Positive solutions of singular elliptic equations outside the unit disk *

Noureddine Zeddini

Abstract

We study the existence and the asymptotic behaviour of positive solutions for the nonlinear singular elliptic equation $\Delta u+\varphi(., u)=0$ in the outside of the unit disk in \mathbb{R}^{2}, with homogeneous Dirichlet boundary condition. The aim is to prove some existence results for the above equation in a general setting by using a potential theory approach.

1 Introduction

The singular semi-linear elliptic equation

$$
\begin{equation*}
\Delta u+q(x) u^{-\gamma}=0, \quad x \in \Omega \subset \mathbb{R}^{n}, \quad \gamma>0 \tag{1.1}
\end{equation*}
$$

has been extensively studied for both bounded and unbounded domain Ω (see for example $[4,5,6,7]$ and the references therein).

For $0<\gamma<1$, Edelson [4] proved the existence of an entire positive solution $u \in C_{\text {loc }}^{2+\alpha}\left(\mathbb{R}^{2}\right)$ of (1.1), having logarithmic growth as $|x| \rightarrow \infty$, provided that $q \in C_{\mathrm{loc}}^{\alpha}\left(\mathbb{R}^{2}\right), 0<\alpha<1, q(x)>0$ for $|x|>0$ and

$$
\int_{e}^{\infty} t(\log t)^{-\gamma}\left(\max _{|x|=t} q(x)\right) d t<\infty .
$$

Lazer and Mckenna [7] considered (1.1) in the case where $\Omega \subset \mathbb{R}^{n}(n \geq 1)$ is a bounded domain with smooth boundary. They proved the existence and the uniqueness of a positive solution $u \in C_{\mathrm{loc}}^{2+\alpha}(\Omega) \cap C(\bar{\Omega})$ with homogeneous Dirichlet boundary condition, provided that $q \in C^{\alpha}(\bar{\Omega})$ and $q(x)>0$ for all $x \in \bar{\Omega}$.

Kusano and Swanson [5] considered the generalized equation

$$
\begin{equation*}
\Delta u+f(x, u)=0, x \in \Omega \tag{1.2}
\end{equation*}
$$

where Ω is an exterior domain of $\mathbb{R}^{n}, n \geq 2$. For $n=2$, they proved the existence of an exterior domain $\Omega_{T}=\left\{x \in \mathbb{R}^{2}:|x|>T>1\right\}$ and a positive

[^0]solution u on Ω_{T} such that $u(x) / \log |x|$ is bounded and bounded away from zero provided that the following conditions are satisfied

C1) $f \in C_{\text {loc }}^{\alpha}(\Omega \times(0, \infty))$.
C2) There exist two functions ψ and $\phi:(0, \infty) \times(0, \infty) \rightarrow(0, \infty)$ of class $C_{\text {loc }}^{\alpha}((0, \infty) \times(0, \infty))$, such that $\psi(t, u)$ and $\phi(t, u)$ are non-increasing functions of u for each fixed $t>0$, and

$$
\psi(|x|, u) \leq f(x, u) \leq \phi(|x|, u), \text { for all }(x, u) \in \Omega \times(0, \infty)
$$

C3) $\int^{\infty} \phi(t, c \log t) d t<\infty$, for some positive constant c.
Kusano and Swanson showed also for $n=2$, the existence of a bounded positive solution of (1.2) in some exterior domain Ω_{T}, T sufficiently large, provided that ϕ satisfies C 1 and C 2 , and $\int^{\infty} t \phi(t, c) \log t d t<\infty$, for some constant $c>0$.

In this article, we improve the results of [4] by letting the exponent γ be unbounded. More precisely, we are concerned with the following problem

$$
\begin{gather*}
\Delta u+\varphi(x, u)=0, \quad \text { in } D,(\text { in the weak sense }) \tag{1.3}\\
\left.u\right|_{\partial D}=0,
\end{gather*}
$$

where $D=\left\{x \in \mathbb{R}^{2}:|x|>1\right\}$ and φ is a nonnegative Borel measurable function in $D \times(0, \infty)$ that belongs to a convex cone which contains, in particular, all functions

$$
\varphi(x, t)=q(x) t^{-\gamma}, \quad \gamma>0
$$

with nonnegative Borel function q. Under appropriate conditions on φ, we show that (1.3) has infinitely many positive solutions continuous on \bar{D}. More precisely, for each $\mu>0$, there exists a positive solution $u \in C(\bar{D})$ such that $\lim _{|x| \rightarrow \infty} u(x) / \log |x|=\mu$. Under additional conditions on φ, we prove that (1.3) has a bounded positive solution continuous on \bar{D}.

This paper is organized as follows. In section 2, we recall and establish some properties of functions belonging to the Kato class introduced in [9]. In section 3 , we prove the existence of many positive solutions of (1.3) which are continuous on \bar{D}. In the last section, we give some estimates on the solutions of (1.3). We point out that for some functions φ, we get better estimates on the solutions; namely for each $x \in \bar{D}$, we have

$$
\mu \log |x| \leq u(x) \leq C \log |x|, \quad \text { if } \quad \lim _{|x| \rightarrow \infty} \frac{u(x)}{\log |x|}=\mu>0
$$

and

$$
\frac{1}{C}\left(1-\frac{1}{|x|}\right) \leq u(x) \leq C\left(1-\frac{1}{|x|}\right), \quad \text { if } u \text { is bounded }
$$

where C is a positive constant.
As usual let $B(D)$ be the set of Borel measurable functions in D and let $B^{+}(D)$ be the subset of the nonnegative functions.

We recall that the potential kernel V associated to Δ is defined on $B^{+}(D)$ by

$$
V \Psi(x)=\int_{D} G(x, y) \Psi(y) d y, \quad \text { for } x \in D
$$

where G is the Green's function of the Laplacian in D. Hence, for any $\Psi \in B^{+}(D)$ such that $\Psi \in L_{\mathrm{loc}}^{1}(D)$ and $V \Psi \in L_{\mathrm{loc}}^{1}(D)$, we have (in the distributional sense)

$$
\begin{equation*}
\Delta(V \Psi)=-\Psi \text { in } D . \tag{1.4}
\end{equation*}
$$

We note that for any $\Psi \in B^{+}(D)$ such that $V \Psi \neq \infty$, we have $V \Psi \in L_{\text {loc }}^{1}(D)$ (see [2, p.51]). Let us recall that V satisfies the complete maximum principle [10, p.175], i.e for each $f \in B^{+}(D)$ and v a nonnegative superharmonic function on D such that $V f \leq v$ in $\{f>0\}$ we have $V f \leq v$ in D.

Throughout this paper, the function φ is required to satisfy combinations of the following hypotheses

H1) φ is continuous and non-increasing with respect to the second variable.
H2) $\varphi(., c) \in K^{\infty}(D)$ for every $c>0$.

H3) $V \varphi(., c)>0$ for every $c>0$.
Finally we mention that the letter C will denote a generic positive constant which may vary from line to line.

2 The Kato class $K^{\infty}(D)$

Throughout this paper, let $D=\left\{x \in \mathbb{R}^{2},|x|>1\right\}, \bar{D}=\left\{x \in \mathbb{R}^{2},|x| \geq 1\right\}$, and $G(x, y)=\frac{1}{2 \pi} \log \left(1+\frac{\left(|x|^{2}-1\right)\left(|y|^{2}-1\right)}{|x-y|^{2}}\right)$ be the Green's function of Δ in D.

