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A priori bounds and global existence for a

strongly coupled quasilinear parabolic system

modeling chemotaxis ∗

Hendrik J. Kuiper

Abstract

A priori bounds are found for solutions to a strongly coupled reaction-
diffusion system that models competition of species in the presence of
chemotaxis. These bounds are used to prove the existence of global solu-
tions.

1 Introduction

Chemotaxis is a property of certain living organisms to be repelled or attracted
to chemical substances. In a 1970 paper [7] E.F. Keller and L.A. Segel proposed
a model to describe the aggregation of the slime mold Dictyostelium discoidium.
It consists of two strongly coupled diffusion equations,

∂tS = γ1∆S − γ2S + γ3u,

∂tu = ∆u−∇ · (u∇X(S)) in Ω,

together with homogeneous Neumann boundary conditions and nonnegative ini-
tial conditions. Here S is the concentration of the chemotactic agent and u is
the concentration of organisms. In the original model the sensitivity function
X(S) was taken to be χS for some constant χ. Since, this model has been stud-
ied by many authors including Jäger and Luckhaus [6], Herrero and Velázquez
[5], Nagai and Senba [16, 17], Gajewski and Zacharias [4]. Global solutions as
well as solutions that blow up in finite time have been found. In many, if not
most, papers the sensitivity function is assumed to be linear, however other
functions such as the logarithm and power functions have also been considered.
The model is often simplified by restricting the dimension of Ω, by restriction
to consideration of radially symmetric solutions, or by reducing the system to
the elliptic-parabolic system that is obtained as the limit by letting the diffusion
coefficient γ1 tend to infinity (see e.g. [6, 15, 17, 18]) The present paper was
motivated by recent results of Le and Smith [13] on the existence of steady state
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2 Strongly coupled parabolic systems EJDE–2001/52

solutions for a model that incorporates both competition and chemotaxis (for
example in a chemostat). Such a model was originally introduced and studied by
Lauffenburger and coworkers [8, 11, 12]. The model for microbial competition
in a chemostat considered by Le and Smith involves the following quasilinear
parabolic system:

∂tS = d0∆S − µ0 · ∇S − c0S − f0(x, S, u)
∂tuk = ∇ · (−χk(S)uk∇S) + dk∆uk − µk · ∇uk − ckuk + ukfk(x, S),

where x ∈ Ω, a bounded domain in R
n, χk := X ′k, k = 1, 2, . . . ,m, u =

(u1, u2, . . . , um) are the population densities of the competing organisms, and S
is the concentration of nutrient which here plays the role of chemotactic agent. If
we use ν(x) to denote the unit outward normal vector at x ∈ ∂Ω, and ∂ν ≡ ∂/∂ν
to denote the outward normal derivative at the boundary, then the boundary
conditions are of the form

d0
∂S

∂ν
+ ζ(x)S = η(x)

dk
∂uk
∂ν

+ rk(x,
∂S

∂ν
)uk = 0 for k = 1, 2, . . . ,m,

where ζ, and rk are nonnegative functions. The vector fields µk represent con-
vection currents in the chemostat. Le and Smith found conditions under which
this problem has a positive steady state. In this paper we shall be concerned
with the existence of global time-dependent solutions for problems such as this.

2 Statement of the Problem and Preliminaries

As was done in [13], we will assume that the convection currents are gradient
fields:

µj = ∇Bj for j = 0, 1, . . . ,m,

so that we look at the problem

∂tS = d0∆S −∇B0 · ∇S − F0(x, t, S, u), in Ω, (1)

∂tuk = dk∆uk −∇ · (χk(S)uk∇S)−∇Bk · ∇uk
−λkuk + Fk(x, t, S, u), in Ω, (2)

d0∂νS + ζ(x)S = η(x) on ∂Ω, (3)
dk∂νuk + βk(x, S, u)uk − χk(S)uk∂νS = 0, (4)

for k = 1, 2, . . . ,m, on ∂Ω, with initial conditions

0 ≤ S(·, 0) = S0 ∈ C2(Ω), 0 ≤ uk(·, 0) = uk0 ∈ C2(Ω), k = 1, 2, . . .m, (5)

that satisfy the given boundary conditions. We will assume that Ω is a bounded
domain whose boundary ∂Ω is of class C3. The diffusion coefficients dk, k =
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0, 1, . . . ,m, are positive constants and the parameters λk, k = 1, . . . ,m, are real
constants. We further assume that for all relevant values of j

Fj ∈ C1(Ω× Rm+2),
0 < χj ∈ C2(R) and is bounded

Bj ∈ C3(Ω),
βj ∈ C2(Ω× Rm+1), and η, ζ ∈ C2(Ω).

We also assume that βj for j = 1, 2, . . . ,m, ζ, and F0 are nonnegative-valued
functions, that F0(x, t, u, 0) = 0, and Fj(x, t, u, S) = 0 when uj = 0, and that
there exists a constant kF such that

Fj(x, t, S, u) ≤ kFF0(x, t, S, u) (6)

for j = 1, 2, . . . ,m. Throughout we will be dealing with nonnegative solutions in
the classical sense, or at least with solutions each of whose components belongs
to the space C1([0, T ),H1(Ω)) ∩ C((0, T ),H2(Ω)) for some maximal T > 0.
See section 5 where we quote the theorem by Amann that ensures positivity of
solutions.

