Orders of solutions of an n-th order linear differential equation with entire coefficients *

Benharrat Belaïdi \& Saada Hamouda

Abstract

We study the solutions of the differential equation $$
f^{(n)}+A_{n-1}(z) f^{(n-1)}+\cdots+A_{1}(z) f^{\prime}+A_{0}(z) f=0
$$ where the coefficients are entire functions. We find conditions on the coefficients so that every solution that is not identically zero has infinite order.

1 Introduction

For $n \geq 2$, we consider the linear differential equation

$$
\begin{equation*}
f^{(n)}+A_{n-1}(z) f^{(n-1)}+\cdots+A_{1}(z) f^{\prime}+A_{0}(z) f=0 \tag{1.1}
\end{equation*}
$$

where $A_{0}(z), \ldots, A_{n-1}(z)$ are entire functions with $A_{0}(z) \not \equiv 0$. Let $\rho(f)$ denote the order of the growth of an entire function f as defined in [4]:

$$
\rho(f)=\limsup _{r \rightarrow \infty} \frac{\log \left(\log \left(\max _{|z|=r}|f(z)|\right)\right)}{\log r} .
$$

The value $T(r, f)=\log \left(\max _{|z|=r}|f(z)|\right)$ is known as the Nevanlinna characteristic of $f[4]$. It is well known that all solutions of (1.1) are entire functions and when some of the coefficients of (1.1) are transcendental, (1.1) has at least one solution with order $\rho(f)=\infty$. The question which arises is:

What conditions on $A_{0}(z), \ldots, A_{n-1}(z)$ will guarantee that every solution $f \not \equiv 0$ has infinite order?

In this paper we prove two results concerning this question.
When $A_{0}(z), \ldots, A_{n-1}(z)$ are polynomials with $A_{0}(z) \not \equiv 0$, every solution of (1.1) is an entire function with finite rational order; see for example [3], [5, pp. 199-209], [6, pp. 106-108], and [7, pp. 65-67].

[^0]In the study of the differential equation

$$
\begin{equation*}
f^{\prime \prime}+A(z) f^{\prime}+B(z) f=0 \tag{1.2}
\end{equation*}
$$

where $A(z)$ and $B(z) \not \equiv 0$ are entire functions, Gundersen proved the following results.

Theorem 1.1 ($[\mathbf{1}, \mathbf{p} .418])$ Let $A(z)$ and $B(z) \not \equiv 0$ be entire functions such that for real constants $\alpha, \beta, \theta_{1}, \theta_{2}$ with $\alpha>0, \beta>0$, and $\theta_{1}<\theta_{2}$, we have

$$
\begin{equation*}
|B(z)| \geq \exp \left\{(1+o(1)) \alpha|z|^{\beta}\right\} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
|A(z)| \leq \exp \left\{o(1)|z|^{\beta}\right\} \tag{1.4}
\end{equation*}
$$

as $z \rightarrow \infty$ with $\theta_{1} \leq \arg z \leq \theta_{2}$. Then every solution $f \not \equiv 0$ of (1.2) has infinite order.

Theorem $1.2([\mathbf{1}, \mathbf{p} .419])$ Let $\left\{\Phi_{k}\right\}$ and $\left\{\theta_{k}\right\}$ be two finite collections of real numbers satisfying $\Phi_{1}<\theta_{1}<\Phi_{2}<\theta_{2}<\cdots<\Phi_{n}<\theta_{n}<\Phi_{n+1}$, where $\Phi_{n+1}=\Phi_{1}+2 \pi$, and set

$$
\begin{equation*}
\mu=\max _{1 \leq k \leq n}\left(\Phi_{k+1}-\theta_{k}\right) \tag{1.5}
\end{equation*}
$$

Suppose that $A(z)$ and $B(z)$ are entire functions such that for some constant $\alpha \geq 0$,

$$
\begin{equation*}
|A(z)|=O\left(|z|^{\alpha}\right) \tag{1.6}
\end{equation*}
$$

as $z \rightarrow \infty$ with $\Phi_{k} \leq \arg z \leq \theta_{k}$ for $k=1, \ldots, n$ and where $B(z)$ is transcendental with $\rho(B)<\frac{\pi}{\mu}$. Then every solution $f \not \equiv 0$ of (1.2) has infinite order.

