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Existence of positive periodic solutions for

non-autonomous functional differential equations ∗

Sui Sun Cheng & Guang Zhang

Abstract

We establish the existence of positive periodic solutions for a first-
order differential equation with periodic delay. For this purpose, we use
the fixed point theorem proved by Krasnoselskii.

1 Introduction

In this article, we investigate the existence of positive periodic solutions for the
first-order functional differential equation

y′(t) = −a(t)y(t) + λh(t)f(y(t− τ(t)), (1.1)

where a = a(t), h = h(t) and τ = τ(t) are continuous T -periodic functions. We
assume that T, λ > 0, that a = a(t), f = f(t) and h = h(t) are nonnegative,
and that a(t0) > 0 for some t0 ∈ [0, T ].

Functional differential equations with periodic delays appear in a number of
ecological models. In particular, our equation can be interpreted as the standard
Malthus population model y′ = −a(t)y subject to a perturbation with periodical
delay. One important question is whether these equations can support positive
periodic solutions. Such question has been studied extensively by a number of
authors; see for example [4, 3, 1, 2, 5] and the references therein. In this paper,
we will obtain existence criteria for T -periodic solutions of (1.1) by means of a
well known fixed point theorem due to Krasnoselskii.

Theorem 1.1 Let E be a Banach space and let P ⊂ E be a cone. Assume
Ω1,Ω2 are bounded open subsets of E such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Suppose
that T : P ∩ (Ω2\Ω1)→ P is a completely continuous operator such that

1. ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖ for P ∩ ∂Ω2, or that

2. ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖ for P ∩ ∂Ω2.
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Then T has a fixed point in P ∩ (Ω2\Ω1).

For the sake of convenience, the conditions needed for our criteria are listed
as follows:

H1) f ∈ C([0,∞), [0,∞)) and there are xn → 0 such that f(xn) > 0 for
n = 1, 2, . . ..

H2) h(t) > 0 for t ∈ R.

H3) supr>0 minrσ≤x≤r f(x) > 0, with σ to be defined later.

H4) f ∈ C([0,∞), [0,∞)) and f(x) > 0 for x > 0.

L1) limx→0 f(x)/x =∞

L2) limx→∞ f(x)/x =∞

L3) limx→0 f(x)/x = 0

L4) limx→∞ f(x)/x = 0

L5) limx→0 f(x)/x = l with 0 < l <∞

L6) limx→∞ f(x)/x = L with 0 < L <∞.

2 Main Result

We proceed formally from (1.1) to obtain

[y(t) exp(
∫ t

−∞
a(s)ds)]′ = λ exp(

∫ t

−∞
a(s)ds)h(t)f(y(t− τ(t)).

After integration from t to t+ T , we obtain

y(t) = λ

∫ t+T

t

G(t, s)h(s)f(y(s− τ(s)))ds, (2.1)

where

G(t, s) =
exp(

∫ s
t
a(u)du)

exp(
∫ T

0
a(u)du)− 1

.

Note that the denominator in G(t, s) is not zero since we have assumed that
a(t0) > 0 for some t0 ∈ [0, T ]. It is not difficult to check that any function y(t)
that satisfies (2.1) is also a T -periodic solution of (1.1). Note that

N ≡ G(t, t) ≤ G(t, s) ≤ G(t, t+ T ) = G(0, T ) ≡M, t ≤ s ≤ t+ T,

and

1 ≥ G(t, s)
G(t, t+ T )

≥ G(t, t)
G(t, t+ T )

=
N

M
> 0.
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Now let X be the set of all real T -periodic continuous functions, endowed with
the usual linear structure and the norm

‖y‖ = sup
t∈[0,T ]

|y(t)|.

Then X is a Banach space with cone

Ω = {y(t) : y(t) ≥ σ‖y(t)‖, t ∈ R},

where σ = N/M . Note that a(t0) > 0 for some t0 ∈ [0, T ]. Clearly, σ ∈ (0, 1).
Define a mapping T : X → X by

(Ty)(t) = λ

∫ t+T

t

G(t, s)h(s)f(y(s− τ(s)))ds.

