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Orders of solutions of an n-th order linear

differential equation with entire coefficients ∗

Benharrat Beläıdi & Saada Hamouda

Abstract

We study the solutions of the differential equation

f (n) +An−1(z)f (n−1) + · · ·+A1(z)f ′ +A0(z)f = 0,

where the coefficients are entire functions. We find conditions on the
coefficients so that every solution that is not identically zero has infinite
order.

1 Introduction

For n ≥ 2, we consider the linear differential equation

f (n) +An−1(z)f (n−1) + · · ·+A1(z)f ′ +A0(z)f = 0 , (1.1)

where A0(z), . . . , An−1(z) are entire functions with A0(z) 6≡ 0. Let ρ(f) denote
the order of the growth of an entire function f as defined in [4]:

ρ(f) = lim sup
r→∞

log
(

log
(

max|z|=r |f(z)|
))

log r
.

The value T (r, f) = log(max|z|=r |f(z)|) is known as the Nevanlinna character-
istic of f [4]. It is well known that all solutions of (1.1) are entire functions and
when some of the coefficients of (1.1) are transcendental, (1.1) has at least one
solution with order ρ(f) =∞. The question which arises is:

What conditions on A0(z), . . . , An−1(z) will guarantee that every
solution f 6≡ 0 has infinite order?

In this paper we prove two results concerning this question.
When A0(z), . . . , An−1(z) are polynomials with A0(z) 6≡ 0, every solution of

(1.1) is an entire function with finite rational order; see for example [3], [5, pp.
199-209], [6, pp. 106-108], and [7, pp. 65-67].
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In the study of the differential equation

f ′′ +A(z)f ′ +B(z)f = 0 (1.2)

where A(z) and B(z) 6≡ 0 are entire functions, Gundersen proved the following
results.

Theorem 1.1 ([1, p. 418]) Let A(z) and B(z) 6≡ 0 be entire functions such
that for real constants α, β, θ1, θ2 with α > 0, β > 0, and θ1 < θ2, we have

|B(z)| ≥ exp{(1 + o(1))α|z|β} (1.3)

and
|A(z)| ≤ exp{o(1)|z|β} (1.4)

as z →∞ with θ1 ≤ arg z ≤ θ2. Then every solution f 6≡ 0 of (1.2) has infinite
order.

Theorem 1.2 ([1, p. 419]) Let {Φk} and {θk} be two finite collections of real
numbers satisfying Φ1 < θ1 < Φ2 < θ2 < · · · < Φn < θn < Φn+1, where
Φn+1 = Φ1 + 2π, and set

µ = max
1≤k≤n

(Φk+1 − θk). (1.5)

Suppose that A(z) and B(z) are entire functions such that for some constant
α ≥ 0,

|A(z)| = O(|z|α) (1.6)

as z → ∞ with Φk ≤ arg z ≤ θk for k = 1, . . . , n and where B(z) is tran-
scendental with ρ(B) < π

µ . Then every solution f 6≡ 0 of (1.2) has infinite
order.

2 Statement and proof of results

In this paper we prove the following two theorems:

Theorem 2.1 Let A0(z), . . . , An−1(z), A0(z) 6≡ 0 be entire functions such that
for real constants α, β, µ, θ1, θ2, where 0 ≤ β < α, µ > 0 and θ1 < θ2 we have

|A0(z)| ≥ eα|z|
µ

(2.1)

and
|Ak(z)| ≤ eβ|z|

µ

, k = 1, . . . , n− 1 (2.2)

as z →∞ with θ1 ≤ arg z ≤ θ2. Then every solution f 6≡ 0 of (1.1) has infinite
order.
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Theorem 2.2 Let {Φk} and {θk} be two finite collections of real numbers sat-
isfying Φ1 < θ1 < Φ2 < θ2 < · · · < Φm < θm < Φm+1 where Φm+1 = Φ1 + 2π,
and set

µ = max
1≤k≤m

(Φk+1 − θk). (2.3)

Suppose that A0(z), . . . , An−1(z) are entire functions such that for some constant
α ≥ 0,

|Aj(z)| = O(|z|α), j = 1, . . . , n− 1 (2.4)

as z → ∞ with Φk ≤ arg z ≤ θk for k = 1, . . . ,m and where A0(z) is tran-
scendental with ρ(A0) < π/µ. Then every solution f 6≡ 0 of (1.1) has infinite
order.

Next, we provide a lemma that is used in the proofs of our theorems.

Lemma 2.3 ([2, p. 89]) Let w be a transcendental entire function of finite
order ρ. Let Γ = {(k1, j1), (k2, j2), . . . , (km, jm)} denote a finite set of distinct
pairs of integers satisfying ki > ji ≥ 0 for i = 1, . . . ,m, and let ε > 0 be a given
constant. Then there exists a set E ⊂ [0, 2π) that has linear measure zero, such
that if ψ0 ∈ [0, 2π)−E, then there is a constant R0 = R0(ψ0) > 0 such that for
all z satisfying arg z = ψ0 and |z| ≥ R0 and for all (k, j) ∈ Γ, we have∣∣∣w(k)(z)

w(j)(z)

∣∣∣ ≤ |z|(k−j)(ρ−1+ε).