2 Statement and proof of results

In this paper we prove the following two theorems:
Theorem 2.1 Let $A_{0}(z), \ldots, A_{n-1}(z), A_{0}(z) \not \equiv 0$ be entire functions such that for real constants $\alpha, \beta, \mu, \theta_{1}, \theta_{2}$, where $0 \leq \beta<\alpha, \mu>0$ and $\theta_{1}<\theta_{2}$ we have

$$
\begin{equation*}
\left|A_{0}(z)\right| \geq e^{\alpha|z|^{\mu}} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{k}(z)\right| \leq e^{\beta|z|^{\mu}}, \quad k=1, \ldots, n-1 \tag{2.2}
\end{equation*}
$$

as $z \rightarrow \infty$ with $\theta_{1} \leq \arg z \leq \theta_{2}$. Then every solution $f \not \equiv 0$ of (1.1) has infinite order.

Theorem 2.2 Let $\left\{\Phi_{k}\right\}$ and $\left\{\theta_{k}\right\}$ be two finite collections of real numbers satisfying $\Phi_{1}<\theta_{1}<\Phi_{2}<\theta_{2}<\cdots<\Phi_{m}<\theta_{m}<\Phi_{m+1}$ where $\Phi_{m+1}=\Phi_{1}+2 \pi$, and set

$$
\begin{equation*}
\mu=\max _{1 \leq k \leq m}\left(\Phi_{k+1}-\theta_{k}\right) \tag{2.3}
\end{equation*}
$$

Suppose that $A_{0}(z), \ldots, A_{n-1}(z)$ are entire functions such that for some constant $\alpha \geq 0$,

$$
\begin{equation*}
\left|A_{j}(z)\right|=O\left(|z|^{\alpha}\right), \quad j=1, \ldots, n-1 \tag{2.4}
\end{equation*}
$$

as $z \rightarrow \infty$ with $\Phi_{k} \leq \arg z \leq \theta_{k}$ for $k=1, \ldots, m$ and where $A_{0}(z)$ is transcendental with $\rho\left(A_{0}\right)<\pi / \mu$. Then every solution $f \not \equiv 0$ of (1.1) has infinite order.

Next, we provide a lemma that is used in the proofs of our theorems.
Lemma 2.3 ([2, p. 89]) Let w be a transcendental entire function of finite order ρ. Let $\Gamma=\left\{\left(k_{1}, j_{1}\right),\left(k_{2}, j_{2}\right), \ldots,\left(k_{m}, j_{m}\right)\right\}$ denote a finite set of distinct pairs of integers satisfying $k_{i}>j_{i} \geq 0$ for $i=1, \ldots, m$, and let $\varepsilon>0$ be a given constant. Then there exists a set $E \subset[0,2 \pi)$ that has linear measure zero, such that if $\psi_{0} \in[0,2 \pi)-E$, then there is a constant $R_{0}=R_{0}\left(\psi_{0}\right)>0$ such that for all z satisfying $\arg z=\psi_{0}$ and $|z| \geq R_{0}$ and for all $(k, j) \in \Gamma$, we have

$$
\left|\frac{w^{(k)}(z)}{w^{(j)}(z)}\right| \leq|z|^{(k-j)(\rho-1+\varepsilon)} .
$$

Proof of Theorem 2.1

Suppose that $f \not \equiv 0$ is a solution of (1.1) with $\rho(f)<\infty$. Set $\delta=\rho(f)$. Then from Lemma 1, there exists a real constant ψ_{0} where $\theta_{1} \leq \psi_{0} \leq \theta_{2}$, such that

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f(z)}\right|=o(1)|z|^{k \delta}, \quad k=1, \ldots, n \tag{2.5}
\end{equation*}
$$

as $z \rightarrow \infty$ with $\arg z=\psi_{0}$. Then from (2.5) and (1.1), we obtain that

$$
\begin{equation*}
\left|A_{0}(z)\right| \leq o(1)|z|^{\delta}\left|A_{1}(z)\right|+\cdots+o(1)|z|^{(n-1) \delta}\left|A_{n-1}(z)\right|+o(1)|z|^{n \delta} \tag{2.6}
\end{equation*}
$$

as $z \rightarrow \infty$ with $\arg z=\psi_{0}$. However this contradicts (2.1) and (2.2). Therefore, every solution $f \not \equiv 0$ of (1.1) has infinite order.