Then it is easily seen that T is completely continuous on bounded subset of Ω,
and for y ∈ Ω,

(Ty)(t) ≤ λM
∫ T

0

h(s)f(y(s− τ(s)))ds

so that

(Ty)(t) ≥ λN
∫ T

0

h(s)f(y(s− τ(s)))ds ≥ σ‖Ty‖.

That is, TΩ is contained in Ω.

Lemma 2.1 With the above notation, TΩ ⊂ Ω.

Lemma 2.2 Assume that there exist two positive numbers a and b such that
a 6= b,

max
0≤x≤a

f(x) ≤ a

λA
, (2.2)

and

min
σb≤x≤b

f(x) ≥ b

λB
(2.3)

where

A = max
0≤t≤T

∫ T

0

G(t, s)h(s)ds (2.4)

and

B = min
0≤t≤T

∫ T

0

G(t, s)h(s)ds. (2.5)

Then there exists y ∈ Ω which is a fixed point of T and satisfies min{a, b} ≤
‖y‖ ≤ max{a, b}.
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Proof. Let Ωξ = {w ∈ Ω|‖w‖ < ξ}. Assume that a < b. Then, for any y ∈ Ω
which satisfies ‖y‖ = a, in view of (2.2), we have

(Ty)(t) ≤ {λ
∫ t+T

t

G(t, s)h(s)ds} · a
λA
≤ λA · a

λA
= a. (2.6)

That is, ‖Ty‖ ≤ ‖y‖ for y ∈ ∂Ωa. For any y ∈ Ω which satisfies ‖y‖ = b, we
have

(Ty)(t) ≥ {λ
∫ t+T

t

G(t, s)h(s)ds} · b

λB
≥ λB · b

λB
. (2.7)

That is, we have ‖Ty‖ ≥ ‖y‖ for y ∈ ∂Ωb. In view of Theorem 1.1, there exists
y ∈ Ω which satisfies a ≤ ‖y‖ ≤ b such that Ty = y. If a > b, (2.6) is replaced
by (Ty)(t) ≥ b inview of (2.3), and (2.7) is replaced by (Ty)(t) ≤ a in view of
(2.2). The same conclusion then follows. The proof is complete.

Theorem 2.3 Suppose (H1), (H2), (L1) and (L2) hold. Then for any λ ∈
(0, λ∗), equation (1.1) has at least two positive periodic solutions, where

λ∗ =
1
A

sup
r>0

r

max0≤x≤r f(x)
,

and A is defined by (2.4).

Proof. Let q(r) = r/(Amax0≤x≤r f(x)). In view of (H1), we have that q ∈
C((0,∞), (0,∞)). In view of (L1) and (L2), we see further that limr→0 q(r) =
limr→∞ q(r) = 0. Thus, there exists r0 > 0 such that q(r0) = maxr>0 q(r) = λ∗.
For any λ ∈ (0, λ∗), by the intermediate value theorem, there exist a1 ∈ (0, r0)
and a2 ∈ (r0,∞) such that q(a1) = q(a2) = λ. Thus, we have f(x) ≤ a1/(λA)
for x ∈ [0, a1] and f(x) ≤ a2/(λA) for x ∈ [0, a2]. On the other hand, in view
of (L1) and (L2), we see that there exist b1 ∈ (0, a1) and b2 ∈ (a2,∞) such
that f(x)/x ≥ 1/(λσB) for x ∈ (0, b1] ∪ [b2σ,∞). That is, f(x) ≥ b1/(λB) for
x ∈ [b1σ, b1] and f(x) ≥ b2/(λB) for x ∈ [b2σ, b2]. An application of Lemma 2.2
leads to two distinct solutions of (1.1).

We remark that the arguments in the above proof actually yield the following
result: If (H1) and (H2) hold, and if either (L1) or (L2) holds, then for any
0 < λ < λ∗, equation (1.1) has at least one positive periodic solution.

