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ON THE MULTIPLICITY OF SOLUTIONS FOR A FULLY
NONLINEAR EMDEN–FOWLER EQUATION

MARCO SQUASSINA

Abstract. We are concerned with the existence of two solutions for a fully
nonlinear Emden–Fowler type equation. One solution is obtained via local

minimization while the second solution follows by a mountain pass argument.
A non-existence result in strictly star-shaped domains is also proven.

1. Introduction

Let M be a C∞ compact connected manifold of dimension two and g a metric
onM. As known, the problem of finding a conformal metric g′ such that the scalar
curvature of (M, g′) is equal to a given function K(x), gives rise to the following
problem (scalar curvature problem, Nirenberg 1974)

−∆gu+Rgu = K(x)e2u , g′ = e2ug , (1.1)

where Rg denotes the curvature of M and

∆g =
n∑

i,j=1

1√
det(gij)

∂

∂xi

(√
det(gij)gij

∂

∂xj

)
is the Laplace–Beltrami operator. Problems like (1.1) are also involved in the study
of stellar structure and in nonlinear diffusion and heat transfer in chemical kinetic.

Starting from these geometrical and physical motivations, let us consider a
smooth bounded domain Ω in Rn with n > 2 and a possibly changing sign function
K in Lq(Ω) for some q > 1 with K > 0 a.e. in an open ball B of Ω. When n = 2,
the semilinear elliptic equation with exponential growth

−∆u = K(x) eu in Ω

u = 0 on ∂Ω,

has been studied in 1974 by Kazdan and Warner in [9] and in 1992 by Brézis and
Merle in [5]. In the case of the p−Laplacian problem (p > 1 and λ > 0)

−∆pu = λK(x)eu in Ω

u = 0 on ∂Ω,
(1.2)
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a complete picture has been given by Aguilar Crespo and Peral Alonso in 1996
in [1]. In particular, it was shown existence of solutions of (1.2) for λ small (one
solution for p < n and two solutions for p > n) and nonexistence for values of λ
sufficiently large. The case p < n was treated by a fixed point argument, while the
case p > n was investigated by classical critical point methods. (see also [3]). In
this note, we are concerned with the following more general problem at exponential
growth

−div (∇ξL(x, u,∇u)) +DsL(x, u,∇u) = λK(x)eu in Ω

u = 0 on ∂Ω.
(1.3)

For nonlinearities of power type problems like (1.3) have been studied in [2] and
recently in [10, 12] by techniques of non-smooth analysis. Analogously, in our case
the functional fλ : W 1,p

0 (Ω)→ R associated with (1.3)

fλ(u) =
∫
Ω

L(x, u,∇u) dx− λ
∫
Ω

K(x)eu dx , (1.4)

is well defined for p > n, smooth if p > n by the Morrey embedding

W 1,p
0 (Ω) ↪→ L∞(Ω),

but fails to be regular when p = n unless L does not depend on u or it is subjected
to some very restrictive growth conditions. Indeed, with natural growth conditions
(see (1.5) and (1.6) below), in general, being

∀s < +∞ : W 1,n
0 (Ω) ↪→ Ls(Ω) but W 1,n

0 (Ω) 6↪→ L∞(Ω) ,

if u ∈W 1,n
0 (Ω) it may happen that

DsL(x, u,∇u) 6∈W−1,n′(Ω) ,

so that fλ is not even locally Lipschitzian. Therefore we focus on the case p = n
and prove the existence of at least two nontrivial solutions in W 1,n

0 (Ω) of (1.3) for
λ positive and small. To solve (1.3) we look for critical points of (1.4) in the sense
of non-smooth critical point theory (see [6, 12] and references therein). The case
p > n may be treated in a similar fashion via classical critical point theory.

We assume that L : Ω×R×Rn → R is measurable in x for all (s, ξ) ∈ R×Rn and
of class C1 in (s, ξ) a.e. in Ω. Moreover L(x, s, ·) is strictly convex, n−homogeneous
with L(x, s, 0) = 0 and the following conditions hold:

(H1) there exist a1 ∈ L1(Ω), r > 1 and b0, b1, b2, ν > 0 such that:

ν|ξ|n 6 L(x, s, ξ) 6 b0|s|r + b0|ξ|n, (1.5)

|DsL(x, s, ξ)| 6 a1(x) + b1|ξ|n, |∇ξL(x, s, ξ)| 6 b2|ξ|n−1 (1.6)

a.e. in Ω and for all (s, ξ) ∈ R× Rn ;

(H2) there exist R > 0 and γ > 0 such that:

|s| > R =⇒ DsL(x, s, ξ)s > 0, (1.7)

γL(x, s, ξ)−DsL(x, s, ξ)s > ν|ξ|n (1.8)

a.e. in Ω and for all (s, ξ) ∈ R× Rn.
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The growth conditions of (H1) and the assumptions in (H2) are natural in the fully
nonlinear setting and were considered in [12] and in a stronger form in [2, 10] also.