We will use ‖ · ‖s,p,Ω to denote the norm on the Sobolev space W s
p (Ω). For

s = k, a nonnegative integer, this space is the familiar the space of functions
that are in Lp(Ω) together with all of its derivatives of order ≤ k. For positive
non-integral order s the spaces W s

p (Ω) are usually defined by means of the real
interpolation method, see for example [1, 14]. This means that for 0 < s < 1
there exists a constant Ks such that for all u ∈W 1

p (Ω)

‖w‖s,p,Ω ≤ Ks| w‖1−s0,p,Ω ‖w‖
s
1,p,Ω.

The Sobolev-Slobodeckii spaces W̃ s
p (Ω) are defined, as follows. If s is an integer

then it coincides with the Sobolev space W s
p (Ω). For 0 < s < 1 define the

following seminorm:

[w]s,p,Ω :=
(∫

Ω

∫
Ω

|w(x)− w(y)|p

|x− y|n+sp
dx dy

)1/p

. (7)

When s is not an integer the Sobolev-Slobodeckii space W̃ s
p (Ω) is defined to be

the space of all functions w ∈W [s]
p (Ω) such that

‖w‖s,p,Ω :=

‖w‖p[s],p,Ω +
∑
|α|=[s]

[∂αw]ps−[s],p,Ω

1/p

<∞. (8)

Since we are assuming that ∂Ω is of class C3, it has the C1-regularity property
[1]. This, in, turn implies that the space W̃ s,p(Ω) coincides, algebraically and
topologically, withW s

p (Ω) [1]. By employing partitions of unity one can similarly
define Sobolev and Sobolev-Slobodeckii spaces on ∂Ω.
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The notation Ck− will be used to denote functions whose derivatives of order
k − 1 are Lipschitz continuous. When context precludes confusion we will also
use the notation W s

p (Ω) for vector-valued functions.
The following theorem is a simplified version of Theorem 5.4 below.

Theorem 2.1 Suppose that there exists a continuous function A and a positive
number Q such that for all j = 0, 1, . . . ,m

Fj(x, t, S, u),≤ A(S)[1 + |u|Q],

Then problem (1)-(5) has a classical solution on [0,∞) provided that for some
0 < δ < 1, ‖η‖C1+δ(Ω) and ‖S0‖∞ are sufficiently small.

3 A priori Lq(Ω) bounds on u.

Since the following proofs for the case m > 1 are nearly the same as those for
the case m = 1, we simplify matters by assuming that m = 1 and by dropping
unnecessary subscripts. Later, we will outline the modifications that are needed
to handle the case m > 1.

Let [0, T ) denote the maximal interval on which problem (1)-(5) has a so-
lution. We let S∗ denote the so-called wash-out solution, a steady state cor-
responding to the situation where there is a total absence of organisms. We
assume such a solution exists:

−d0∆S∗ +∇B0 · ∇S∗ = 0 in Ω,
d0∂νS∗ + ζS∗ = η on ∂Ω.

From the maximum principle it follows that S(x, t) ≥ 0 and S∗(x, t) ≥ 0. We
know from standard regularity results [9] that S∗ ∈ C3−(Ω). Define s := S−S∗,
so that

∂ts = d0∆s−∇B0 · ∇s− F0(x, t, S, u) in Ω, ∂νs+ ζs = 0, on ∂Ω. (9)

From the maximum principle we may deduce that s(x, t) ≤ s := ‖S0−S∗‖∞. If
we define s := −‖S∗‖∞ then

s ≤ s(x, t) ≤ s ∀x ∈ Ω and t > 0. (10)

We will now try to find a Lyapunov function of the form

L(t) :=
∫

Ω

exp(−B0(x)/d0)L(s(x, t), D(x)u(x, t)) dx,

where L has the form

L(s, v) = (vq +K) exp(z(s)),
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with q ≥ 1 and K > 0 constant, D(x) := exp(B0(x)/d0 − B(x)/d), and z a
strictly increasing, convex function yet to be determined. At times we will use
v to denote Du. It is convenient to rewrite the equations for s and u as

∂ts = exp(B0/d0)∇ · exp(−B0/d0)d0∇s− F0(x, t, S, u)
∂tu = exp(B/d)∇ · exp(−B/d)(d∇u− χ(S)u∇s) (11)

−χ(S)u∇B · ∇s/d−∇ · χ(S)u∇S∗ − λu+ F (x, t, S, u)

We will try to find a function z such that dL/dt ≤ 0 for λ sufficiently large. To
begin with we assume that ζ = 0. A straightforward computation then shows
that

dL

dt
=

∫
Ω

Ls(s, v) {∇ · exp(−B0/d0)d0∇s− F0(x, t, S, u) exp(−B0/d0)} dx

+
∫

Ω

Lv
{
∇ · exp(−B/d) [d∇u− uχ(S)∇s]

− exp(−B/d)χ(S)u∇B · ∇s/d− exp(−B/d)∇ · χ(S)u∇S∗
−λ exp(−B/d)u+ F (x, t, S, u) exp(−B/d)