Definition A Borel measurable function q in D belongs to the Kato class $K^{\infty}(D)$ if q satisfies the following conditions

$$
\begin{gather*}
\lim _{\alpha \rightarrow 0} \sup _{x \in D} \int_{(|x-y| \leq \alpha) \cap D} \frac{\frac{|y|-1}{|y|} \frac{|x|}{|x|-1} G(x, y)|q(y)| d y=0}{} \quad \lim _{M \rightarrow \infty} \sup _{x \in D} \int_{(|y| \geq M)} \frac{|y|-1}{|y|} \frac{|x|}{|x|-1} G(x, y)|q(y)| d y=0 . \tag{2.1}
\end{gather*}
$$

Lemma 2.1 For each x, y in D,

$$
\frac{1}{2 \pi}\left(1-\frac{1}{|x|}\right)\left(1-\frac{1}{|y|}\right) \leq G(x, y)
$$

Proof By the definition of G, we have

$$
\begin{aligned}
G(x, y) & =\frac{1}{2 \pi} \log \left(1+\frac{\left(|x|^{2}-1\right)\left(|y|^{2}-1\right)}{|x-y|^{2}}\right) \\
& =\frac{1}{2 \pi} \frac{(|x|-1)}{|x|} \frac{(|y|-1)}{|y|} \int_{0}^{1} \frac{|x||y|(1+|x|)(1+|y|)}{|x-y|^{2}+t\left(|x|^{2}-1\right)\left(|y|^{2}-1\right)} d t .
\end{aligned}
$$

For every $t \in[0,1]$ and x, y in D, we have

$$
\begin{aligned}
\frac{|x-y|^{2}+t\left(|x|^{2}-1\right)\left(|y|^{2}-1\right)}{|x||y|(1+|x|)(1+|y|)} & \leq \frac{(|x|+|y|)^{2}+\left(|x|^{2}-1\right)\left(|y|^{2}-1\right)}{|x||y|(1+|x|)(1+|y|)} \\
& =\frac{(|x \| y|+1)^{2}}{|x||y|(1+|x|)(1+|y|)} \leq 1
\end{aligned}
$$

Hence $G(x, y) \geq \frac{1}{2 \pi}\left(1-\frac{1}{|x|}\right)\left(1-\frac{1}{|y|}\right)$.
Proposition 2.2 Let q be a function in the class $K^{\infty}(D)$. Then the function $y \rightarrow\left(1-\frac{1}{|y|}\right)^{2} q(y)$ is in $L^{1}(D)$. In particular $q \in L_{\mathrm{loc}}^{1}(D)$.

Proof. Let $q \in K^{\infty}(D)$. Then by (2.1) and (2.2), there exist $\alpha>0$ and $M>1$ such that

$$
\sup _{x \in D} \int_{(|x-y| \leq \alpha)} \frac{|y|-1}{|y|} \frac{|x|}{|x|-1} G(x, y)|q(y)| d y \leq 1
$$

and

$$
\sup _{x \in D} \int_{(|y| \geq M)} \frac{|y|-1}{|y|} \frac{|x|}{|x|-1} G(x, y)|q(y)| d y \leq 1
$$

Let $x_{1}, x_{2}, \ldots, x_{n}$ in D such that $\bar{D} \cap \bar{B}(0, M) \subset \bigcup_{1 \leq i \leq n} B\left(x_{i}, \alpha\right)$. By using Lemma 2.1, we get

$$
\begin{aligned}
\int_{D}(1- & \left.\frac{1}{|y|}\right)^{2}|q(y)| d y \\
\leq & \int_{(|y| \geq M)}\left(1-\frac{1}{|y|}\right)^{2}|q(y)| d y+\int_{(1 \leq|y| \leq M) \cap D}\left(1-\frac{1}{|y|}\right)^{2}|q(y)| d y \\
\leq & 2 \pi \sup _{x \in D} \int_{(|y| \geq M)} \frac{|y|-1}{|y|} \frac{|x|}{|x|-1} G(x, y)|q(y)| d y \\
& +\sum_{i=1}^{n} \int_{B\left(x_{i}, \alpha\right) \cap D}\left(1-\frac{1}{|y|}\right)^{2}|q(y)| d y \\
\leq & 2 \pi+2 \pi \sum_{i=1}^{n} \int_{B\left(x_{i}, \alpha\right) \cap D} \frac{|y|-1}{|y|} \frac{\left|x_{i}\right|}{\left|x_{i}\right|-1} G\left(x_{i}, y\right)|q(y)| d y \\
\leq & 2 \pi+2 \pi n \sup _{x \in D} \int_{B(x, \alpha) \cap D} \frac{|y|-1}{|y|} \frac{|x|}{|x|-1} G(x, y)|q(y)| d y \\
\leq & 2 \pi(1+n)<\infty .
\end{aligned}
$$

Lemma 2.3 Let $M>1$ and $r>0$. Then there exists a constant $C>0$ such that for each $x \in D$ and $y \in D$ satisfying $|x-y| \geq r$ and $|y| \leq M$,

$$
G(x, y) \leq C\left(1-\frac{1}{|x|}\right)\left(1-\frac{1}{|y|}\right)
$$

Proof. We have for $|x-y| \geq r$ and $|y| \leq M$,

$$
\begin{aligned}
\frac{|x|}{|x|-1} \frac{|y|-1}{|y|} G(x, y) & \leq \frac{1}{2 \pi} \frac{|x|(|y|-1)}{(|x|-1)|y|} \frac{\left(|x|^{2}-1\right)\left(|y|^{2}-1\right)}{|x-y|^{2}} \\
& =\frac{1}{2 \pi} \frac{(|y|-1)^{2}(|y|+1)}{|y|} \frac{|x|(|x|+1)}{|x-y|^{2}} \\
& \leq \frac{1}{2 \pi}\left(1-\frac{1}{|y|}\right)^{2} M(M+1) \frac{|x|(|x|+1)}{((|x|-M) \vee r)^{2}}
\end{aligned}
$$

where $(|x|-M) \vee r=\max (|x|-M, r)$. Since the function $t \rightarrow \frac{t(t+1)}{((t-M) \vee r)^{2}}$ is continuous and positive on $[1, \infty)$ and $\lim _{t \rightarrow+\infty} \frac{t(t+1)}{((t-M) \vee r)^{2}}=1$, then there exists $C>0$ such that

$$
\frac{|x|}{|x|-1} \frac{|y|-1}{|y|} G(x, y) \leq C\left(1-\frac{1}{|y|}\right)^{2} .
$$

In the sequel, we use the notation

$$
\|q\|_{D}=\sup _{x \in D} \int_{D} \frac{|y|-1}{|y|} \frac{|x|}{|x|-1} G(x, y)|q(y)| d y
$$

Proposition 2.4 If $q \in K^{\infty}(D)$, then $\|q\|_{D}<\infty$.
Proof. Let $\alpha>0$ and $M>1$. Then

$$
\begin{aligned}
& \int_{D} \frac{|y|-1}{|y|} \frac{|x|}{|x|-1} G(x, y)|q(y)| d y \\
& \leq \int_{(|x-y| \leq \alpha) \cap D} \frac{|y|-1}{|y|} \frac{|x|}{|x|-1} G(x, y)|q(y)| d y \\
& \quad+\int_{(|y| \geq M)} \frac{|y|-1}{|y|} \frac{|x|}{|x|-1} G(x, y)|q(y)| d y \\
& \quad+\int_{(|x-y| \geq \alpha) \cap(|y| \leq M) \cap D} \frac{|y|-1}{|y|} \frac{|x|}{|x|-1} G(x, y)|q(y)| d y
\end{aligned}
$$

By Lemma 2.3,

$$
\int_{(|x-y| \geq \alpha) \cap(|y| \leq M) \cap D} \frac{|y|-1}{|y|} \frac{|x|}{|x|-1} G(x, y)|q(y)| d y \leq C \int_{D}\left(1-\frac{1}{|y|}\right)^{2}|q(y)| d y
$$

Thus, the result follows from (2.1), (2.2) and Proposition 2.2. \diamond
The following result of Selmi [11], will be needed in the sequel.