Theorem 2.4 Suppose (H2), (H4), (L3) and (L4) hold. Then for any λ > λ∗∗,
equation (1.1) has at least two positive periodic solutions, where

λ∗∗ =
1
B

inf
r>0

r

minσr≤x≤r f(x)
,

and B is defined by (2.5).
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Proof. Let p(r) = r/(Bminσr≤x≤r f(x)). Clearly, q ∈ C((0,∞), (0,∞)).
From (L3) and (L4), we see that limr→0 p(r) = limr→∞ p(r) = ∞. Thus,
there exists r0 > 0 such that p(r0) = minr>0 p(r) = λ∗∗. For any λ > λ∗∗,
there exist b1 ∈ (0, r0) and b2 ∈ (r0,∞) such that p(b1) = p(b2) = λ. Thus,
we have f(x) ≥ b1/(λB) for x ∈ [σb1, b1] and f(x) ≥ b2/(λB) for x ∈ [σb2, b2].
On the other hand, in view of (L3), we see that f(0) = 0 and that there ex-
ists a1 ∈ (0, b1) such that f(x)/x ≤ 1/(λA) for x ∈ (0, a1]. Thus, we have
f(x) ≤ a1/(λA). In view of (L4), we see that there exists a ∈ (b2,∞) such
that f(x)/x ≤ 1/(λA) for x ∈ [a,∞). Let δ = max0≤x≤a f(x). Then we have
f(x) ≤ a2/(λA) for x ∈ [0, a2], where a2 > a and a2 ≥ λδA. An application of
Lemma 2.2 leads to two distinct solutions of (1.1).

Again, we remark that the proof of Theorem 2.4 shows the following: If
(H1), (H2) and (H3) hold, and if (L3) or (L4) holds, then for any λ > λ∗∗,
equation (1.1) has a positive periodic solution.

Theorem 2.5 Assume that (H1), (H2), (L5) and (L6) hold. Then, for each λ
satisfying

1
σBL

< λ <
1
Al

(2.8)

or
1
σBl

< λ <
1
AL

,

equation (1.1) has a positive periodic solution.

Proof. Suppose (2.8) holds. Let ε > 0 be such that

1
σB(L− ε)

≤ λ ≤ 1
A(l + ε)

.

Note that l > 0, thus there exists H1 > 0 such that f(x) ≤ (l + ε)x for
0 < x ≤ H1. So, for y ∈ Ω with ‖y‖ = H1, we have

(Ty)(t) ≤ λ(l + ε)
∫ t+T

t

G(t, s)h(s)y(s− τ(s))ds

≤ λ(l + ε)‖y‖
∫ T

0

G(t, s)h(s)ds

≤ λA(l + ε) ≤ ‖y‖.

Next, since L > 0, there exists a H2 > 0 such that f(x) ≥ (L− ε)x for x ≥ H2.
Let H2 = max{2H1, σH2}, then for y ∈ Ω with ‖y‖ = H2,

(Ty)(t) ≥ λ(L− ε)
∫ t+T

t

G(t, s)h(s)y(s− τ(s))ds

≥ λ(L− ε)σ‖y‖
∫ T

0

G(t, s)h(s)ds

≥ λ(L− ε)σB‖y‖ ≥ ‖y‖.
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In view of Lemma 2.2, we see that equation (1.1) has a positive periodic solution.
The other case is similarly proved.

Corollary 2.6 Assume that (H1) and (H2) hold. Assume further that either
(L1) and (L4) hold, or, (L2) and (L3) hold, then for any λ > 0, equation (1.1)
has a positive periodic solution.

Proof. Suppose first that (L1) and (L4) hold. If sup0≤x<∞ f(x) = D < ∞,
then λ∗ ≥ (1/A) supr>0(r/D) = ∞. If f(x) is unbounded, then there exist
a sequence {rn} such that f(rn) = max0≤x≤rn f(x) and limn→∞ rn = ∞. In
view of (L4), we have λ∗ ≥ (1/A) sup(rn/f(rn)) = ∞. Thus, we have proved
λ∗ =∞. In this case, our assertion follows from the remark following Theorem
2.3. If (L2) and (L3) hold, then we have limx→∞ f(x) =∞. Thus, (H3) holds.
Let {rn} satisfy limn→∞ rn = ∞ and f(σrn) = minσrn≤x≤rn f(x). In view of
(L2), we have λ∗∗ ≤ (1/B) inf(rn/f(σrn)) = 0. Thus, λ∗∗ = 0. In this case, our
assertion follows from the remark following Theorem 2.4.