Under the preceding assumptions, the following is our main result.
Theorem 1.1. There exists λ0 > 0 such that (1.3) admits at least two nontrivial
solutions in W 1,n

0 (Ω) for each λ < λ0.
This result extends [1, Theorem 4.1] to a more general class of nonlinear elliptic

equations. In particular, quasilinear n−Laplacian problems of the type

−div(a(u)|∇u|n−2∇u) + a′(u)|∇u|n = λK(x)eu in Ω

u = 0 on ∂Ω

admit a pair of solutions for λ small and a ∈ C1(R) satisfying suitable assumptions.

Remark 1.2. In general, problems (1.3) are expected to have no bounded solution
when K > 0 and λ > λ∗ for a suitable λ∗ > 0. See Theorem 5.8 of [1] where this is
showed for problem (1.2) with p = n and

λ∗ = max

{
λ1,

(
n− 1
e

)n−1

λ1

}
,

being λ1 the first eigenvalue of −∆n weighted by K. See also Proposition 4.1.

Remark 1.3. In general, problems (1.3) have no solution if Ω is an unbounded
domain of Rn. See Theorem 3.3 of [7] where this is proved for problems (1.2).

Remark 1.4. Condition K+ 6≡ 0 is crucial for the multiplicity result to hold. For
example for (1.2), if K < 0 one finds only one solution. See [1, Section 4].

In particular λ small, Ω bounded and K+ 6≡ 0 seem to be natural assumptions
in order to get the multiplicity result.
Remark 1.5. By the regularity result of Tolksdorf [13], each bounded weak solution
of problem (1.3) belongs to C1,α(Ω) for some α > 0.

2. The concrete Palais–Smale condition

Let us now recall two basic definitions of abstract critical point theory (see [6]).
Definition 2.1. Let (X, d) be a metric space, f : X → R a continuous function
and u ∈ X. We denote by |df |(u) the supremum of σ > 0 such that there exist
δ > 0 and a continuous map

H : Bδ(u)× [0, δ]→ X

such that for all (v, t) ∈ Bδ(u)× [0, δ]

d(H(v, t), v) 6 t, f(H(v, t)) 6 f(v)− σt.
We say that the extended real number |df |(u) is the weak slope of f at u.
Definition 2.2. Let (X, d) be a metric space, f : X → R a continuous function
and u ∈ X. We say that u is a critical point of f if |df |(u) = 0.
Definition 2.3. We say that f : X → R satisfies the Palais–Smale condition at
level c (in short (PS)c) if each sequence (uh) in X with f(uh)→ c and |df |(uh)→ 0
admits a convergent subsequence in X.

We now return to the concrete case and set f = fλ and X = W 1,n
0 (Ω) endowed

with the standard norm ‖u‖n1,n =
∫
Ω
|∇u|n dx.
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Definition 2.4. A sequence (uh) ⊂W 1,n
0 (Ω) is said to be a concrete Palais–Smale

sequence at level c ∈ R ((CPS)c−sequence, in short) for fλ, if fλ(uh)→ c,

−div (∇ξL(x, uh,∇uh)) +DsL(x, uh,∇uh) ∈W−1,n′(Ω)

eventually as h→ +∞ and

−div (∇ξL(x, uh,∇uh)) +DsL(x, uh,∇uh)− λK(x)euh → 0

strongly in W−1,n′(Ω). We say that fλ satisfies the concrete Palais–Smale condition
at level c ((CPS)c in short), if every (CPS)c−sequence for fλ admits a strongly
convergent subsequence.

Lemma 2.5. Let u ∈W 1,n
0 (Ω) be such that |dfλ|(u) < +∞. Then

−div (∇ξL(x, u,∇u)) +DsL(x, u,∇u)− λK(x)eu ∈W−1,n′(Ω)

and

‖−div (∇ξL(x, u,∇u)) +DsL(x, u,∇u)− λK(x)eu‖−1,n′ 6 |dfλ|(u).

