above is convergent since λ < n+ 2 and therefore

‖Rf‖p,λ;Dn+1
+
≤ C(n, p, λ)‖f‖p,λ;Dn+1

+
. (4.5)

¿From the expansion of K̃f it follows

‖K̃f‖p,λ;Dn+1
+
≤
∑
s,m

‖bsm‖∞‖K̃smf‖p,λ;Dn+1
+

≤ C(n, p, λ,Λ)‖f‖p,λ;Dn+1
+

∞∑
m=1

m−2l+(n−1)/2+(n−1)

for any l > 0. So the series converges for a suitable choices of l which proves (4.2).
The commutator could be written as a sum of integral operators analogously as

it was already done for K̃f

C̃[a, f ](x) =
∑
s,m

bsm(x)C̃sm[a, f ](x).

Moreover, using similar arguments as those for K̃f , we get

|C̃sm[a, f ]| ≤ Cm(n−1)/2

∫
D
n+1
+

|a(y)− a(x)|
ρ(x̃− y)n+2

|f(y)|dy.

Denote by

Raf(x) =
∫
D
n+1
+

|a(y)− a(x)|
ρ(x̃− y)n+2

|f(y)|dy.

From [3, Theorem 2.1] we have that for any q ∈ (1, p) there exists a constant C(q)
such that

|(Raf)#(x0)| ≤ C‖a‖∗
{(
M(R|f |)q(x0)

)1/q +
(
M(|f |q)(x0)

)1/q}
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for every x0 ∈ Dn+1
+ . Let x0 = (x′′, 0, 0), r > 0, f ∈ Lp,λ. Hence∫

I+

|(Raf)#(y)|pdy ≤C‖a‖p∗
{∫

I+

(
M(R|f |)q(y)

)p/q
dy

+
∫
I+

(
M(|f |q)(y)

)p/q
dy
}

= C‖a‖p∗{J1 + J2}.

It is easy to see that

(R|f |(x))q =

(∫
D
n+1
+

|f(y)|
ρ(x̃− y)n+2

dy

)q

≤

(∫
D
n+1
+

dy

ρ(x̃− y)n+2

)q/q′ (∫
D
n+1
+

|f(y)|q

ρ(x̃− y)n+2
dy

)
≤ CR(|f |q)(x),

whence

J1 ≤
∫
I+

|M(R(|f |q))(x)|p/q dx ≤ rλ‖M(R(|f |q))‖p/q
p/q,λ;Dn+1

+

≤ rλ‖R(|f |q)‖p/q
p/q,λ;Dn+1

+

≤ rλ‖|f |q‖p/q
p/q,λ;Dn+1

+
≤ rλ‖f‖p

p,λ;Dn+1
+

as follows from Lemma 2.8 and (4.5). Analogous arguments allow us to estimate
J2. Using the sharp inequality, we get

‖C̃sm[a, f ]‖p,λ;Dn+1
+
≤ Cm(n−1)/2‖a‖∗‖f‖p,λ;Dn+1

+
.

The representation of the commutator C̃[a, f ] as Fourier series gives

‖C̃[a, f ]‖p,λ;Dn+1
+
≤ C‖a‖∗‖f‖p,λ;Dn+1

+

∞∑
m=1

m(n−1)/2−2l+(n−1)

and the series converges for l > (3n− 1)/4 which proves (4.3). �

Corollary 4.2. Let Ir be a parabolic cylinder in Rn+1
+ , a ∈ VMO ∩ L∞(Ir) with

VMO modulus γa(r). Then for every ε > 0 there exists a positive number r0(ε, γa),
such that for every f ∈ Lp,λ(Ir), r < r0 is fulfilled

‖C̃[a, f ]‖p,λ;Ir ≤ C(p, λ,Λ)ε‖f‖p,λ;Ir .

The proof is analogous to that of Theorem 3.7.