Theorem 2.5 There exists a constant $C_{0}>0$ depending only on D such that for all x, y and z in D, we have

$$
\begin{equation*}
\frac{G(x, z) G(z, y)}{G(x, y)} \leq C_{0}\left[\frac{|z|-1}{|z|} \frac{|x|}{|x|-1} G(x, z)+\frac{|z|-1}{|z|} \frac{|y|}{|y|-1} G(z, y)\right] \tag{2.3}
\end{equation*}
$$

By using the above theorem we have the following
Proposition 2.6 There exists a constant $C_{D}>0$ depending only on D such that for any function q belonging to $K^{\infty}(D)$, any nonnegative superharmonic function h in D and all $x \in D$

$$
\begin{equation*}
\int_{D} G(x, y) h(y)|q(y)| d y \leq C_{D}\|q\|_{D} h(x) \tag{2.4}
\end{equation*}
$$

Proof. Let h be a nonnegative superharmonic function in D, then there exists a sequence $\left(f_{n}\right)_{n}$ of nonnegative measurable functions in D such that

$$
h(y)=\sup _{n} \int_{D} G(y, z) f_{n}(z) d z, \forall y \in D
$$

Hence, we need only to verify (2.4) for $h(y)=G(y, z)$ for all $z \in D$. By using (2.3), we obtain

$$
\frac{1}{G(x, z)} \int_{D} G(x, y) G(y, z)|q(y)| d y \leq 2 C_{0}\|q\|_{D}
$$

If we take $h=1$ in Proposition 2.6, we obtain the following statement.
Corollary 2.7 Let q be a function in $K^{\infty}(D)$. Then

$$
\begin{equation*}
\sup _{x \in D} \int_{D} G(x, y)|q(y)| d y<\infty \tag{2.5}
\end{equation*}
$$

Corollary 2.8 Let q be a function in the class $K^{\infty}(D)$. Then the function $y \rightarrow\left(1-\frac{1}{|y|}\right) q(y)$ is in $L^{1}(D)$.

Proof. For each x, y in D, by Lemma 2.1 we have

$$
\frac{1}{2 \pi}\left(1-\frac{1}{|x|}\right)\left(1-\frac{1}{|y|}\right) \leq G(x, y)
$$

Hence $\int_{D}\left(1-\frac{1}{|y|}\right)|q(y)| d y \leq 2 \pi \frac{|x|}{|x|-1} \int_{D} G(x, y)|q(y)| d y$. The result follows from Corollary 2.7.

In the next proposition we prove that for q radial,$q \in K^{\infty}(D)$ if and only if (2.5) is satisfied.

Proposition 2.9 Let q be a radial function in D. Then $q \in K^{\infty}(D)$ if and only if

$$
\begin{equation*}
\int_{1}^{+\infty} r \log (r)|q(r)| d r<\infty \tag{2.6}
\end{equation*}
$$

Proof. By elementary calculus, we have

$$
\int_{D} G(x, y)|q(y)| d y=\int_{1}^{+\infty} r \log (r \wedge R)|q(r)| d r
$$

where $R=|x|$ and $r \wedge R=\min (r, R)$. Hence by (2.5), we deduce that if $q \in K^{\infty}(D)$ then (2.6) is satisfied. The proof of the converse is found in [9, Prop.2]. \diamond

Using the same argument as in the proof of Proposition 2.6, we establish the following lemma (see also [9]).
Lemma 2.10 Let $x_{0} \in \bar{D}$. Then for any function q belonging to $K^{\infty}(D)$ and any positive superharmonic function h in D, we have

$$
\lim _{r \rightarrow 0} \sup _{x \in D} \frac{1}{h(x)} \int_{B\left(x_{0}, r\right) \cap D} G(x, y) h(y)|q(y)| d y=0
$$

and

$$
\lim _{M \rightarrow+\infty} \sup _{x \in D} \frac{1}{h(x)} \int_{(|y| \geq M)} G(x, y) h(y)|q(y)| d y=0
$$

Proposition 2.11 Let q be a function in $K^{\infty}(D)$. Then $V q \in C(D)$ and $\lim _{x \rightarrow \partial D} V q(x)=0$.

Proof. Without loss of generality, assume that q is nonnegative. Let $x_{0} \in D$ and $\varepsilon>0$. By Lemma 2.10, there exist $r>0$ and $M>1$ such that

$$
\sup _{z \in D} \int_{B\left(x_{0}, 2 r\right) \cap D} G(z, y) q(y) d y \leq \frac{\varepsilon}{4}
$$

and

$$
\sup _{z \in D} \int_{(|y| \geq M)} G(z, y) q(y) d y \leq \frac{\varepsilon}{4}
$$

Let $x, x^{\prime} \in B\left(x_{0}, r\right) \cap D$, then we have

$$
\begin{aligned}
& \left|V q(x)-V q\left(x^{\prime}\right)\right| \\
& \leq \quad 2 \sup _{z \in D} \int_{B\left(x_{0}, 2 r\right) \cap D} G(z, y) q(y) d y+2 \sup _{z \in D} \int_{(|y| \geq M)} G(z, y) q(y) d y \\
& \quad+\int_{\left(\left|x_{0}-y\right| \geq 2 r\right) \cap(1<|y| \leq M)}\left|G(x, y)-G\left(x^{\prime}, y\right)\right| q(y) d y \\
& \leq \\
& \quad \varepsilon+\int_{\left(\left|x_{0}-y\right| \geq 2 r\right) \cap(1<|y| \leq M)}\left|G(x, y)-G\left(x^{\prime}, y\right)\right| q(y) d y .
\end{aligned}
$$

For every $y \in\left(\left|x_{0}-y\right| \geq 2 r\right) \cap(1<|y| \leq M)$ and $x, x^{\prime} \in B\left(x_{0}, r\right) \cap D$, using Lemma 2.3 we obtain

$$
\left|G(x, y)-G\left(x^{\prime}, y\right)\right| \leq G(x, y)+G\left(x^{\prime}, y\right) \leq C\left(1-\frac{1}{|y|}\right)
$$

Now since G is continuous out the diagonal, we deduce by Corollary 2.8 and the Lebesgue's theorem that

$$
\int_{\left(\left|x_{0}-y\right| \geq 2 r\right) \cap(1<|y| \leq M)}\left|G(x, y)-G\left(x^{\prime}, y\right)\right| q(y) d y \rightarrow 0 \text { as }\left|x-x^{\prime}\right| \rightarrow 0
$$

Hence $V q \in C(D)$. Next, we consider $x_{0} \in \partial D$ and $\varepsilon>0$. By Lemma 2.10, there exist $r>0$ and $M>1$ such that

$$
\sup _{z \in D} \int_{B\left(x_{0}, 2 r\right) \cap D} G(z, y) q(y) d y \leq \frac{\varepsilon}{4}
$$

and

$$
\sup _{z \in D} \int_{(|y| \geq M)} G(z, y) q(y) d y \leq \frac{\varepsilon}{4}
$$

Let $x \in B\left(x_{0}, r\right) \cap D$, then we have

$$
\begin{aligned}
V q(x)= & \int_{D} G(x, y) q(y) d y \\
= & \int_{B\left(x_{0}, 2 r\right) \cap D} G(x, y) q(y) d y+\int_{(|y| \geq M)} G(x, y) q(y) d y \\
& +\int_{B^{c}\left(x_{0}, 2 r\right) \cap(1 \leq|y| \leq M)} G(x, y) q(y) d y \\
\leq & \frac{\varepsilon}{2}+\int_{B^{c}\left(x_{0}, 2 r\right) \cap(1<|y| \leq M)} G(x, y) q(y) d y
\end{aligned}
$$

For every $y \in B^{c}\left(x_{0}, 2 r\right) \cap D \cap \bar{B}(0, M)$ and $x \in B\left(x_{0}, r\right)$, we get by using Lemma 2.3

$$
G(x, y) q(y) \leq C\left(1-\frac{1}{|y|}\right) q(y)
$$

Now, since for all $y \in D, \lim _{x \rightarrow \partial D} G(x, y)=0$, then as in the above argument, we get $\lim _{x \rightarrow x_{0}} V q(x)=0$. This achieves the proof of the proposition.

3 Positive solutions of $\Delta u+\varphi(., u)=0$

In this section, we study the existence of positive solutions for the nonlinear singular elliptic boundary value problem (1.3).

Lemma 3.1 Let $h \in B^{+}(D)$ and v be a nonnegative superharmonic function on D. Then for all $w \in B(D)$ such that $V(h|w|)<\infty$ and $w+V(h w)=v$, we have $0 \leq w \leq v$.