}
dx

=
∫
∂Ω

{
Ls exp(−B0/d0)d0∂νs+ Lv exp(−B/d)

×
(
d∂νu− uχ(S)∂νs− χ(S)u∂νS∗

)}
dσ

−
∫

Ω

exp(−B0/d0)
{
Lssd0|∇s|2 + LsvDd0∇s · ∇u− Lsvd0u∇s · ∇D

+Lvs exp(−B/d) [d∇u− uχ(S)∇s] · ∇s

+Lvv exp(−B/d) [d∇u− uχ(S)∇s] · [D∇u+ u∇D]
}
dx

+
∫

Ω

exp(−B/d)
{
Lvsχ(S)u∇S∗ · ∇s+ Lvvχ(S)u∇S∗ · [D∇u+ u∇D]

−Lvχ(S)u∇S∗ · ∇B/d
}
dx+

∫
Ω

{
− LsF0(x, t, S, u) exp(−B0/d0)

+Lv exp(−B/d)[−λu+ F (x, t, S, u)− χ(S)u∇B · ∇S/d]
}
dx

= −
∫
∂Ω

Lv exp(−B/d)β dσ −
∫

Ω

exp(−B/d)Lvχ(S)u∇s · ∇B/d dx

−
∫

Ω

{
exp(−B0/d0) [Lssd0 −DLvsuχ(S)] |∇s|2 + exp(−B/d)

× [Lsv(d0 + d)−Duχ(S)Lvv]∇u · ∇s+ exp(−B/d)DLvvd|∇u|2

+ exp(−B/d)Lvvu2χ∇s · ∇D + exp(−B/d)Lvvu2χ∇S∗ · ∇D
}
dx

−
∫

Ω

exp(−B/d)
[
Lsv

(
d0D

−1u∇s · ∇D +∇s · ∇S∗uχ(S)
)

+DLvv∇u · ∇S∗uχ(S)− dLvvu∇u · ∇D
]
dx
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+
∫

Ω

exp(−B/d)
[
LvF (x, t, S, u)− LsF0(x, t, S, u)/D

+Lvχ(S)u∇S∗ · ∇B/d− Lvλu
]
dx

The surface integral is non-positive. Let k0 := sup{D(x) |x ∈ Ω}. If we choose
the function z such that for some δ > 0 we have

z′(s) ≥ δ,

then we may choose the constant K in the definition of L large enough that

Ls ≥ kF k0Lv.

Hence, if we choose λ ≥ sup{∇S∗(x) · ∇B0(x)‖χ‖∞/d |x ∈ Ω}, then the last
integral above above will be negative. Next we look at the terms involving
quadratic terms in the gradients. We will need the following inequality satisfied
for some positive number ε:(

Lssd0 − LvsuDχ(S)
)
|∇s|2

+D
(
Lsv(d0 + d)− uDχ(S)Lvv

)
∇u · ∇s+D2Lvvd|∇u|2 (12)

≥ εLss|∇s|2 + εLvvD2|∇u|2.

This will be true provided

(Lsv(d0 + d)− uDχ(S)Lvv)2 ≤ 4Lvv(d− ε) (Lss(d0 − ε)− LvsuDχ(S)) ,

That is to say,

[z′(s)q(d0 + d)− χ(S)q(q − 1)]2 (13)
≤ 4q(q − 1)(d− ε)

[(
z′′(s) + z′(s)2

)
(d0 − ε)− qz′(s)χ(S)

]
.

This provides us with the following second order differential inequality that
needs to be satisfied:

z′′(s) ≥ Aqz′(s)2 −Bqχ(S)z′(s) + Cqχ(S)2, (14)

where

Aq :=
q(d+ d0)2 − 4(q − 1)(d− ε)(d0 − ε)

4(q − 1)(d− ε)(d0 − ε)
,

Bq :=
q(d0 − d+ 2ε)

2(d− ε)(d0 − ε)
,

Cq :=
q(q − 1)

4(d− ε)(d0 − ε)
.

To see that Aq is positive (for sufficiently small ε) we rewrite it as

Aq = (q − 1)−1

[
1 +

q(d0 − d)2 − 4qε(d0 + d− ε)
4(d− ε)(d0 − ε)

]
.
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Although in chemotaxis models it is usually assumed that the function χ(S)
is positive and decreasing (and of course, defined for S ≥ 0) we will not need to
assume such monotonicity. However, we shall assume that χ(S) is defined for
all real S. If necessary, we simply extend χ to the negative real line by setting
χ(S) = χ(0) for S < 0.

Definition. Let

χ∗(s) := inf{χ
(
S∗(x) + s

)
| x ∈ Ω}

χ∗(s) := sup{χ
(
S∗(x) + s

)
| x ∈ Ω}

Then
χ∗(s(x, t)) ≤ χ(S(x, t)) ≤ χ∗(s(x, t)).