5. A priori estimates, existence and uniqueness

Theorem 5.1. Suppose aij ∈ VMO(QT ) and conditions (2.2), (2.3) to be fulfilled.
Then for every f ∈ Lp,λ(QT ), 1 < p <∞, 0 < λ < n+ 2, the problem (2.1) has a
unique solution u ∈W 2,1

p,λ(QT ). Moreover, it satisfies

‖u‖W 2,1
p,λ(QT ) ≤ C‖f‖p,λ;QT (5.1)

where the constant depends on n, p, λ,Λ, T, ∂Ω and the VMO-moduli of aij.
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Proof. We begin with the establishment of the a priori estimate (5.1). Let u ∈
W 2,1
p (QT ) be a solution of (2.1). Its existence follows from [29] having in mind

that Lp,λ(QT ) is a subspace of Lp(QT ) for every p ∈ (1,∞). To estimate the Lp,λ

norms of the derivatives Diju of this solution we use their representation inside the
cylinder (cf. [4]) and near the boundary (cf. [29]).

Step 1: Interior estimate. By density arguments, we consider u ∈ C∞0 (Rn+1
+ )

and u(x′, 0) = 0. For x ∈ suppu the following interior representation formula holds
(cf. [4])

Diju(x) =P.V.
∫
Rn+1

Γij(x;x− y)
{(
ahk(y)− ahk(x)

)
Dhku(y) + f(y)

}
dy

+ f(x)
∫

Σn+1

Γj(x; y)nidσy,
(5.2)

where Γij are the derivatives of the fundamental solution (2.5) with respect to the
second variable, and ni is the i− th component of the outer normal of the surface
Σn+1.

As it is shown in [15], Γ0
ij is a constant PCZ kernel. Later on, from the bound-

edness of the fundamental solution (cf. [21])

sup
y∈Σn+1

∣∣∣∣∣
(
∂

∂y

)β
Γ(x; y)

∣∣∣∣∣ ≤ C(β,Λ)

it follows that Γij(x; y) is a variable PCZ kernel. Define

Kijf(x) = P.V.

∫
Rn+1

Γij(x;x− y)f(y)dy,

Cij [a, f ](x) = P.V.

∫
Rn+1

Γij(x;x− y)[a(y)− a(x)]f(y)dy

= Kij(af)(x)− a(x)(Kijf)(x).

Hence for x ∈ suppu

Diju(x) =
n∑

h,k=1

Cij [ahk, Dhk](x) +Kijf(x) + f(x)
∫

Σn+1

Γj(x; y)nidσy.

Consider parabolic cylinder I with radius r. From Theorems 3.1 and 3.7 it follows

‖D2u‖p,λ;I ≤ C
(
γa(rα)‖D2u‖p,λ;I + ‖f‖p,λ;I

)
. (5.3)

Choosing r smaller, if necessary, such that Cγa(r) < 1, we get

‖D2u‖p,λ;I ≤ C‖f‖p,λ;I ≤ C‖f‖p,λ;QT ,

where the constant depends on n, p, λ, γa(r), ‖DΓ‖∞. To estimate ut we employ
the equation

ut = aij(x)Diju+ f(x)
and the boundedness of the coefficients. Hence,

‖ut‖p,λ;I ≤ C‖a‖∞‖D2u‖p,λ;I + ‖f‖p,λ;I

≤ C‖f‖p,λ;QT ,

where C = C(n, p, λ,Λ, ‖DΓ‖∞, γa(r), ‖a‖∞,QT ), where ‖a‖∞,QT = max ‖aij‖∞,QT
where the maximum is taken over i, j = 1, . . . , n.
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The estimate of the solution follows from the representation u(x) =
∫ t

0
us(x′, s)ds

and the Jensen inequality, which give

‖u‖p,λ;I ≤ Cr2‖f‖p,λ;QT

where the constant depends on the same quantities. Combining the estimates above
we get that for any parabolic cylinder I, such that I ∩ ST = ∅, we have

‖u‖W 2,1
p,λ(I) ≤ C‖f‖p,λ;QT (5.4)

Considering a cylinder Q′ = Ω′ × (0, T ) with Ω′ b Ω, making a covering of Q′

by parabolic cylinders Iα, α ∈ A, considering a partition of the unit subordinated
to this covering, applying (5.4) for each Iα and using the interpolation inequality
to lower order terms we get

‖u‖W 2,1
p,λ(Q′) ≤ C

(
‖f‖p,λ;QT + +‖u‖p,λ;Q′′

)
, (5.5)

where Q′′ = Ω′′ × (0, T ) and Ω′ b Ω′′ b Ω and the constant depends on n, p, λ, Λ,
T , ‖DΓ‖∞, γa(r), ‖a‖∞,QT .