Proof. Let $w^{+}=\max (w, 0)$ and $w^{-}=\max (-w, 0)$. Since $V(h|w|)<\infty$, then

$$
w^{+}+V\left(h w^{+}\right)=v+w^{-}+V\left(h w^{-}\right)
$$

Hence

$$
V\left(h w^{+}\right) \leq v+V\left(h w^{-}\right) \quad \text { in }\left\{w^{+}>0\right\} .
$$

Since $v+V\left(h w^{-}\right)$is a nonnegative superharmonic function in D, we have as consequence of the complete maximum principle

$$
V\left(h w^{+}\right) \leq v+V\left(h w^{-}\right) \quad \text { in } D
$$

that is $V(h w) \leq v=w+V(h w)$. This implies that $0 \leq w \leq v$.
Proposition 3.2 Let $\varphi: D \times(0, \infty) \rightarrow[0, \infty)$ be a measurable function satisfying H1 and $\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2}$ be real numbers such that $0 \leq \lambda_{1} \leq \lambda_{2}$ and $0 \leq \mu_{1} \leq \mu_{2}$. If u_{1} and u_{2} are two positive functions continuous on \bar{D} satisfying for each $x \in D$

$$
u_{1}(x)=\lambda_{1}+\mu_{1} \log |x|+V\left(\varphi\left(\cdot, u_{1}\right)\right)(x)
$$

and

$$
u_{2}(x)=\lambda_{2}+\mu_{2} \log |x|+V\left(\varphi\left(\cdot, u_{2}\right)\right)(x)
$$

Then we have

$$
0 \leq u_{2}(x)-u_{1}(x) \leq \lambda_{2}-\lambda_{1}+\left(\mu_{2}-\mu_{1}\right) \log |x|, \forall x \in \bar{D}
$$

Proof. Let h be the function defined on D by

$$
h(x)= \begin{cases}\frac{\varphi\left(x, u_{1}(x)\right)-\varphi\left(x, u_{2}(x)\right)}{u_{2}(x)-u_{1}(x)} & \text { if } u_{2}(x) \neq u_{1}(x) \\ 0, & \text { if } u_{2}(x)=u_{1}(x)\end{cases}
$$

Then $h \in B^{+}(D)$ and we have

$$
u_{2}-u_{1}+V\left(h\left(u_{2}-u_{1}\right)\right)=\lambda_{2}-\lambda_{1}+\left(\mu_{2}-\mu_{1}\right) \log |\cdot| .
$$

Furthermore, we have

$$
V\left(h\left|u_{2}-u_{1}\right|\right) \leq V\left(\varphi\left(\cdot, u_{2}\right)\right)+V\left(\varphi\left(\cdot, u_{1}\right)\right) \leq u_{2}+u_{1}<\infty .
$$

Hence we deduce the result from Lemma 3.1.
Theorem 3.3 Let $\lambda>0, \mu>0$ and $\varphi: D \times(0, \infty) \rightarrow[0, \infty)$ be a Borel measurable function satisfying H1 and H2. Then the problem

$$
\begin{gather*}
\Delta u+\varphi(., u)=0, \quad \text { in } D(\text { in the weak sense }), \tag{3.1}\\
\left.u\right|_{\partial D}=\lambda, \quad \lim _{|x| \rightarrow \infty} \frac{u(x)}{\log |x|}=\mu
\end{gather*}
$$

has a unique positive solution $u_{\lambda} \in C(\bar{D})$.

Proof. Let $\lambda>0$. Then by hypothesis H2, the function $\varphi(., \lambda) \in K^{\infty}(D)$ and by Corollary 2.7, we deduce that $\|V \varphi(., \lambda)\|_{\infty}<\infty$. To apply a fixed point argument, we consider the convex set

$$
F=\left\{\omega \in C(\bar{D} \cup\{\infty\}): \lambda \leq \omega(x) \leq \lambda+\frac{\lambda\|V \varphi(\cdot, \lambda)\|_{\infty}}{\lambda+\mu \log |x|}, \forall x \in \bar{D}\right\}
$$

and define the operator T on F by

$$
T \omega(x)=\lambda+\frac{\lambda}{\lambda+\mu \log |x|} \int_{D} G(x, y) \varphi\left(y, \omega(y)\left(1+\frac{\mu}{\lambda} \log |y|\right)\right) d y, x \in \bar{D}
$$

Since for all $\omega \in F$ and $y \in D, \varphi\left(y, \omega(y)\left(1+\frac{\mu}{\lambda} \log |y|\right)\right) \leq \varphi(y, \lambda)$, then for each $\omega \in F, \lambda \leq T \omega \leq \lambda+\frac{\lambda\|V \varphi(\cdot, \lambda)\|_{\infty}}{\lambda+\mu \log |x|}$ and as in the proof of Proposition 2.11, we show that the family $T F$ is equicontinuous in $\bar{D} \cup\{\infty\}$. In particular, for all $\omega \in F, T \omega \in F$. Moreover, the family $\{T \omega(x), \omega \in F\}$ is uniformly bounded in $\bar{D} \cup\{\infty\}$. It follows by Ascoli's theorem that $T F$ is relatively compact in $C(\bar{D} \cup\{\infty\})$.

Next, we prove the continuity of T in F. Consider a sequence $\left(\omega_{k}\right)_{k \in N}$ in F which converges uniformly to a function $\omega \in F$. Then

$$
\begin{aligned}
\left|T \omega_{k}(x)-T \omega(x)\right| \leq & \frac{\lambda}{\lambda+\mu \log |x|} \int_{D} G(x, y) \left\lvert\, \varphi\left(y, \omega_{k}(y)\left(1+\frac{\mu}{\lambda} \log |y|\right)\right)\right. \\
& \left.-\varphi\left(y, \omega(y)\left(1+\frac{\mu}{\lambda} \log |y|\right)\right) \right\rvert\, d y
\end{aligned}
$$

Now by the monotonocity of φ, we have

$$
\left|\varphi\left(y, \omega_{k}(y)\left(1+\frac{\mu}{\lambda} \log |y|\right)\right)-\varphi\left(y, \omega(y)\left(1+\frac{\mu}{\lambda} \log |y|\right)\right)\right| \leq 2 \varphi(y, \lambda)
$$

and since φ is continuous with respect to the second variable, we deduce by the dominated convergence theorem and Corollary 2.7, that

$$
\forall x \in \bar{D}, T \omega_{k}(x) \rightarrow T \omega(x) \quad \text { as } k \rightarrow \infty
$$

Since $T F$ is relatively compact in $C(\bar{D} \cup\{\infty\})$, then $T \omega_{k}$ converges uniformly to $T \omega$ as $k \rightarrow \infty$. Thus we have proved that T is a compact mapping from F to itself. Hence by the Schauder's fixed point theorem, there exists $\omega_{\lambda} \in F$ such that for each $x \in D$,

$$
\omega_{\lambda}(x)=\lambda+\frac{\lambda}{\lambda+\mu \log |x|} \int_{D} G(x, y) \varphi\left(y, \omega_{\lambda}(y)\left(1+\frac{\mu}{\lambda} \log |y|\right)\right) d y
$$

Put $u_{\lambda}(x)=\omega_{\lambda}(x)\left(1+\frac{\mu}{\lambda} \log |x|\right)$, for $x \in \bar{D}$. Then we have

$$
\begin{equation*}
u_{\lambda}(x)=\lambda+\mu \log |x|+\int_{D} G(x, y) \varphi\left(y, u_{\lambda}(y)\right) d y \tag{3.2}
\end{equation*}
$$

In addition, since for each $y \in D, \varphi\left(y, u_{\lambda}(y)\right) \leq \varphi(y, \lambda)$, we deduce by hypothesis H2 and Proposition 2.2 that the map $y \rightarrow \varphi\left(y, u_{\lambda}(y)\right) \in L_{\mathrm{loc}}^{1}(D)$. On the other hand, using Proposition 2.11, it follows that $V\left(\varphi\left(\cdot, u_{\lambda}\right)\right) \in C(\bar{D})$ and $\lim _{x \rightarrow \partial D} V\left(\varphi\left(\cdot, u_{\lambda}\right)\right)(x)=0$. So we can apply Δ to the equation (3.2) to obtain $\Delta u_{\lambda}+\varphi\left(\cdot, u_{\lambda}\right)=0$ (in the weak sense). Furthermore, for every $x \in D$, we have

$$
\mu+\frac{\lambda}{\log |x|} \leq \frac{u_{\lambda}(x)}{\log |x|} \leq \mu+\frac{\lambda+\|V \varphi(\cdot, \lambda)\|_{\infty}}{\log |x|}
$$

Thus $\lim _{|x| \rightarrow \infty} \frac{u_{\lambda}(x)}{\log |x|}=\mu$, and by (3.2), we have $u_{\lambda} / \partial D=\lambda$. This shows that u_{λ} is a positive continuous solution of (3.1).