We let z be the solution to the Riccati equation

z′′(s) = Aqz
′(s)2 −Bqχ∗(s)z′(s) + Cqχ

∗(s)2 (15)
z(s) = 0, z′(s) = δ (16)

If we set ε = 0 then the discriminant

Dq := B 2
q χ

2
∗ − 4AqCqχ∗

2 ≤ −qχ∗2/(dd0),

Therefore, we see that Dq < 0 provided ε is chosen sufficiently small. In that
case the right hand side of the above Riccati equation will be positive, so that
z will indeed be convex and

z′(s) > δ for all s > s.

Therefore z(s) will exist on some maximum interval [s, s∗]. If s ≤ s∗ then L(t)
will be a Lyapunov function provided the remaining terms in the integrands for
expression for dL/dt (i.e. the terms that are of degree 1 in the gradients) add
up to something that can be bounded by

εLss|∇s|2 + εLvv|∇u|2 + CεLvu (17)

for some constant Cε, and that we take λ sufficiently large. To prove this we
first show that the following ratios are uniformly bounded:

v2Lvv(s, v)2

Lvv(s, v) vLv(s, v)
,

v2Lvs(s, v)2

Lss(s, v) vLv(s, v)
,

v2Lv(s, v)2

Lss(s, v) vLv(s, v)
,

v4Lvv(s, v)2

Lss(s, v)vLv(s, v)
.

Evaluating these we see that these ratios are, respectively,

q − 1,
qvq(z′)2

(K + vq)(z′′ + (z′)2)
< q,

qvq

(K + vq)(z′′ + (z′)2)
<

q

z′′ + (z′)2
,

q(q − 1)2

z′′ + (z′)2
.
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Since z′ ≥ δ the last two ratios are also uniformly bounded. But because the
value for δ has not yet been chosen, it is desirable to show that the bounds may
be picked independently of δ. From equation (15) we see that

z′′ + (z′)2 =
[√

Aq + 1z′ − Bqχ∗

2
√
Aq + 1

]2
+
[
Cq −

B2
q

4(Aq + 1)

]
χ2
∗

+Cq(χ∗2 − χ2
∗)

≥
[
Cq −

B2
q

4(Aq + 1)

]
inf
{
χ(s)2 | 0 ≤ s ≤ s+ ‖S∗‖∞

}
> 0.

For any positive numbers ε, α, β, and γ we have for all real values r

αr ≤ εβr2 +
(

α2

4βγε

)
γ.

Setting v = uD, we see that there is a positive number K such that

Lv(s, v)v|∇s|,Lvs(s, v)v|∇s|,Lvv(s, v)v2|∇s|2 ≤ (ε/3)Lss|∇s|2 +KLvu,

and
Lvvv|∇u| ≤ εLvv|∇u|2 +KLvu.

Also we have
Lvv(s, v)v2 ≤ (q − 1)Lv(s, v)v.

Hence all terms that are first of first order in ∇s and ∇u can be controlled and
therefore dL/dt ≤ 0 provided λ is sufficiently large and s(x, t) remains in the
interval of existence of z(s). In that case we have a global bound on the Lq(Ω)
norm:

‖u(·, t)‖q ≤ (K|Ω|)1/q + ‖u(x, 0)‖q) exp(z(s)/q). (18)

Since we will need z(s) to be defined on the interval [s, s] we estimate the interval
on which the solution z(s) exists. First define

Zδ(s) := z′(s)− Bqχ∗(s)
2Aq

,

where the derivative may have to be interpreted in the weak or almost every-
where sense. Then

Z ′δ = AqZ
2
δ +

[
Cqχ

∗2 −
B 2
q χ

2
∗

4Aq
− Bqχ

′
∗

2Aq

]
,

Zδ(s) = δ − Bqχ∗(s)
2Aq

.

We define

Eq := sup
{[
Cqχ

∗2 −
B 2
q χ

2
∗

4Aq
− Bqχ

′
∗

2Aq

]
: s ≤ s ≤ s

}
.
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Then Zδ(s) ≤ Z(s) where

Z ′ = AqZ
2 + Eq, Z(s) = δ − Bqχ∗(s)

2Aq
.

The solution Z will exist on some maximal interval of the form [s, s∗). We have
three cases depending on the sign of Eq. If Eq > 0 then one has as solution

Z(s) =
√
Eq/Aq tan

(√
AqEq(s+ s0)

)
where s0 must be chosen so that√

Eq/Aq tan(
√
AqEq(s+ s0)) = δ.

Suppose that
s− s < π

2
√
AqEq

.

Since Eq depends on s and s this assumption might be more appropriately
written as

(s− s)
√
Eq <

π

2
√
Aq

. (19)

There exists a number 0 < δ1 < π/2 such that (s−s)
√
Eq < (π−2δ1)/(2

√
Aq).

Now choose

δ =
√
Eq/Aq tan(δ1/2), s0 = δ1/(2

√
AqEq)− s,

so that Z satisfies the initial condition and
√
Eq/Aq(s + s0) < π/2 − δ1/2.

Therefore Z (and hence also Zδ) is defined on the entire interval [s, s]. This
means that if (S, u) is a solution of problem (1)-(5) on [0, T ) such that (19) is
satisfied, then the Lq(Ω) norm of u(·, t) is uniformly bounded on this interval.
If Eq = 0 we have the solution Z(s) = δ[1− δAq(s− s)]−1, so that the solution
Z is defined on [s, s] provided that

s− s < s∗ − s =
1
δAq

.