Step 2: Boundary estimate. Let us suppose now u ∈ C∞0 (Dn+1
+ ). Define the

semycilinder

B+ = {x ∈ Dn+1
+ : |x′| < R, xn > 0, 0 < t < R2}

with a base Ω+ = {|x′| < R, xn > 0} and S+ = {|x′′| < R, xn = 0, 0 < t < R2}.
Consider the problem

Pu ≡ ut − aij(x)Diju = f(x) a.e. in B+,

Iu ≡ u(x′, 0) = 0on Ω+,

Bu ≡ `i(x)Diu = 0on S+.

(5.6)

Than we have the following boundary representation formula for the second spatial
derivatives of the solution of (5.6) (cf. [29])

Diju(x) = Iij(x)− Jij(x) +Hij(x)

where

Iij(x) = P.V.

∫
B+

Γij(x;x− y)F (x; y)dy + f(x)
∫

Σn+1

Γj(x; y)nidσy,

i, j = 1, . . . , n ;

Jij(x) =
∫
B+

Γij(x;T (x)− y′, t− τ)F (x; y)dy, i, j = 1, . . . , n− 1;

Jin(x) = Jni(x) =
∫
B+

n∑
l=1

Γil(x;T (x)− y′, t− τ)
(
∂T (x)
∂xn

)l
F (x; y)dy

i = 1, . . . , n− 1;

Jnn(x) =
∫
B+

n∑
l,s=1

Γls(x;T (x)− y′, t− τ)
(
∂T (x)
∂xn

)l (
∂T (x)
∂xn

)s
F (x; y)dy;

Hij(x) =P.V.
∫
S+

Gij(x;x′′ − y′′, xn, t− τ)g(y′′, τ)dy′′dτ

+ g(x′′, t)
∫

Σn

Gj(x; y′′, xn, τ)nidσ(y′′,τ).
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In the above expressions T (x) is given by (4.1) and

∂T (x)
∂xn

=
(
−2

an1(x)
ann(x)

, . . . ,−2
ann−1(x)
ann(x)

,−1
)
,

g(y′′, τ) =
[
`k(0)− `k(y′′, τ)

]
Dku(y′′, τ)− `k(0)

[
(Γk ∗ F )

∣∣∣
yn=0

]
(y′′, τ),

F (x; y) = f(y) + [ahk(y)− ahk(x)]Dhku(y)

and G = ΓQ where Q is a regular bounded function.
We will use in the sequel the following notations

K̃ijf(x) =
∫
D
n+1
+

Γij(x;T (x)− y′, t− τ)f(y)dy

C̃ij [a, f ](x) =
∫
D
n+1
+

Γij(x;T (x)− y′, t− τ)[a(y)− a(x)]f(y)dy.

Hence

Iij(x) = Kijf(x) + Cij [ahk, Dhku](x), i, j = 1, . . . , n;

Jij(x) = K̃ijf(x) + C̃ij [ahk, Dhku](x), i, j = 1, . . . , n.

Note that the components of the vector ∂T (x)
∂xn

are bounded so the integrals Jin and
Jnn can be presented as a sum of nonsingular integral operators, exactly as Jij ,
i, j 6= n. ¿From Theorems 3.1 and 4.1 it follows

‖Iij‖p,λ;B+ ≤ C
(
‖f‖p,λ;B+ + γa(R)‖D2u‖p,λ;B+

)
,

‖Jij‖p,λ;B+ ≤ C
(
‖f‖p,λ;B+ + γa(R)‖D2u‖p,λ;B+

)
.

(5.7)

To estimate the Lp,λ norm of Hij we suppose that the vector field ` is extended in
B+ preserving its Lipschitz regularity. This automatically leads also to extension
in B+ of the function g

g(x) =
[
`k(0)− `k(x)

]
Dku(x)− `k(0)(Γk ∗ F )(x). (5.8)

Moreover, since G is a product of the fundamental solution Γ and a regular
function Q, the derivatives Gij possess properties similar to that of Γij . Now using
[29, Theorem 1] we write

Gij ∗2 g = P.V.