Finally, we show the uniqueness of the solution. Let u be a positive continuous solution of the problem in Theorem 3.3. Clearly u is a superharmonic function with boundary value λ and $\lim _{|x| \rightarrow \infty}(u(x)-\lambda) \geq 0$. So, we have by the maximum principle [3, p.465] that $u \geq \lambda$ on D. Which together with the monotonicity of φ imply that $\varphi(\cdot, \lambda) \geq \varphi(\cdot, u) \in K^{\infty}(D)$. So, we deduce by Proposition 2.2 and Proposition 2.11 that the functions $\varphi(\cdot, u)$ and $V \varphi(\cdot, u)$ are in $L_{\text {loc }}^{1}(D)$ and $C(\bar{D})$ respectively with $\lim _{x \rightarrow \partial D} V \varphi(\cdot, u)(x)=0$. Hence u satisfies $\Delta(u-V \varphi(\cdot, u))=0$ (in the weak sense). It follows that the function $h=u-V \varphi(., u)-\mu \log |x|-\lambda$ is harmonic in D satisfying $h / \partial D=0$ and $\lim _{|x| \rightarrow \infty} \frac{h(x)}{L o g|x|}=0$. Thus by [3, p.419], we have $h=0$. So u satisfies (3.2), which yields with Proposition 3.2 to the uniqueness of u_{λ}.

Lemma 3.4 If $u \in C(\bar{D})$ is a nonnegative solution of the problem

$$
\begin{gather*}
\Delta u+\varphi(., u)=0, \quad \text { in } D(\text { in the weak sense }) \tag{3.3}\\
\left.u\right|_{\partial D}=0, \quad \lim _{|x| \rightarrow \infty} \frac{u(x)}{\log |x|}=\mu \geq 0
\end{gather*}
$$

then for each $x \in D$,

$$
\begin{equation*}
\mu \log |x| \leq u(x) \leq \mu \log |x|+V(\varphi(\cdot, u))(x) \tag{3.4}
\end{equation*}
$$

Proof. We assume that $V \varphi(\cdot, u) \neq \infty$, otherwise the upper inequality is satisfied. Let $\varepsilon>0$. Since $\lim _{|x| \rightarrow \infty} \frac{u(x)}{\log |x|}=\mu$, there exists $M>1$ such that

$$
(\mu-\varepsilon) \log |x| \leq u(x) \leq(\mu+\varepsilon) \log |x|, \quad \text { for }|x| \geq M
$$

The functions defined on D by $v_{\varepsilon}(x)=u(x)+(\varepsilon-\mu) \log |x|$ and $w_{\varepsilon}(x)=V \varphi(., u)(x)-u(x)+(\mu+\varepsilon) \log |x|$ satisfy the following properties:

$$
\begin{gathered}
v_{\varepsilon} \in C(\bar{D}), \quad \Delta v_{\varepsilon}=\Delta u \leq 0 \quad \text { in } D \\
v_{\varepsilon}=0 \quad \text { in } \partial D, \quad \liminf _{|x| \rightarrow \infty} v_{\varepsilon}(x) \geq 0
\end{gathered}
$$

The function w_{ε} is lower semi-continuous on D,

$$
\begin{gathered}
\Delta w_{\varepsilon}=-\varphi(., u)-\Delta u=0 \quad \text { in } D \\
w_{\varepsilon} \geq 0 \quad \text { in } \partial D, \quad \liminf _{|x| \rightarrow \infty} w_{\varepsilon}(x) \geq 0
\end{gathered}
$$

Hence by [3, p.465], we get

$$
(\mu-\varepsilon) \log |x| \leq u(x) \leq(\mu+\varepsilon) \log |x|+V \varphi(., u) \text { in } D .
$$

Since ε is arbitrary, we obtain (3.4). \diamond
Now we are ready to prove one of the main results of this section.
Theorem 3.5 Let $\varphi: D \times(0, \infty) \rightarrow[0, \infty)$ be a measurable function satisfying H1 and H2, and $\mu>0$. Then the problem (3.3) has a unique positive solution $u \in C(\bar{D})$ satisfying $V \varphi(\cdot, u) \neq \infty$. If we suppose further that $\varphi \in C_{\mathrm{loc}}^{\alpha}(D \times(0, \infty)),(0<\alpha<1)$, then the solution $u \in C_{l o c}^{2+\alpha}(D) \cap C(\bar{D})$.

Proof. Let $\left(\lambda_{n}\right)_{n \geq 0}$ be a sequence of real numbers that decreases to zero. For each $n \in \mathbb{N}$, we denote by u_{n} the unique positive solution of problem (3.1) given in Theorem 3.3 for $\lambda=\lambda_{n}$. Then by Proposition 3.2, the sequence $\left(u_{n}\right)_{n \geq 0}$ decreases to a function u and so by (3.2), the sequence $\left(u_{n}-\lambda_{n}\right)_{n \geq 0}$ increases to u. Due to the monotonicity of φ, we have for each $x \in D$

$$
\begin{aligned}
u(x) & \geq u_{n}(x)-\lambda_{n}=\mu \log |x|+\int_{D} G(x, y) \varphi\left(y, u_{n}(y)\right) d y \\
& \geq \mu \log |x|>0
\end{aligned}
$$

Hence, applying the monotone convergence theorem, we get

$$
\begin{equation*}
u(x)=\mu \log |x|+\int_{D} G(x, y) \varphi(y, u(y)) d y, \forall x \in D \tag{3.5}
\end{equation*}
$$

Since $u=\sup _{n}\left(u_{n}-\lambda_{n}\right)=\inf _{n}\left(u_{n}\right)$ and for each $n \in \mathbb{N}$ the function u_{n} is continuous on D, then u is a positive continuous function on D. Which together with (3.5) imply that $V(\varphi(\cdot, u)) \in L_{\text {loc }}^{1}(D)$. So using hypothesis H 2 and Proposition 2.2, we deduce that the map $y \rightarrow \varphi(y, u(y)) \in L_{\text {loc }}^{1}(D)$. Applying Δ on both sides of equality (3.5) we obtain

$$
\Delta u+\varphi(\cdot, u)=0, \quad \text { in } D(\text { in the weak sense })
$$

Now, since for each $x \in D$ and $n \in \mathbb{N}$, we have $0 \leq u_{n}(x)-\lambda_{n} \leq u(x) \leq u_{n}(x)$ and $\lim _{|x| \rightarrow \infty} \frac{u_{n}(x)}{\log |x|}=\mu$, then

$$
\lim _{x \rightarrow \partial D} u(x)=0 \quad \text { and } \quad \lim _{|x| \rightarrow \infty} \frac{u(x)}{\log |x|}=\mu
$$

Thus $u \in C(\bar{D})$ and u is a positive solution of the problem (3.3). Finally, we intend to show the uniqueness of the solution. Let u be a positive continuous solution of the problem (3.3) such that $V(\varphi(\cdot, u)) \neq \infty$. Then the functions $\varphi(\cdot, u)$
and $V \varphi(\cdot, u)$ are in $L_{\text {loc }}^{1}(D)$. We deduce by $[2$, p.52] that $\Delta(V \varphi(\cdot, u))=-\varphi(\cdot, u)$, in D (in the weak sense) and consequently $\Delta(V \varphi(\cdot, u)+\mu L o g|\cdot|-u)=0$ in D (in the weak sense). Hence there exists a harmonic function h in D such that

$$
h(x)+u(x)-\mu \log |x|=V \varphi(\cdot, u)(x) \quad \text { a.e on } D
$$

Since u and $V \varphi(., u)$ are superharmonic functions in D, we get by [10, p.134] that

$$
h(x)+u(x)-\mu \log |x|=V \varphi(\cdot, u)(x) \text { on } D .
$$

Now using (3.4), we get $0 \leq h \leq V \varphi(\cdot, u)<\infty$. Hence by [10, p.158], we deduce that $h=0$. The function u satisfies (3.5) and the uniqueness follows by Proposition 3.2.