We may choose δ small enough so that the above inequality is satisfied irrespec-
tive of the initial and boundary conditions on S and u. If Eq < 0 all solutions
with initial condition Z(s) <

√
−Eq/Aq exist for all s > s, and hence we have

s∗ = ∞ provided we choose δ <
√
−Eq/Aq. We have proved the following

theorem in case m = 1 and ζ = 0.

Theorem 3.1 If Eq ≤ 0 then ‖u(·, t)‖q is uniformly bounded on [0, T ) provided
λ is sufficiently large. If Eq > 0 then ‖u(·, t)‖q is bounded on [0, T ) provided λ
is sufficiently large and provided ‖S0‖∞ and ‖η‖C1+a(Ω) are sufficiently small.
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Remark. When one models chemotaxis it is usually assumed that χ is a non-
increasing function. Considering the fact that the size of the nutrient is smaller
than the size of the individuals feeding on it, it is reasonable to expect d0 > d.
Since ε was picked so as to ensure that 4AqCq > B2

q , it follows that in this
situation Eq > 0.

Remark. In case d0 > d and χ is a positive, non-increasing, convex function
then

Eq ≤ Cqχ(0)2 −Bqχ′(0)/(2Aq),

which has the virtue of being independent of S∗.

To take care of the situation where ζ 6= 0, we make the change of variables

s̃ := (s− s) exp(Z(x)− µt), ũ := u exp(−µt),

where Z is chosen such that ∂νZ(x) = ζ(x) on ∂Ω. Since the boundary is
of class C3 it is easily verified that we can find such a function Z ∈ C2(Ω).
Straightforward computation then leads to the equations

∂ts̃ = d0∆s̃−∇B̃0 · ∇s̃− F̃0(x, t, S, u),
∂tũ = dk∆ũ−∇ · (χk(S)ũ∇S)−∇Bk · ∇ũ− (λ+ µ)ũ+ F̃ (x, t, S, u),

where

B̃0 := B0 + 2d0Z,

F̃0(x, t, S, u) =
[
−d0∇Z·∇Z+d0∆Z−

(
∇B0·∇Z

)
+µ
]
s̃+exp(Z−µt)F0(x, t, S, u),

F̃ (x, t, S, u) = exp(−µt)F (x, t, S, u).

Choosing µ large enough ensures that F̃0 ≥ 0 and one easily sees that F̃ and
F̃0 satisfy the same restrictions that were put on F and F0. The above proof
therefore applies equally well to the system of equations for s̃ and ũ.

When m > 1 we use L(s, v) := (mK + |v|q) exp z(s). Instead of condition
(12) we now need to show nonnegativity of the quadratic form induced by the
matrix (

α β
γT D

)
where

α := (d0 − ε)(z′2 + z′′)(mK + |v|q)−
∑m
j=1 qz

′χjv
q
j ,

β := (qz′d1v
q−1
1 , qz′d2v

q−1
2 , . . . , qz′dmv

q−1
m ),

γ :=
(
qz′d0v

q−1
1 − q(q − 1)χ1v

q−1
1 , qz′d0v

q−1
2 − q(q − 1)χ2v

q−1
2 ,

. . . , qz′d0v
q−1
m − q(q − 1)χmvq−1

m

)
,

D := diag
(
q(q − 1)(di − ε)vq−2

i

)
.
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But such a quadratic form is simply the sum of m quadratic forms induced by
the 2× 2 matrices (

αi βi
γTi Di

)
, i = 1, 2, . . . ,m,

and each of these leads, as before, to an inequality of the form (13) with d
replaced by di and χ replaced by χi. This, in turn, leads to inequalities of the
form (14):

z′′(s) ≥ A(i)
q z′(s)2 −B(i)

q χi(S)z′(s) + C(i)
q χi(S)2,

We define χ(i)
∗ , χ(i)∗, E(i)

q , and D
(i)
q as before, and

Aq := max
i
A(i)
q , Eq := max

i
E(i)
q ,

χ∗ := max
i
χ(i)∗, χi∗ := min

i
χ

(i)
∗ .

The rest of the proof proceeds as in the case m = 1.
The last condition in the statement of the theorem is needed to control the

sizes of s = −‖S∗‖∞ and s = ‖S0−S∗‖∞ so that s− s can be made sufficiently
small. Of course, when Eq ≤ 0 then, irrespective of the value of λ, solutions
grow at most exponentially in the Lq(Ω) norm for any 1 ≤ q <∞.

When there are no convection currents and we have homogeneous boundary
conditions, then many of the terms in the expression for dL/dt are zero so that
the statement of theorem 3.1 is true for λ = 0:

Corollary 3.2 Suppose that Bi ≡ 0 for i = 0, 1, . . . ,m and that ζ and η are
constant functions. Then the conclusions of Theorem 3.1 hold with λ = 0.

Other Lyapunov functions have been found for systems modelling chemotaxis
[6, 20]. However, the reaction terms in our problem make it quite different from
those studied before, so that there does not seem to be a way to compare those
Lyapunov functions with the one used in this paper.