Next we give an example that illustrates Theorem 2.1.

Example 1. Consider the differential equation

$$
\begin{equation*}
f^{\prime \prime}-\left(3+6 e^{z}\right) f^{\prime \prime}+\left(2+6 e^{z}+11 e^{2 z}\right) f^{\prime}-6 e^{3 z} f=0 \tag{2.7}
\end{equation*}
$$

In this equation, for $z=r e^{i \theta}, r \rightarrow+\infty, \frac{\pi}{6} \leq \theta \leq \frac{\pi}{4}$ we have

$$
\begin{gathered}
\left|A_{0}(z)\right|=\left|-6 e^{3 z}\right|=6 e^{3 r \cos \theta}>e^{3 \frac{\sqrt{2}}{2} r}, \\
\left|A_{1}(z)\right|=2+6 e^{z}+11 e^{2 z} \mid \leq 19 e^{2 r \cos \theta} \leq 19 e^{\sqrt{3} r}<e^{2 r} \\
\left|A_{2}(z)\right|=\left|-\left(3+6 e^{z}\right)\right| \leq 9 e^{r \cos \theta} \leq 9 e^{\frac{\sqrt{3}}{2} r}<e^{2 r} .
\end{gathered}
$$

As we see, conditions (2.1) and (2.2) of Theorem 2.1 are verified. The three linearly independent functions $f_{1}(z)=e^{e^{z}}, f_{2}(z)=e^{2 e^{z}}, f_{3}(z)=e^{3 e^{z}}$ are solutions of (2.7) with $\rho\left(f_{1}\right)=\rho\left(f_{2}\right)=\rho\left(f_{3}\right)=\infty$.

Next we give a generalization of Example 1.
Example 2. Consider the differential equation

$$
\begin{equation*}
f^{(n)}+P_{n-1}\left(e^{z}\right) f^{(n-1)}+\cdots+P_{1}\left(e^{z}\right) f^{\prime}+\beta e^{\alpha z} f=0 \tag{2.8}
\end{equation*}
$$

where $\alpha \in \mathbb{R}, \alpha>0, \beta \in \mathbb{C},|\beta| \geq 1$, and P_{1}, \ldots, P_{n-1} are polynomials. If we take the sector $\left.\theta_{1} \leq \arg z \leq \theta_{2}, \theta_{1}, \theta_{2} \in\right] 0, \frac{\pi}{2}\left[\right.$ with θ_{1} near enough to θ_{2} such that $\max _{1 \leq k \leq n-1} \operatorname{deg}\left(P_{k}\right)<\alpha \frac{\cos \theta_{2}}{\cos \theta_{1}}$, then conditions (2.1) and (2.2) of Theorem 2.1 are satisfied as $z \rightarrow \infty$ with $\theta_{1} \leq \arg z \leq \theta_{2}$. From Theorem 2.1, it follows that every solution $f \not \equiv 0$ of (2.8) has infinite order.

Proof of Theorem 2.2

Suppose that $f \not \equiv 0$ is a solution of (1.1) where $\rho(f)<\infty$ and we set $\beta=\rho(f)$. From Lemma 1, there exists a set $E \subset[0,2 \pi)$ that has linear measure zero, such that if $\psi_{0} \in\left[\Phi_{k}, \theta_{k}\right)-E$ for some k, then

$$
\begin{equation*}
\left|\frac{f^{(l)}(z)}{f(z)}\right|=O\left(|z|^{l \beta}\right), \quad l=1, \ldots, n \tag{2.9}
\end{equation*}
$$

as $z \rightarrow \infty$ with $\arg z=\psi_{0}$. From (2.9),(2.4) and (1.1), we obtain that