In particular, if |dfλ|(u) = 0 then u solves (1.3) in the distributional space D ′(Ω).
For the proof of the above lemma, see [12, Theorem 2.3]. It is readily seen that

if fλ satisfies (CPS)c, then it satisfies (PS)c.
Let us now recall a very useful consequence of Brezis-Browder’s Theorem [4].

Proposition 2.6. Let u, v ∈W 1,n
0 (Ω) be such that DsL(x, u,∇u)v > 0 and assume

that w ∈W−1,n′(Ω) is defined by

∀ϕ ∈ C∞c (Ω) : 〈w,ϕ〉 =
∫
Ω

∇ξL(x, u,∇u) · ∇ϕdx+
∫
Ω

DsL(x, u,∇u)ϕdx.

Then DsL(x, u,∇u)v ∈ L1(Ω) and

〈w, v〉 =
∫
Ω

∇ξL(x, u,∇u) · ∇v dx+
∫
Ω

DsL(x, u,∇u)v dx.

For the proof of this proposition, see [12, Proposition 3.1].
The next result will provide compactness of concrete Palais–Smale sequences.

Lemma 2.7. Let (uh) be a bounded sequence in W 1,n
0 (Ω) and set

∀ϕ ∈ C∞c (Ω) : 〈wh, ϕ〉 =
∫
Ω

∇ξL(x, uh,∇uh) · ∇ϕdx+
∫
Ω

DsL(x, uh,∇uh)ϕdx.

If (wh) is strongly convergent to some w in W−1,n′(Ω), then (uh) admits a strongly
convergent subsequence in W 1,n

0 (Ω).
For the proof of this lemma, see [12, Theorem 3.4].

Let us prove that fλ satisfies the concrete Palais–Smale condition.
Theorem 2.8. fλ satisfies (CPS)c for each c ∈ R.

Proof. Let (uh) be a concrete Palais–Smale sequence for fλ at level c ∈ R. We shall
divide the proof into two steps:

I) Let us first show that (uh) is bounded in W 1,n
0 (Ω). Note that in view of (1.7),

by Proposition 2.6 one can take uh as test functions in f ′λ(uh). Therefore, since
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f ′λ(uh)(uh) = o(1) as h→ +∞, by (1.8) one obtains

fλ(uh) =fλ(uh)− 1
n
f ′λ(uh)(uh) + o(1)

=− 1
n

∫
Ω

DsL(x, uh,∇uh)uh dx+ λ

∫
Ω

K(x)euh
{uh
n
− 1
}
dx+ o(1)

>− γ

n

∫
Ω

L(x, uh,∇uh) dx+ λ

∫
Ω

K(x)euh
{uh
n
− 1
}
dx

+
ν

n

∫
Ω

|∇uh|n dx+ o(1)

=− γ

n

{
fλ(uh) + λ

∫
Ω

K(x)euh dx
}

+ λ

∫
Ω

K(x)euh
{uh
n
− 1
}
dx

+
ν

n

∫
Ω

|∇uh|n dx+ o(1)

as h→ +∞, which yields

(n+ γ)fλ(uh) > λ
∫
Ω

K(x)euh(uh − γ − n) dx+ ν

∫
Ω

|∇uh|n dx+ o(1)

as h→ +∞. Since

lim
ξ→−∞

eξ
{
ξ − γ − n

}
= 0−, lim

ξ→+∞
eξ
{
ξ − γ − n

}
= +∞ ,

if we set
C = −min

ξ∈R
eξ
{
ξ − γ − n

}
,

it results C > 0 and

(n+ γ)fλ(uh) > −λC‖K‖qL n(Ω)1/q′ + ν

∫
Ω

|∇uh|n dx+ o(1)

as h → +∞, where L n denotes the n−dimensional Lebesgue measure. Being
fλ(uh)→ c, we conclude that

ν

∫
Ω

|∇uh|n dx 6 (n+ γ)c+ λC‖K‖qL n(Ω)1/q′ + o(1)

as h→ +∞, which implies the boundedness of (uh) in W 1,n
0 (Ω).