4 A priori bounds on ∇S
Our next objective is to obtain L2(Ω) bounds on ∇S(·, t). For this we will use
the so-called Uniform Gronwall Inequality [20].

Lemma 4.1 Let g, h, and y be three positive, locally integrable functions on
[t0,∞) such that y′ is locally integrable on [t0,∞), and which satisfy

dy

dt
≤ gy + h for t ≥ t0,∫ t+r

t

g(s) ds ≤ a1,

∫ t+r

t

h(s) ds ≤ a2

∫ t+r

t

y(s) ds ≤ a3 for t ≥ t0,

where r, a1, a2, and a3 are positive constants. Then

y(t+ r) ≤
(a3

r
+ a2

)
exp(a1), ∀t ≥ t0.
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We shall apply this lemma to y(t) :=
∫

Ω
|∇S(x, t)|2 dx.

Lemma 4.2 Suppose that F0(·, t, S(·, t), u(·, t)) is uniformly bounded in L2(Ω)
for all 0 ≤ t ≤ t∗. Then there exist constants c1 and c2 such that for all
0 ≤ t < t∗ − r and r ≥ 0∫ t+r

t

∫
Ω

|∇S(x, s)|2 dx ds ≤ c1 + c2r. (20)

Proof. Multiplying the equation for S by S, integrating over the cylinder
Ω× (t, t+ r) and doing the typical integration by parts we obtain

1
2
[ ∫

Ω

S(x, t+ r)2 dx−
∫

Ω

S(x, t)2
]

≤
∫ t+r

t

∫
Ω

[
− d0|∇S|2 −

1
2
∇ · (S2∇B0) +

1
2
S2∆B0

]
dx ds

+
∫ t+r

t

∫
∂Ω

d0S
∂S

∂ν
dσ ds

≤
∫ t+r

t

∫
Ω

[−d0|∇S|2 + cS2] dx ds+
∫ t+r

t

∫
∂Ω

(
d0S

∂S

∂ν
− 1

2
∂B0

∂ν
S2
)
dσ ds,

for some positive constant c. Using the boundary condition we obtain∫ t+r

t

∫
Ω

d0|∇S|2 dx ds ≤ 1
2
[ ∫

Ω

S(x, t)2 dx−
∫

Ω

S(x, t+ r)2 dx
]

+
∫ t+r

t

∫
Ω

cS2 dx ds

+
∫ t+r

t

∫
∂Ω

(1
2

∣∣∣∂B0

∂ν

∣∣∣S2 + |η|S
)
dσ ds.

Since S is bounded there are constants c1 and c2 so that the right the right-hand
side can be bounded by d0(c1 + c2r). This concludes the proof.

To obtain a differential inequality for y(t) we multiply the equation for S by
∆S and integrate by parts over Ω:

1
2
∂

∂t

∫
Ω

|∇S|2 dx =
∫
∂Ω

St
∂S

∂ν
dσ − d0

∫
Ω

(∆S)2 dx (21)

+
∫

Ω

[(∇B0 · ∇S)∆S + F0∆S] dx.

We can bound the third term on the right hand side using the boundedness of
∇B0 and Young’s inequality:∫

Ω

(∇B0 · ∇S)∆S dx ≤ ε1
∫

Ω

(∆S)2 dx+ C(ε1)
∫

Ω

(∇S)2 dx.
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Note that by Young’s inequality we have for arbitrarily small ε2

−
∫

Ω

S∆S dx ≤ ε2
∫

Ω

(∆S)2 dx+ C(ε2)
∫

Ω

S2 dx,

while on the other hand

−
∫

Ω

S∆S dx =
∫

Ω

|∇S|2 dx−
∫
∂Ω

S
∂S

∂ν
dσ ≥

∫
Ω

|∇S|2 dx−d−1
0

∫
∂Ω

(η2 +S2) dσ.

Putting these inequalities together we have∫
Ω

|∇S|2 dx ≤ ε2
∫

Ω

(∆S)2 dx+ C(ε2)
∫

Ω

S2 dx+ d−1
0

∫
∂Ω

(η2 + S2) dσ. (22)

Hence, with application of Young’s inequality to the integral F0∆S, equation
(27) yields the inequality

1
2
∂

∂t

∫
Ω

|∇S|2 dx

≤
∫
∂Ω

St
∂S

∂ν
dσ − (d0 − ε1 − ε2C(ε1)− ε3)

∫
Ω

(∆S)2 dx (23)

+
∫

Ω

[C(ε1)C(ε2)]S2 dx+ C(ε1)d−1
0

∫
∂Ω

(η2 + S2) dσ + C(ε3)
∫

Ω

F 2
0 dx.

The surface integral has the required property for applying the uniform Gronwall
lemma: ∫ t+r

t

∫
∂Ω

St
∂S

∂ν
dσ ds = d−1

0

∫
∂Ω

(ηS − ζS2/2) dσ
∣∣∣∣t+r
t

≤ C1(r).