Corollary 3.6 Let φ_{1}, φ_{2} be nonnegative measurable functions in $D \times(0, \infty)$ satisfying the hypotheses $H 1$ and $H 2$, and $\mu_{1}, \mu_{2} \in \mathbb{R}_{+}$such that $0 \leq \varphi_{1} \leq \varphi_{2}$ and $0<\mu_{1} \leq \mu_{2}$. If we denote by $u_{j} \in C(\bar{D})$ the unique positive solution of the problem (3.3) with $\varphi=\varphi_{j}$ and $\mu=\mu_{j}, j \in\{1,2\}$, given in Theorem 3.5, then we have

$$
0 \leq u_{2}-u_{1} \leq\left(\mu_{2}-\mu_{1}\right) \log |\cdot|+V\left(\varphi_{2}\left(\cdot, u_{2}\right)-\varphi_{1}\left(\cdot, u_{2}\right)\right) \text { in } D
$$

Proof. It follows by Theorem 3.5, that

$$
u_{1}=\mu_{1} L o g|\cdot|+V \varphi_{1}\left(\cdot, u_{1}\right) \text { and } u_{2}=\mu_{2} L o g|\cdot|+V \varphi_{2}\left(\cdot, u_{2}\right)
$$

Let h be the nonnegative measurable function defined on D by

$$
h(x)= \begin{cases}\frac{\varphi_{1}\left(x, u_{2}(x)\right)-\varphi_{1}\left(x, u_{1}(x)\right)}{u_{1}(x)-u_{2}(x)}, & \text { if } u_{1}(x) \neq u_{2}(x) \\ 0, & \text { if } u_{1}(x)=u_{2}(x)\end{cases}
$$

Then $h \in B^{+}(D)$ and we have

$$
u_{2}-u_{1}+V\left(h\left(u_{2}-u_{1}\right)\right)=\left(\mu_{2}-\mu_{1}\right) \log |\cdot|+V\left(\varphi_{2}\left(\cdot, u_{2}\right)-\varphi_{1}\left(\cdot, u_{2}\right)\right)
$$

Now, since
$V\left(h\left|u_{2}-u_{1}\right|\right) \leq V \varphi_{1}\left(\cdot, u_{2}\right)+V \varphi_{1}\left(\cdot, u_{1}\right) \leq V \varphi_{2}\left(\cdot, u_{2}\right)+V \varphi_{1}\left(\cdot, u_{1}\right) \leq u_{1}+u_{2}<\infty$ and $\left(\mu_{2}-\mu_{1}\right) \log |\cdot|+V\left(\varphi_{2}\left(\cdot, u_{2}\right)-\varphi_{1}\left(\cdot, u_{2}\right)\right)$ is a nonnegative superharmonic function on D, we deduce the result from Lemma 3.1.

Theorem 3.7 Let $\varphi: D \times(0, \infty) \rightarrow[0, \infty)$ be a measurable function satisfying H1-H3. Then the problem (1.3) has a unique positive bounded solution $u \in C(\bar{D})$ satisfying $V \varphi(\cdot, u) \neq \infty$.

Proof. Let $\lambda>0$ and $\left(\mu_{n}\right)$ be a sequence of real numbers that decreases to zero. For each $n \in \mathbb{N}$, we denote by $u_{\lambda, \mu_{n}}$ the unique positive continuous solution of the problem (3.1) and by v_{n} the unique positive continuous solution of the problem (3.3), given in Theorem 3.5 for $\mu=\mu_{n}$. Then by Corollary 3.6, the sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$ decreases to a function u and so by (3.5), the sequence $\left(v_{n}-\mu_{n} L o g|\cdot|\right)_{n}$ increases to u. Due to the monotonicity of φ and by (3.2), we have for each $x \in D$

$$
\begin{aligned}
\lambda & +\|V \varphi(\cdot, \lambda)\|_{\infty}+\mu_{n} \log |x| \\
& \geq u_{\lambda, \mu_{n}}(x) \geq v_{n}(x) \\
& \geq u(x) \geq v_{n}(x)-\mu_{n} \log |x| \\
& \geq \int_{D} G(x, y) \varphi\left(y, \mu_{n} \log |y|+\lambda+\|V \varphi(\cdot, \lambda)\|_{\infty}\right) d y
\end{aligned}
$$

Letting n tends to infinity, we get

$$
\lambda+\|V \varphi(\cdot, \lambda)\|_{\infty} \geq u(x) \geq V \varphi\left(\cdot, \lambda+\|V \varphi(\cdot, \lambda)\|_{\infty}\right)(x), \quad \forall x \in D
$$

By H2, H3 and Corollary 2.7, u is a positive bounded function in D. Since, for each $n \in \mathbb{N}$ and $x \in D$

$$
v_{n}-\mu_{n} \log |x|=\int_{D} G(x, y) \varphi\left(y, v_{n}(y)\right) d y
$$

we obtain, as $n \rightarrow \infty$, that

$$
\begin{equation*}
u(x)=\int_{D} G(x, y) \varphi(y, u(y)) d y, \forall x \in D \tag{3.6}
\end{equation*}
$$

As in the proof of Theorem 3.5, we show that $u \in C(\bar{D})$ and u is a positive bounded solution of (1.3). Using (3.4), we establish the uniqueness of such a solution. \diamond

Corollary 3.8 Let $\varphi: D \times(0, \infty) \rightarrow[0, \infty)$ be a measurable function satisfying H1 and H2. Then for each $\mu>0$ and f a nonnegative continuous function on ∂D, the following nonlinear problem

$$
\begin{gather*}
\Delta u+\varphi(\cdot, u)=0, \quad \text { in } D \text { (in the weak sense) } \tag{3.7}\\
u_{/ \partial D}=f, \quad \lim _{|x| \rightarrow \infty} \frac{u(x)}{\log |x|}=\mu
\end{gather*}
$$

has a unique positive solution $u \in C(\bar{D})$ satisfying $V \varphi(\cdot, u) \neq \infty$.
Proof. Let H_{f}^{D} denotes the unique bounded solution of the following Dirichlet problem

$$
\begin{gathered}
\Delta \omega=0, \quad \text { in } D, \\
\omega_{/ \partial D}=f .
\end{gathered}
$$

We note that if u is a continuous solution of (3.7), then as φ is a nonnegative function, we deduce that $u-H_{f}^{D}$ is superharmonic such that $u-H_{f}^{D}=0$ on ∂D and $\lim _{|x| \rightarrow \infty}\left(u(x)-H_{f}^{D}(x)\right)=+\infty$. We conclude by the maximum principle, that

$$
u \geq H_{f}^{D} \quad \text { in } D
$$

Let Ψ be the function defined on $D \times(0, \infty)$ by $\Psi(x, t)=\varphi\left(x, t+H_{f}^{D}(x)\right)$. It is clear to verify that Ψ satisfies the same hypotheses $\mathrm{H} 1-\mathrm{H} 2$ as φ. Hence by Theorem 3.5, the problem

$$
\begin{gathered}
\Delta v+\Psi(\cdot, v)=0, \quad \text { in } D \\
v / \partial D=0, \quad \lim _{|x| \rightarrow \infty} \frac{v(x)}{\log |x|}=\mu
\end{gathered}
$$

has a unique positive solution $v \in C(\bar{D})$ satisfying $V \Psi(\cdot, v) \neq \infty$. Moreover, u is a solution of (3.7) if and only if $u=v+H_{f}^{D}$. This completes the proof.