Corollary 2.7 Assume that (H1) and (H2) hold. Assume further that either
(L1) and (L6) hold, or, (L2) and (L5) hold. Then for any 0 < λ < 1/(Al) or
0 < λ < 1/(AL) equation (1.1) has a positive periodic solution.

Corollary 2.8 Assume that (H1) and (H2) hold. Assume further that either
(L3) and (L6) hold, or, (L4) and (L5) hold. Then for any 1/(σLB) < λ < ∞
or 1/(σlB) < λ <∞ equation (1.1) has a positive periodic solution.

Similarly, we can also discuss the equation

x′(t) = a(t)x(t)− λh(t)f(x(t− τ(t)). (2.9)

where a = a(t), h = h(t) and f = f(t) satisfy the same assumptions stated for
equation (1.1). By (2.9), we have

x(t) =
∫ t+T

t

H(t, s)h(s)f(x(s− τ(s))ds,

where

H(t, s) =
exp(−

∫ s
t
a(u)du)

1− exp(−
∫ T

0
a(u)du)

=
exp(

∫ t+T
s

a(u)du)

exp(
∫ T

0
a(u)du− 1)

which satisfies

M = G(0, T ) = H(t, t) ≥ H(t, s) ≥ H(t, t+ T ) = H(0, T ) = G(t, t) = N

and

1 ≥ H(t, s)
H(t, t)

≥ H(t, t+ T )
H(t, t)

=
N

M
= σ.

Let

A′ = max
0≤t≤T

∫ T

0

H(t, s)h(s)ds
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and

B′ = min
0≤t≤T

∫ T

0

H(t, s)h(s)ds.

Then we have the following results.

Theorem 2.9 Assume that (H1) and (H2) hold. Suppose further that either
(L1) or (L2) holds. Then for any λ ∈ (0, λ), equation (2.9) has a positive
periodic solution, where

λ =
1
A′

sup
r>0

r

max0≤x≤r f(x)
.

Theorem 2.10 Suppose (H1), (H2), (L1) and (L2) hold. Then for any λ ∈
(0, λ), equation (2.9) has at least two positive periodic solutions.

Theorem 2.11 Assume that (H1), (H2) and (H3). Suppose further that either
(L3) or (L4) holds. Then for any λ > λ, equation (2.9) has a positive periodic
solution, where

λ =
1
B′

inf
r>0

r

minσr≤x≤r f(x)
.

Theorem 2.12 Suppose (H2), (H4), (L3) and (L4) hold. Then for any λ > λ,
equation (2.9) has at least two positive periodic solutions.

Theorem 2.13 Assume that (H1), (H2), (L5) and (L6) hold. Then, for each
λ satisfying

1
σB′L

< λ <
1
A′l

or
1

σB′l
< λ <

1
A′L

,

equation (2.9) has a positive periodic solution.

Corollary 2.14 Assume that (H1) and (H2) hold. Suppose further that either
(L1) and (L4) hold, or, (L2) and (L3) hold. Then for any λ > 0, equation (2.9)
has a positive periodic solution.

Corollary 2.15 Assume that (H1) and (H2) hold. Suppose further that either
(L1) and (L6) hold, or, (L2) and (L5) hold. Then for any 0 < λ < 1/(A′L) or
0 < λ < 1/(A′l) equation (2.9) has a positive periodic solution.

Corollary 2.16 Assume that (H1) and (H2) hold. Suppose further that either
(L3) and (L6) hold, or, (L4) and (L5) hold. Then for any 1/(σLB′) < λ <∞
or 1/(σlB′) < λ <∞ equation (2.9) has a positive periodic solution:
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