II) By step I, up to a subsequence, one has uh ⇀ u in W 1,n
0 (Ω) for some u and

uh → u in Ls(Ω), 1 < s <∞. (2.1)

If we now fix η ∈W 1,n
0 (Ω) with ‖∇η‖n = 1, Hölder and Sobolev inequalities yield∣∣∣ ∫

Ω

K(x)(euh − eu)η dx
∣∣∣

6
∫
Ω

|K(x)|eu|euh−u − 1||η| dx

6
∫
Ω

|K(x)|eu|uh − u|e|uh−u||η| dx

6 ‖K‖q
(∫

Ω

eβ1u dx
)1/β1

(∫
Ω

eβ2|uh−u| dx
)1/β2

‖η‖β3‖uh − u‖β4

6 c‖K‖q
(∫

Ω

eβ1u dx
)1/β1

(∫
Ω

eβ2|uh−u| dx
)1/β2

‖uh − u‖β4

(2.2)



6 MARCO SQUASSINA EJDE–2001/63

with 1/q+ 1/β1 + 1/β2 + 1/β3 + 1/β4 = 1 and c > 0. Since by Trudinger inequality
there exist c1,n, c2,n > 0 so that:

∀β > 0, ∀w ∈W 1,n
0 (Ω) :

∫
Ω

eβ|w| dx 6 c1,nL
n(Ω)ec2,nβ

n‖∇w‖nn ,

the exponential terms in (2.2) are bounded by step I and the last term goes to zero
in view of (2.1). Thus,

sup
‖η‖1,n=1

∣∣∣ ∫
Ω

K(x)(euh − eu)η dx
∣∣∣ = o(1),

as h→ +∞, which shows that

K(x)euh → K(x)eu in W−1,n′(Ω).

Therefore, since we have that for all ϕ ∈ C∞c (Ω):∫
Ω

∇ξL(x, uh,∇uh) · ∇ϕdx+
∫
Ω

DsL(x, uh,∇uh)ϕdx

=
∫
Ω

K(x)euϕdx+ 〈wh, ϕ〉+ o(1) ,

with wh → 0 in W−1,n′(Ω) as h→ +∞, by Lemma 2.7 up to a further subsequence
(uh) strongly converges to u in W 1,n

0 (Ω). �

3. Mountain pass critical point and local minimum

Proposition 3.1. There exist λ0 > 0 and R2 > R1 > 0 such that

∀u ∈W 1,n
0 (Ω) : ‖u‖1,n = R1 =⇒ fλ(u) > fλ(0) (3.1)

∃w ∈W 1,n
0 (Ω) : ‖w‖1,n = R2 and fλ(w) < fλ(0) (3.2)

for each λ ∈]0, λ0[.

Proof. Note that by (1.5) and arguing as in [1], for each λ > 0 we have

fλ(u) =
∫
Ω

L(x, u,∇u) dx− λ
∫
Ω

K(x)eu dx > ϕa,b(‖∇u‖n) (3.3)

where ϕa,b : [0,+∞[→ R is such that

ϕa,b(‖∇u‖n) = ν‖∇u‖nn − λa‖K‖qeb‖∇u‖
n
n ,

for each u ∈W 1,n
0 (Ω), with

a = c
q−1
q

1 L n(Ω)
q−1
q , b = c2

(q − 1
q

)n−1

L n(Ω)
n−1
n , (3.4)

being c1, c2 > 0 such that∫
Ω

exp
{ c1|u|
‖∇u‖n

} n
n−1

dx 6 c2L
n(Ω) ,

(cf. [8, Theorem 7.15]). In particular, (3.1) follows arguing as in [1]. To prove (3.2),
fix φ ∈ C∞c (B) with φ > 0, where B ⊂ Ω is the set where K is positive. For each
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τ > 0 it results

fλ(τφ) =
∫
Ω

L(x, τφ, τ∇φ) dx− λ
∫
Ω

K(x)eτφ dx

6b0τ
r

∫
Ω

|φ|r dx+ b0

∫
Ω

τn|∇φ|n dx− λτ2 max{r,n}
∫
Ω

K+(x)φ2 max{r,n} dx

+ λ

∫
Ω

K−(x) dx.

Then, since K+ 6≡ 0, we deduce that fλ(τφ)→ −∞ as τ → +∞, thus yielding the
second assertion. �

We now come to the proof of the main result of the paper.
Proof of Theorem 1.1. If we set

Θ =
{
γ ∈ C([0, 1],W 1,n

0 (Ω)) : γ(0) = 0, γ(1) = w
}

for some w ∈W 1,n
0 (Ω) with fλ(w) < fλ(0) and

cλ = inf
γ∈Θ

max
t∈[0,1]

fλ(γ(t)),

by combining the non-smooth mountain pass Lemma [6] with Proposition 3.1 and
Theorem 2.8, we get a weak solution u1 ∈ W 1,n

0 (Ω) of (1.3) with fλ(u1) = cλ >
fλ(0). To get a second solution, argue on the truncated functional fτλ given by

fτλ (u) =
∫
Ω

L(x, u,∇u) dx− λ
∫
Ω

K(x)τ(‖u‖1,n)eu dx ,

where τ ∈ C∞(R) is nonincreasing and

τ(x) =

{
1 if x 6 R1

0 if x > R2

being R1 and R2 as in Proposition 3.1. Note that since for all u ∈W 1,n
0 (Ω):

‖u‖1,n > R2 =⇒ fτλ (u) > ν
∫
Ω

|∇u|n dx ,

there results

lim
‖u‖1,n→+∞

fτλ (u) = +∞.