Corollary 3.9 Let $\varphi: D \times(0, \infty) \rightarrow[0, \infty)$ be a measurable function satisfying H1-H3 and f be a nonnegative continuous function on ∂D. Then the nonlinear Dirichlet problem

$$
\begin{gather*}
\Delta u+\varphi(., u)=0, \quad \text { in } D \text { (in the weak sense) } \tag{3.8}\\
u_{/ \partial D}=f,
\end{gather*}
$$

has a unique positive bounded solution $u \in C(\bar{D})$ satisfying $V \varphi(\cdot, u) \neq \infty$.

4 Estimates on solutions

In this section, we give some estimates on the solutions of (1.3) given by (3.5) and (3.6). We denote by $\beta=\inf _{\lambda>0}\left\{\lambda+\|V \varphi(\cdot, \lambda)\|_{\infty}\right\}$ and we remark that if H3 is satisfied then $\beta>0$.

Theorem 4.1 Let $\mu>0$ and u be the solution of problem (3.3) given by (3.5). Then for each $x \in \bar{D}$, we have

$$
\mu \log |x| \leq u(x) \leq \mu \log |x|+\min (\beta, V \varphi(., \mu L o g|\cdot|)(x))
$$

Proof. For each $\lambda>0$ and each $x \in \bar{D}$, we have

$$
\mu \log |x| \leq u(x) \leq u_{\lambda}(x) \leq \mu \log |x|+\lambda+\|V \varphi(\cdot, \lambda)\|_{\infty},
$$

where u_{λ} is the solution of the problem (3.3). Thus

$$
\mu \log |x| \leq u(x) \leq \mu \log |x|+\beta, \forall x \in \bar{D} .
$$

Since φ is non-increasing with respect to the second variable, from (3.5) we obtain

$$
\mu \log |x| \leq u(x) \leq \mu \log |x|+\int_{D} G(x, y) \varphi(y, \mu \log |y|) d y, \forall x \in \bar{D}
$$

Which completes the proof.
Remark 4.1 Let $\varepsilon>0$, sufficiently small, $D_{\varepsilon}=\left\{x \in \mathbb{R}^{2}, 1<|x| \leq 1+\varepsilon\right\}$ and u be the solution of (3.3) given by (3.5). If φ satisfies

$$
\sup _{x \in D_{\varepsilon}} \int_{D} \frac{1}{|x-y|} \varphi(y, \mu \log |y|) d y<\infty
$$

then there exists a constant $c>0$ such that for each $x \in \bar{D}$,

$$
\mu \log |x| \leq u(x) \leq(\mu+c) \log |x|
$$

Indeed, there exists $C>0$ such that for every x, y in D, we have

$$
G(x, y) \leq C \frac{(|x|-1) \wedge(|y|-1)}{|x-y|}
$$

Hence, for each $x \in D_{\varepsilon}$

$$
\begin{aligned}
u(x) & \leq \mu \log |x|+V(\varphi(\cdot, \mu \log |\cdot|))(x) \\
& \leq \mu \log |x|+C\left(\int_{D} \frac{\varphi(y, \mu \log |y|)}{|x-y|} d y\right)(|x|-1) \\
& \leq \mu \log |x|+C\left(\sup _{z \in D_{\varepsilon}} \int_{D} \frac{\varphi(y, \mu \log |y|)}{|z-y|}\right)(1+\varepsilon) \log |x| \\
& =\mu \log |x|+C_{1} \log |x| .
\end{aligned}
$$

Moreover,

$$
\forall x \in \bar{D} \backslash D_{\varepsilon}, \quad u(x) \leq \mu \log |x|+\beta \leq \mu \log |x|+\frac{\beta}{\log (1+\varepsilon)} \log |x|
$$

Consequently, for each $x \in \bar{D}$

$$
\mu \log |x| \leq u(x) \leq \mu \log |x|+\max \left(C_{1}, \frac{\beta}{\log (1+\varepsilon)}\right) \log |x|=(\mu+c) \log |x| .
$$

Example 4.1 Let u be the positive solution of (3.3) given by (3.5). For $r \in[1, \infty)$, we denote by $\phi(r, \cdot)=\sup _{|x|=r} \varphi(x, \cdot)$. If

$$
\int_{1}^{\infty} r \phi(r, \mu \log r) d r<\infty
$$

then there exists $c>0$ such that for every $x \in \bar{D}$,

$$
\mu \log |x| \leq u(x) \leq(\mu+c) \log |x|
$$

Indeed, by Theorem 4.1, we have for each $x \in \bar{D}$,

$$
\begin{aligned}
\mu \log |x| \leq u(x) & \leq \mu \log |x|+\int_{D} G(x, y) \varphi(y, \mu \log |y|) d y \\
& \leq \mu \log |x|+\int_{1}^{\infty} r \log (|x| \wedge r) \phi(r, \mu \log r) d r \\
& \leq \mu \log |x|+\left(\int_{1}^{\infty} r \phi(r, \mu \operatorname{Logr}) d r\right) \log |x| \\
& =(\mu+c) \log |x|
\end{aligned}
$$

Theorem 4.2 Let $u \in C(\bar{D})$ be the unique positive bounded solution of (1.3). Then there exists $c>0$ such that

$$
c\left(1-\frac{1}{|x|}\right) \leq u(x) \leq \min \left(\beta, V \varphi\left(., c\left(1-\frac{1}{|\cdot|}\right)\right)(x)\right), \forall x \in \bar{D}
$$

Proof. As it can be seen in the proof of Theorem 3.7, we have

$$
V \varphi(\cdot, \beta)(x) \leq u(x) \leq \beta, \forall x \in D
$$

On the other hand, from Lemma 2.1, we have

$$
\frac{1}{2 \pi}\left(1-\frac{1}{|x|}\right)\left(\int_{D}\left(1-\frac{1}{|y|}\right) \varphi(y, \beta) d y\right) \leq V \varphi(\cdot, \beta)(x), \forall x \in D
$$

Hence, the lower bound inequality follows from H2 and Corollary 2.8, with

$$
c=\frac{1}{2 \pi} \int_{D}\left(1-\frac{1}{|y|}\right) \varphi(y, \beta) d y .
$$

Now, since φ is non-increasing with respect to the second variable, we get by using (3.6) that

$$
u(x) \leq \int_{D} G(x, y) \varphi\left(y, c\left(1-\frac{1}{|y|}\right)\right) d y
$$

This completes the proof.
Remark 4.2 Let $\varepsilon>0$, sufficiently small, $D_{\varepsilon}=\left\{x \in \mathbb{R}^{2}, 1<|x| \leq 1+\varepsilon\right\}$ and u be the unique positive bounded solution of (1.3). If φ satisfies

$$
\sup _{z \in D_{\varepsilon}} \int_{D} \frac{1}{|z-y|} \varphi\left(y, c\left(1-\frac{1}{|y|}\right)\right) d y<\infty, \forall c>0
$$

then there exists a constant $C>0$ such that for each $x \in \bar{D}$,

$$
\frac{1}{C}\left(1-\frac{1}{|x|}\right) \leq u(x) \leq C\left(1-\frac{1}{|x|}\right)
$$

Example 4.2 Let u be the positive bounded solution of (1.3) given by (3.6) and ϕ defined as in Example 4.1. If

$$
\forall c>0, \quad \int_{1}^{\infty} r \phi\left(r, c\left(1-\frac{1}{r}\right)\right) d r<\infty
$$

then there exists $C>0$ such that

$$
\frac{1}{C}\left(1-\frac{1}{|x|}\right) \leq u(x) \leq C\left(1-\frac{1}{|x|}\right), \forall x \in \bar{D}
$$

Indeed, for $1 \leq|x| \leq 2$, we have

$$
\begin{aligned}
c\left(1-\frac{1}{|x|}\right) \leq u(x) & \leq \int_{D} G(x, y) \varphi\left(y, c\left(1-\frac{1}{|y|}\right)\right) d y \\
& \leq \int_{1}^{\infty} r \log (|x| \wedge r) \phi\left(r, c\left(1-\frac{1}{r}\right)\right) d r \\
& \leq \log |x| \int_{1}^{\infty} r \phi\left(r, c\left(1-\frac{1}{r}\right)\right) d r \\
& \leq\left(1-\frac{1}{|x|}\right)\left(2 \int_{1}^{\infty} r \phi\left(r, c\left(1-\frac{1}{r}\right)\right) d r\right)
\end{aligned}
$$

Moreover, for $|x|>2$,

$$
c\left(1-\frac{1}{|x|}\right) \leq u(x) \leq \beta \leq 2 \beta\left(1-\frac{1}{|x|}\right)
$$

This gives the desired estimates.
We close this paper by giving an other comparison result for the solutions of the problem (1.3), in the case of the special nonlinearity $\varphi(x, t)=q(x) f(t)$. The following hypotheses on q and f are adopted.