∫
S+

Gij(x;x′′ − y′′, xn, t− τ)g(y′′, τ)dy′′dτ

∫
B+∩I

|Gij ∗2 g|pdx ≤ C
(∫

B+∩I
|g|pdx+

∫
B+∩I

|Dg|pdx
)

≤ Crλ
( 1
rλ

∫
B+∩I

|g|pdx+
1
rλ

∫
B+∩I

|Dg|pdx
)
,

where I is a parabolic cylinder with radius r. Taking the supremum with respect
to r we get

‖Gij ∗2 g‖p,λ;B+ ≤ C
(
‖g‖p,λ;B+ + ‖Dg‖p,λ;B+

)
.

The second integral in Hij is a product of g and bounded surface integral, hence

‖Hij‖pp,B+∩I ≤ Cr
λ

(
1
rλ
‖g‖pp,B+∩I +

1
rλ
‖Dg‖pp,B+∩I

)
.



22 LUBOMIRA G. SOFTOVA EJDE–2001/51

Taking the supremum with respect to r we get

‖Hij‖p,λ;B+ ≤ C
(
‖g‖p,λ;B+ + ‖Dg‖p,λ;B+

)
.

An immediate consequence of (5.8) is the bound

‖g‖p,λ;B+ ≤ ‖[`k(0)− `k(y)]Dku(y)‖p,λ;B+ + C‖Γk ∗ F‖p,λ;B+ .

Denoting by ‖`‖Lip(ST ) the Lipschitz constant of `, we have

‖[`k(0)− `k(y)]Dku(y)‖p,λ;B+ ≤ CR2‖`‖Lip(ST )‖Du‖p,λ;B+ .

Later,

‖Γk ∗ F‖p,λ;B+ ≤ ‖Γk ∗ f‖p,λ;B+ + ‖Γk ∗ [ahk(·)− ahk(x)]Dhku(·)‖p,λ;B+ .

The convolution Γk ∗ f can be considered as Riesz potential [16, Lemma 7.12] and
the estimate is achieved as in [29, Theorem 1]∫

B+∩I
|Γk ∗ f |pdx ≤ CRp

∫
B+∩I

|f |pdx ≤ CRprλ‖f‖p,λ;B+ .

Taking again the supremum with respect to r, we get

‖Γk ∗ f‖p,λ;B+ ≤ CR‖f‖p,λ;B+ .

It is known from the properties of the fundamental solution that Γk ∈ L1
loc and

it behaves like ρ(x)−(n+1). Multiplying and dividing by ρ(x− y) we can apply the
theorems for integral operators with singular kernels. Note that ρ(x− y)−(n+2) is a
non-negative measurable function and we can apply [3, Theorem 0.1]. By the same
technique as above, one gets

|Γk ∗ [ahk(·)− ahk(x)]Dhku(·)| ≤ CR
∫
B+

|ahk(y)− ahk(x)||Dhku(y)|
ρ(x− y)n+2

dy,

‖Γk ∗ F‖p,λ;B+ ≤ CR
(
‖f‖p,λ;B+ + γa(R)‖D2u‖p,λ;B+

)
,

‖g‖p,λ;B+ ≤ C
(
R2‖Du‖p,λ;B+ +R‖f‖p,λ;B+ +Rγa(R)‖D2u‖p,λ;B+

)
.

Further, the Rademacher theorem asserts existence almost everywhere of the deriva-
tives Dh`

k ∈ L∞(QT ). Thus,

Dhg(x) = −Dh`
k(x)Dku(x) + [`k(0)− `k(x)]Dkhu− `k(0)(Γkh ∗ F ).

The Lp norm of the last term is estimated according to Theorem 3.1 while the
others two are treated as above. Hence

‖Dg‖p,λ;B+ ≤ C
(
‖Du‖p,λ;B+ +R2‖D2u‖p,B+ + ‖f‖p,λ;B+ + γa(R)‖D2u‖p,λ;B+

)
.

Finally, applying the Gagliardo-Nirenberg interpolation inequality to ‖Du‖p,B+ , we
obtain

‖Du‖p,λ;B+ ≤ C
(

1
ε
‖u‖p,λ;B+ + ε‖D2u‖p,λ;B+

)
.

Choosing ε = R(R+ 1) for R small enough we get

‖Hij‖p,λ;B+ ≤ C
(

1
R
‖u‖p,λ;B+ + ‖f‖p,λ;B+ + (R+ γa(R))‖D2u‖p,λ;B+

)
.