We define h̃(t) to be the sum of all terms on the right-hand side except the
integral of (∆S)2. By choosing ε1, ε2 and ε3 sufficiently small we have

1
2
∂

∂t

∫
Ω

|∇S|2 dx ≤ −d0/2
∫

Ω

(∆S)2 dx+ h̃(t), (24)

where
∫ t+r
t

h̃(s) ds ≤ C2(r). Another application of inequality (22) allows us to
write

∂

∂t

∫
Ω

|∇S|2 dx ≤ −d0/ε2

∫
Ω

(∇S)2 dx+ h(t), (25)

where

h(t) := 2h̃(t) + d0C(ε2)/ε2
∫

Ω

S2 dx+ 1/ε2
∫
∂Ω

(η2 + S2) dσ.

Clearly there is a positive function C3(r) such that∫ t+r

t

h(t) dt ≤ C3(r),

and by Lemma 4.2 the function y(t) satisfies a similar inequality. Therefore, by
the uniform Gronwall lemma we have
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Lemma 4.3 If ‖F0(·, t, S(·, t), u(·, t))‖2 is bounded on the interval [0, t∗) then
there is a constant KS such that∫

Ω

|∇S(x, t)|2 dx ≤ KS ∀t ∈ [0, t∗). (26)

Combining this with theorem 3.1 we have

Theorem 4.4 Suppose that there exists a continuous function A such that

|F0(x, t, S, u)| ≤ A(S)[1 + |u|q/2]. (27)

Let [0, T ) denote the maximal interval on the positive real axis for which problem
(1)-(5) has a classical solution. If Eq ≤ 0 then ‖∇S(·, t)‖2 is uniformly bounded
on [0, T ) provided λ is sufficiently large. If Eq > 0 then ‖∇S(·, t)‖2 is bounded
on [0, T ) provided λ is sufficiently large and, for some 0 < δ < 1, ‖η‖C1+δ(Ω)

and ‖S0‖∞ are sufficiently small.

5 Existence of Solutions

We shall make use of the general existence theory developed by H. Amann
[2, 3]. The first one of these is very short but presents the essentials. For a
complete presentation the reader should consult [3], especially section 14. For
1 ≤ i, j ≤ m we assume

aij , ai, bi ∈ C2−(Ω× Rm,Rm×m), a0, c ∈ C1−(Ω× Rm,Rm×m).

Using the summation convention we define the following elliptic operator and
boundary operator

A(η)u := −∂j(ajk(·, η)∂ku+ aj(·, η)u) + bj(·, η)∂ju+ a0(·, η)u,

and
B(η)u := νjγ0(ajk(·, η)∂ku+ aj(·, η)u) + c(·, η)γ0u,

interpreted in the sense of traces. Their formal adjoints are

A#(η)u := −∂j(a#
jk(·, η)∂ku+ a#

j (·, η)u) + b#j (·, η)∂ju+ a#
0 (·, η)u,

and
B#(η)u := νjγ0(a#

jk(·, η)∂ku+ a#
j (·, η)u) + c#(·, η)γ0u,

where, letting the left superscript t denote transpose,

a#
jk :=takj , a#

j :=tbj , b#j :=taj , a#
0 :=ta0 , c# :=tc.

Let aπ and bπ denote the principal symbols for A and B:

aπ(x, η, ξ) := aij(x, η)ξiξj , and bπ(x, η, ξ) := νiaij(x, η)ξj ,



EJDE–2001/52 Hendrik J. Kuiper 15

where ξ = (ξ1, ξ2, . . . , ξn) ∈ Rn. We assume that for each η, the operator A(η)
is normally elliptic. By this is meant that for each x ∈ Ω, η ∈ Rm, and ξ ∈ Rn
with ‖ξ‖ = 1 the spectrum of aπ(x, η, ξ) ⊂ C+ := {z ∈ C | Re z > 0}. We
also assume that B satisfies the normal complementing condition (Lopatinskii-
Shapiro condition) with respect to A. This means that for each (x, ξ) in the
tangent bundle of ∂Ω and each λ ∈ C+ with (ξ, λ) 6= (0, 0), 0 is the only
exponentially decaying solution on the half line for:

[λ+ aπ(x, ξ + ν(x)i∂t)]u = 0, t > 0, bπ(x, ξ + ν(x)i∂t)u(0) = 0.

It is not difficult to see that system (1)-(4) satisfies these restrictions. Consider
the problem

∂tu+A(u)u = f(·, u) in Ω× (0,∞)
B(u)u = g(·, u) on ∂Ω× (0,∞) (28)

u(·, 0) = u0 on Ω.

where we assume that f and g are Lipschitz continuous. Let W s
q (Ω) be the

Sobolev-Slobodeckii space. We define

W s
q,B := {(w1, w2, . . . , wm) | wi ∈W s

q (Ω) and B(w)w = g(·, w)∀i}

We say that u : [0, T ]→W s
q,B is a weak W s

q,B-solution of the above problem on
[0, T ] if

u ∈ C([0, T ],W s−2
q,B ) ∩ C((0, T ),W s

q,B ∩ C1((0, T ),W s−2
q,B ),

and satisfies u(0) = u0. We then have the following existence theorem.