- $f:(0, \infty) \rightarrow(0, \infty)$ is a continuously differentiable non-increasing function.
- $q \in C_{\mathrm{loc}}^{\alpha}(D) \cap K^{\infty}(D), 0<\alpha<1$, is a nontrivial nonnegative function in D.

We define the function F in $[0, \infty)$ by $F(t)=\int_{0}^{t} 1 / f(s) d s$. From the hypotheses on f, we note that the function F is a bijection from $[0, \infty)$ to itself. Then, we have the following statement.

Theorem 4.3 Let $u \in C(\bar{D})$ be the positive solution of the problem

$$
\begin{gather*}
\Delta u+q(x) f(u)=0 \quad \text { in } D(\text { in the weak sense) } \tag{4.1}\\
\left.u\right|_{\partial D}=0, \quad \lim _{|x| \rightarrow \infty} \frac{u(x)}{\log |x|}=\mu>0
\end{gather*}
$$

such that $V(q f(u)) \neq \infty$. Then
$V(q f(\beta+\mu \log |\cdot|))(x)+\mu \log |x| \leq u(x) \leq F^{-1}(V q(x))+\mu \log |x|, \forall x \in \bar{D}$.

Proof. Since $u \leq \beta+\mu L o g|\cdot|$ in D and f is nonincreasing with respect to the second variable, we deduce that for each x in D,
$V(q f(\beta+\mu \log |\cdot|))(x)+\mu \log |x| \leq u(x)=\mu \log |x|+\int_{D} G(x, y) q(y) f(u(y)) d y$.
To show the upper estimate, we consider $\varepsilon>0$ and define the function v_{ε} in D by $v_{\varepsilon}(x)=F(u(x)-\mu \log |x|)-V q(x)-\varepsilon L o g|x|$. Then, $v_{\varepsilon} \in C^{2}(D)$ and

$$
\begin{aligned}
\Delta v_{\varepsilon}(x)= & \frac{1}{f(u(x)-\mu \log |x|)} \Delta u(x)+q(x) \\
& -\frac{f^{\prime}(u(x)-\mu \log |x|)}{f^{2}(u(x)-\mu \log |x|)}\|\nabla(u-\mu \log |\cdot|)(x)\|^{2}
\end{aligned}
$$

Thus, $\Delta v_{\varepsilon} \geq 0$. Moreover, since $0 \leq u-\mu \log |\cdot| \leq \beta, V q$ is bounded in D and $\lim _{x \rightarrow \partial D} V q(x)=0$, we get $v_{\varepsilon / \partial D}=0$ and $\lim _{|x| \rightarrow \infty} v_{\varepsilon}(x) \leq 0$. Hence, by [3, p.465] we deduce that $v_{\varepsilon} \leq 0$ in D. Since ε is arbitrary, we get the upper inequality. \diamond

Using the same arguments as in the proof above, we can prove the following theorem.

Theorem 4.4 Let $u \in C(\bar{D})$ be the positive bounded solution of the problem(1.3) with $\varphi(., u)=q(x) f(u)$, such that $V(q f(u)) \neq \infty$. Then we have

$$
f(\beta) V q(x) \leq u(x) \leq F^{-1}(V q(x)), \forall x \in \bar{D}
$$

Corollary 4.5 Let $\varphi: D \times(0, \infty) \rightarrow[0, \infty)$ be a measurable function satisfying H1. Further, assume that φ satisfies

$$
\varphi(x, t) \leq q(x) f(t), \forall(x, t) \in D \times(0, \infty)
$$

Let $\mu>0$ and u be the solution of the problem (3.3). Then u satisfies

$$
\begin{equation*}
\mu \log |x| \leq u(x) \leq \mu \log |x|+F^{-1}(V q(x)), \forall x \in \bar{D} \tag{4.2}
\end{equation*}
$$

Proof. Let v be the solution of the problem (4.1). Then, by Corollary 3.8, we deduce that $u \leq v$ in D. Which together with Theorems 4.1 and 4.3, give (4.2).

Example 4.3 Let $\gamma>0$. Then the problem

$$
\begin{gathered}
\Delta u+q(x) u^{-\gamma}=0, \quad \text { in } D \\
\left.u\right|_{\partial D}=0, \quad \lim _{|x| \rightarrow \infty} \frac{u(x)}{\log |x|}=\mu \geq 0
\end{gathered}
$$

has a positive solution $u \in C(\bar{D})$ satisfying

$$
V\left((\beta+\mu \log |\cdot|)^{-\gamma} q\right)(x) \leq u(x)-\mu \log |x| \leq[(\gamma+1) V q(x)]^{\frac{1}{1+\gamma}}, \forall x \in \bar{D}
$$

Acknowledgements. I want to thank Professor Habib Maâgli, my adviser, for his valuable help. I also want to thank the anonymous referee for his/her suggestions.

References

[1] J. Bliedtner, W. Hansen, Potential theory. An analytic and probabilistic approach to balayage, Springer Verlag (1986).
[2] K.L. Chung, Z. Zhao, From Brownian motion to Schrödinger's equation, Springer Verlag (1995).
[3] R. Dautray, J.L. Lions et all, Analyse mathématique et calcul numérique pour les sciences et les techniques, Coll. C.E.A. Vol 2, l'opérateur de Laplace, Masson (1987).
[4] A.L. Edelson, Entire solutions of singular elliptic equations, J. Math. Anal. Appl. 139 (1989) 523-532.
[5] T. Kusano, C.A. Swanson, Asymptotic properties of semilinear elliptic equations. Funkcialaj Ekvacioj, 26 (1983), 115-129.
[6] A.V. Lair, A.W. Shaker, Classical and weak solution of a singular semilinear elliptic problem, J. Math. Anal. Appl. 211 (1997), 371-385.
[7] A.C. Lazer, P.J. Mckenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 (1991) 721-730.
[8] H. Maâgli, S. Masmoudi, Sur les solutions d'un opérateur différentiel singulier semi-linéaire, Potential Analysis, Vol. 10 (1999) 298-304.
[9] L. Maâtoug, Positive solutions of a nonlinear elliptic equation in $\left\{x \in \mathbb{R}^{2}\right.$: $|x|>1\}$, to appear in Potential Analysis.
[10] S.C. Port, C.J. Stone, Brownian motion and classical Potential theory, Academic Press (1978).
[11] M. Selmi, Inequalities for Green functions in a Dini-Jordan domain in \mathbb{R}^{2}, Potential Anal. 13(2000), 81-102.

Noureddine Zeddini

Département de Mathématiques, Faculté des Sciences de Tunis Campus Universitaire, 1060 Tunis, Tunisia.
e-mail: Noureddine.Zeddini@ipein.rnu.tn

[^0]: * Mathematics Subject Classifications: 34B16, 34B27, 35J65.

 Key words: Singular elliptic equation, Green function, Schauder fixed point theorem, maximum principle, superharmonic function.
 (C)2001 Southwest Texas State University.

 Submitted February 13, 2001. Published July 24, 2001.