Combining the last inequality with (5.7), we get

‖D2u‖p,λ;B+ ≤ C
(

1
R
‖u‖p,λ;B+ + ‖f‖p,λ;B+ +

(
R+ γa(R)

)
‖D2u‖p,λ;B+

)
,
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whence, taking R small enough (recall γa(R)→ 0 as R→ 0), one obtains

‖D2u‖p,λ;B+ ≤ C
(
‖f‖p,λ;B+ +

1
R
‖u‖p,λ;B+

)
.

Expressing ut from the equation we get

‖ut‖p,λ;B+ ≤ C
(
‖f‖p,λ;B+ +

1
R
‖u‖p,λ;B+

)
. (5.9)

Now, writing u(x) =
∫ t

0
us(x′, s)ds and making use of Jensen’s inequality and (5.9)

we obtain

‖u‖p,λ;B+ ≤ CR2‖ut‖p,λ;B+ ≤ C
(
R2‖f‖p,λ;B+ +R‖u‖p,λ;B+

)
.

Hence, choosing R smaller, if necessary, we get ‖u‖p,λ;B+ ≤ C‖f‖p,λ;B+ and there-
fore

‖u‖W 2,1
p,λ(B+) ≤ C‖f‖p,λ;B+ ≤ C‖f‖p,λ;QT (5.10)

for each solution to the problem (5.6). Making a covering {Bα}, α ∈ A of the
boundary ST such that QT \ Q′ ⊂

⋃
α∈ABα, considering a partition of the unit

subordinated to this covering and applying the estimate (5.10) for each Bα we get

‖u‖W 2,1
p,λ(QT \Q′) ≤ C(n, p, λ,Λ, T, ‖DΓ‖∞, γa(r), ‖a‖∞)‖f‖p,λ;QT . (5.11)

The estimate (5.1) follows from (5.5) and (5.11).
Step 3: Existence and uniqueness. The uniqueness of the solution u ∈W 2,1

p,λ(QT )
of the problem under consideration follows trivially from the a priori estimate (5.1).

The existence of the solution can be proved by the method of continuity, as it is
done in [29]. For this goal we connect the solvability of (2.1) with the solvability
in W 2,1

p,λ(QT ) of the problem

Hu ≡ ut −∆u = f(x) a.e. in QT ,

Iu ≡ u(x′, 0) = 0 on Ω,

Bu ≡ `i(x)Diu = 0 on ST .

(5.12)

Obviously, for any f ∈ Lp,λ(QT ) the above problem is uniquely solvable inW 2,1
p (QT )

(cf. [21]). In the representation formula of the solution of (5.12) the commutators
disappear, so it is not difficult to establish the appropriate Lp,λ(QT ) estimates
which ensure solvability in W 2,1

p,λ(QT ) of (5.12). �

Let us recall that when u ∈ W 2,1
p its derivatives Diu are Hölder continuous

functions for p > n + 2 (see [21], [29, Corollary 1]). It is worth noting that the
Morrey regularity of the solution implies a Hölder regularity of Diu for values of p
smaller than n+ 2.

Corollary 5.2. Suppose aij ∈ VMO(QT ), f ∈ Lp,λ(QT ), p ∈ (1,∞), λ ∈ (0, n+2)
and the conditions (2.2) and (2.3) to be fulfilled. Let u ∈ W 2,1

p,λ(QT ) be a solution
of the problem (2.1). Then
i) u ∈ C0,α(QT ) with α = 1

n+1 + λ−(n+2)
p for p > (n+ 1)(n+ 2− λ);

ii) Du ∈ C0,β(QT ) with β = 1 + λ
p −

n+2
p for λ > max{0, n+ 2− p}.
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Proof. The assertion i) follows directly from Theorem 5.1 and [12, Theorem 4.1].
The second assertion could be achieved by the parabolic Poincaré inequality [7,

Lemma 2.2]∫
QT∩I

∣∣Du− (Du)QT∩I
∣∣pdxdt ≤ rp ∫

QT∩I

(
|ut|p + |D2u|p

)
dxdt

≤ Crp+λ‖u‖W 2,1
p,λ(QT ).

This implies that the gradient Du belongs to the space of Campanato Lp,p+λ(QT ).
It is well known (cf. [12, Theorem 3.1], [23, § 3.3.2]) that for p+λ ∈ (n+2, n+2+p)
the space Lp,p+λ(QT ) coincides with C0,β(QT ) with β = (p+ λ− (n+ 2))/p. �
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