Theorem 5.1 ([3]) Suppose that n/q < s < (1 + 1/q) ∧ (2 − n/q). Then the
above boundary value problem has for each u0 ∈W s

q,B(Ω) a unique maximal weak
W s
q,B(Ω)-solution. If this solution remains bounded in W ρ

ρ,B for some ρ > 1 then
the solution exists on all of [0,∞). Moreover, if g ≡ 0 then the solution is in
fact a classical solution. That is to say

u ∈ C(Ω× [0, T ]) ∩ C2,1(Ω× (0, T )),

where u(0) = u0 and u satisfies the parabolic partial differential equation and
boundary conditions pointwise.

The hypotheses we have imposed imply that problem (1)-(5) satisfies all the
hypotheses of the above theorem. Moreover, since we reduced the problem to
one with homogeneous boundary conditions we have the following result.

Theorem 5.2 Problem (1)-(5) has a classical solution defined on a maximal
interval [0, T ). If the initial conditions are nonnegative then all components of
u and S will remain nonnegative for 0 < t < T . If T <∞ then for any ρ > 1,
‖(S, u)‖Wρ

ρ (Ω) will attain arbitrarily large values as t ↑ T .
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The positivity assertion can, for example, be deduced from the results in
section 15 in [3]. In order to obtain a global existence result we use results from
[10, chapter 4, section 9]. Because we will not need it in as much generality as
is allowed in [10], we can simplify its statement considerably. Define QT := Ω×
[0, T ). The space W 2,1

p (QT ) consists of all functions v such that ∂tv, ∂iv, ∂i∂jv ∈
Lp(QT ) for all 1 ≤ i, j ≤ n . The norm on this space is

‖v‖p,2,1 := ‖v‖p + ‖∂tv‖p +
n∑
i=1

‖∂iv‖p +
n∑

i,j=1

‖∂i∂jv‖p

Theorem 5.3 ([10, pp 341-351]) Consider the equation

∂tv −∆v + bj(x)∂jv + a(x)v = f ∈ Lp(QT ),

with boundary condition
∂νv + σ(x)v = 0

and with an initial condition v(·, 0) = v0 ∈ W 2
p (Ω) that satisfies the boundary

condition. Suppose that

bi ∈ Lr1(QT ), a ∈ Lr2(QT ), σ ∈ C2(Ω)

with p 6= n+2,p 6= n/2+1, p 6= 3, r1 = max(p, n+2) and r2 = max(p, n/2+1).
Then v ∈W 2,1

p (QT ).

Using this regularity result, it is possible to obtain the following result.

Theorem 5.4 Suppose that Eq ≤ 0 and that there exists a continuous function
A such that for all j = 0, 1, . . . ,m

Fj(x, t, S, u),≤ A(S)[1 + |u|Q], (29)

with q > (n + 2)Q/2 and q > (n + 1)(Q − 1) ≥ 0. Then problem (1)-(5) has
a classical solution on [0,∞). This is also true in case Eq ≥ 0 provided that
for some 0 < δ < 1, ‖η‖C1+δ(Ω) and ‖S0‖∞ are sufficiently small. In both cases
there are constants C and µ such that

‖u(·, t)‖q ≤ C exp(µt).

Proof. Again, for the sake of simplicity of notation we do the proof only for
the case m = 1. Let T be the maximum value so that our problem has a solution
on [0, T ). We will assume that T <∞ and arrive at a contradiction. Note that
s is a solution of a scalar parabolic equation with a source term in Lq/Q(QT )
and therefore, by theorem 5.3, s and S are members of W 2,1

q/Q(QT ). Define the
function

ψ(p) :=
(n+ 1)p

(n+ 1)Q− p
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In case the q < (n + 1)Q, the Sobolev embedding theorem tells us that s,
S, ∇s, and ∇S are in Lψ(q)(QT ). If q ≥ (n + 1)Q these functions are in
LR(QT ) for arbitrarily large R. It is easy to see that whenever (n + 1)Q >
q > (n/2 + 1)Q then ψ(q) > n + 2 hence ∆S ∈ Lq/Q(QT ) ⊂ Ln/2+1(QT )
and |∇S| ∈ Lψ(q)(QT ) ⊂ Ln+2(QT ) so that we may apply theorem 5.3 to the
equation for u:

∂tu = d∆u− (∇B + χ∇S) · ∇u− (χ∆S + χ′|∇S|2 + λ)u+ F (x, t, S, u).

Hence u ∈W 2,1
q/Q(QT ) and consequently u and ∇u are members of Lψ(q)(QT ) in

the case q < (n+ 1)Q or otherwise are members of LR(QT ) for arbitrarily large
R. It is easily seen that the function ψ has an unstable fixed point at q∗ :=
(n+ 1)(Q− 1) and therefore, since q > q∗ we have ψ(q) > q. In the case ψ(q) <
(n+ 1)Q, we repeat the above procedure with q being replaced by ψ(q). Indeed
we may keep iterating, thus bootstrapping until we have S, u ∈W 2,1

P∗/Q(QT ) for
some P ∗ > Q(n + 1). A downward adjustment of an iterate may be required
along the way in order to avoid the value 3 which is disallowed by theorem 5.3.
So eventually we have u, S, s, ∇u, ∇S, ∇s ∈ W 1

P∗/Q(QT ) ⊂ L∞(QT ). Since
our system satisfies the conditions of [3, theorem 15.5] it follows that T =∞.
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