Proof of Theorem 2.1

Suppose that f 6≡ 0 is a solution of (1.1) with ρ(f) < ∞. Set δ = ρ(f). Then
from Lemma 1, there exists a real constant ψ0 where θ1 ≤ ψ0 ≤ θ2, such that∣∣f (k)(z)

f(z)

∣∣ = o(1)|z|k δ, k = 1, . . . , n (2.5)

as z →∞ with arg z = ψ0. Then from (2.5) and (1.1), we obtain that

|A0(z)| ≤ o(1)|z|δ|A1(z)|+ · · ·+ o(1)|z|(n−1) δ|An−1(z)|+ o(1)|z|n δ (2.6)

as z →∞ with arg z = ψ0. However this contradicts (2.1) and (2.2). Therefore,
every solution f 6≡ 0 of (1.1) has infinite order.

Next we give an example that illustrates Theorem 2.1.

Example 1. Consider the differential equation

f ′′ − (3 + 6ez)f ′′ + (2 + 6ez + 11e2z)f ′ − 6e3zf = 0 (2.7)

In this equation, for z = reiθ, r → +∞, π
6 ≤ θ ≤

π
4 we have

|A0(z)| = | − 6 e3z| = 6e3r cos θ > e3
√

2
2 r,

|A1(z)| = 2 + 6ez + 11e2z| ≤ 19e2r cos θ ≤ 19e
√

3 r < e2r

|A2(z)| = | − (3 + 6ez)| ≤ 9er cos θ ≤ 9e
√

3
2 r < e2r.
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As we see, conditions (2.1) and (2.2) of Theorem 2.1 are verified. The three
linearly independent functions f1(z) = ee

z

, f2(z) = e2ez , f3(z) = e3ez are
solutions of (2.7) with ρ(f1) = ρ(f2) = ρ(f3) =∞.

Next we give a generalization of Example 1.

Example 2. Consider the differential equation

f
(n)

+ Pn−1(ez)f
(n−1)

+ · · ·+ P1(ez)f ′ + βeαzf = 0 , (2.8)

where α ∈ R, α > 0, β ∈ C, |β| ≥ 1, and P1, . . . , Pn−1 are polynomials. If we
take the sector θ1 ≤ arg z ≤ θ2, θ1, θ2 ∈]0, π2 [ with θ1 near enough to θ2 such
that max1≤k≤n−1 deg(Pk) < α cos θ2

cos θ1
, then conditions (2.1) and (2.2) of Theorem

2.1 are satisfied as z → ∞ with θ1 ≤ arg z ≤ θ2. From Theorem 2.1, it follows
that every solution f 6≡ 0 of (2.8) has infinite order.

Proof of Theorem 2.2

Suppose that f 6≡ 0 is a solution of (1.1) where ρ(f) <∞ and we set β = ρ(f).
From Lemma 1, there exists a set E ⊂ [0, 2π) that has linear measure zero, such
that if ψ0 ∈ [Φk, θk)− E for some k, then

|f
(l)(z)
f(z)

| = O(|z|lβ), l = 1, . . . , n (2.9)

as z →∞ with arg z = ψ0. From (2.9) ,(2.4) and (1.1), we obtain that

|A0(z)| ≤ |f
(n)

f
|+ |An−1(z)||f

(n−1)

f
|+ · · ·+ |A1 (z)||f

/

f
| = O(|z|σ) (2.10)

as z → ∞ with arg z = ψ0, where σ = α + nβ. Let ε > 0 be a small constant
that satisfies ρ(A0) < π

µ+2ε (this is possible since ρ(A0) < π
µ ). By using the

Phragmén-Lindelöf theorem on (2.10), it can be deduced that for some integer
s > 0

|A0(z)| = O(|z|s) (2.11)

as z →∞ with Φk + ε ≤ arg z ≤ θk − ε for k = 1, . . . ,m.
Now for each k, we have from (2.3) that Φk+1 + ε− (θk − ε) ≤ µ+ 2ε, and

so ρ(A0) < π
Φk+1−θk+2ε . Hence using the Phragmén-Lindelöf theorem on (2.11)

we can deduce that |A0(z)| = O(|z|s) as z → ∞ in the whole complex plane.
This means that A0(z) is a polynomial which contradicts our hypothesis and
completes the proof of Theorem 2.2.

Next we give an example that illustrates Theorem 2.2.

Example 3. If A0(z) is transcendental with ρ(A0) < 2, then from Theorem
2.2, every solution f 6≡ 0 of the equation

f (n) + Pn−1(z)f (n−1) + · · ·+ P2(z)f
′′

+ (ez
3

+ ei z
3
)f ′ +A0(z)f = 0 ,

where Pn−1, . . . , P2 are polynomials, is of infinite order.
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