$$
\begin{equation*}
\left|A_{0}(z)\right| \leq\left|\frac{f^{(n)}}{f}\right|+\left|A_{n-1}(z)\right|\left|\frac{f^{(n-1)}}{f}\right|+\cdots+\left|A_{1}(z)\right|\left|\frac{f^{\prime}}{f}\right|=O\left(|z|^{\sigma}\right) \tag{2.10}
\end{equation*}
$$

as $z \rightarrow \infty$ with $\arg z=\psi_{0}$, where $\sigma=\alpha+n \beta$. Let $\varepsilon>0$ be a small constant that satisfies $\rho\left(A_{0}\right)<\frac{\pi}{\mu+2 \varepsilon}$ (this is possible since $\left.\rho\left(A_{0}\right)<\frac{\pi}{\mu}\right)$. By using the Phragmén-Lindelöf theorem on (2.10), it can be deduced that for some integer $s>0$

$$
\begin{equation*}
\left|A_{0}(z)\right|=O\left(|z|^{s}\right) \tag{2.11}
\end{equation*}
$$

as $z \rightarrow \infty$ with $\Phi_{k}+\varepsilon \leq \arg z \leq \theta_{k}-\varepsilon$ for $k=1, \ldots, m$.
Now for each k, we have from (2.3) that $\Phi_{k+1}+\varepsilon-\left(\theta_{k}-\varepsilon\right) \leq \mu+2 \varepsilon$, and so $\rho\left(A_{0}\right)<\frac{\pi}{\Phi_{k+1}-\theta_{k}+2 \varepsilon}$. Hence using the Phragmén-Lindelöf theorem on (2.11) we can deduce that $\left|A_{0}(z)\right|=O\left(|z|^{s}\right)$ as $z \rightarrow \infty$ in the whole complex plane. This means that $A_{0}(z)$ is a polynomial which contradicts our hypothesis and completes the proof of Theorem 2.2.

Next we give an example that illustrates Theorem 2.2.
Example 3. If $A_{0}(z)$ is transcendental with $\rho\left(A_{0}\right)<2$, then from Theorem 2.2 , every solution $f \not \equiv 0$ of the equation

$$
f^{(n)}+P_{n-1}(z) f^{(n-1)}+\cdots+P_{2}(z) f^{\prime \prime}+\left(e^{z^{3}}+e^{i z^{3}}\right) f^{\prime}+A_{0}(z) f=0
$$

where P_{n-1}, \ldots, P_{2} are polynomials, is of infinite order.

Acknowledgement. The authors would like to thank the referee for his/her helpful remarks and suggestions.

References

[1] G. Gundersen, Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc. 305 (1988), pp. 415-429.
[2] G. Gundersen, Estimates for the logarithmic derivative of a meromorphic functions, plus similar estimates, J. London Math. Soc. (2) 37 (1988), pp. 88-104.
[3] G. Gundersen, M. Steinbart M., and S. Wang, The possible orders of solutions of linear differential equations with polynomial coefficients, Trans. Amer. Math. Soc. 350 (1998), pp. 1225-1247.
[4] W. K. Hayman W. K, Meromorphic functions, Clarendon Press, Oxford, 1964.
[5] G. Jank and L. Volkmann, Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser, Basel-Boston-Stuttgart, 1985.
[6] G. Valiron, Lectures on the general theory of integral functions, translated by E. F. Collingwood, Chelsea, New York, 1949.
[7] H. Wittich, Neuere Untersuchungen über eindeutige analytishe Funktionen, 2nd Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1968.

Benharrat Belaïdi (e-mail:belaidi.benharrat@caramail.com)
SaAdA HAmouda (e-mail: hamouda.saada@caramail.com)
Department of Mathematics, University of Mostaganem
B. P. 227 Mostaganem, Algeria

[^0]: *Mathematics Subject Classifications: 30D35, 34M10, 34C10, 34C11.
 Key words: Linear differential equations, entire functions, order of growth.
 (C)2001 Southwest Texas State University.

 Submitted July 23, 2001. Published September 17, 2001.