Observe that by Lemma 2.8 and the definition of τ , fτλ satisfies the concrete Palais–
Smale condition at each level c′ such that

c′ < −λ
∫
Ω

K(x) dx.
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If we fix φ ∈ C∞c (B) (recall that K > 0 a.e. in B) with φ > 0, ‖φ‖1,n = 1 and
% < R1, then there exists c0 > 0 such that

fτλ (%φ) =fλ(%φ) =
∫
Ω

L(x, %φ, %∇φ) dx− λ
∫
Ω

K(x)e%φ dx

6c0%
max{r,n} − λ

∫
Ω

K+(x)(1 + %φ) dx+ λ

∫
Ω

K−(x) dx

=%
{
c0%

max{r,n}−1 − λ
∫
Ω

K+(x)φdx
}
− λ

∫
Ω

K+(x) dx

+ λ

∫
Ω

K−(x) dx < −λ
∫
Ω

K(x) dx

provided that % > 0 is sufficiently small. Then

c = inf
B
W

1,n
0

(0,R1)
fτλ < −λ

∫
Ω

K(x) dx.

Let us note that there exists a (CPS)c−sequence for fτλ in BW 1,n
0

(0, R1). Indeed,
since fτλ is bounded from below, we find a minimizing sequence (uh) for fτλ in
BW 1,n

0
(0, R1). Of course we have fτλ (uh)→ c. Moreover, if it was |dfτλ |(uh) 6→ 0, we

would find σ > 0 such that |dfτλ |(uh) > σ. Then by [6, Theorem 1.1.11] one would
get a continuous deformation

η : BW 1,n
0

(0, R1)× [0, δ]→ BW 1,n
0

(0, R1)

for some δ > 0 such that for all t ∈ [0, δ] and h ∈ N

fτλ (η(uh, t)) 6 fτλ (uh)− σt.

This yields the contradiction fτλ (η(uh, t)) < c for sufficiently large values of h. Thus
(uh) is a (CPS)c−sequence. Since fτλ satisfies (CPS)c, there exists u2 ∈ W 1,n

0 (Ω)
with u2 6≡ 0 such that uh → u2 in W 1,n

0 (Ω). This yields

fτλ (u2) = min
B
W

1,n
0

(0,R1)
fτλ < −λ

∫
Ω

K(x) dx.

Since fτλ ≡ fλ in a neighbourhood of u2, of course u2 solves problem (1.3) and
fλ(u2) < fλ(0). Moreover, being fλ(u1) > fλ(0), one obtains u2 6≡ u1. �

4. A non-existence result

Assume now that L does not depend on x, L(s, ξ) is of class C1 in R×Rn and,
additionally, that the vector valued function

∇ξL(s, ξ) =
( ∂L
∂ξ1

(s, ξ), · · · , ∂L
∂ξn

(s, ξ)
)

is of class C1 in R × Rn (see [11]). We recall that a smooth bounded domain
Ω ⊂ Rn is said to be strictly star–shaped with respect to the origin if x · ν > 0 for
a.e. x ∈ ∂Ω, where ν denotes the outer normal to ∂Ω.
Proposition 4.1. Assume that Ω is strictly star–shaped with respect to the origin,
DsL 6 0 and K is constant and positive. Then there exists λ∗ > 0 such that (1.3)
admits no solution u ∈ C2(Ω) ∩ C1(Ω) for each λ > λ∗.
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Proof. Assume by contradiction that (1.3) has a solution u ∈ C2(Ω) ∩ C1(Ω). By
applying the Pucci-Serrin identity [11, formula 5] to

F(u,∇u) = L(u,∇u)− λKeu,
with h(x) = x and a = 0, since L(s, ·) is n−homogeneous, we obtain

(n− 1)
∫
∂Ω

L(0,∇u)(x · ν) dH n−1 + λ

∫
∂Ω

K x · ν dH n−1

= λn

∫
Ω

Keu dx ,
(4.1)

where H n−1 denotes the Hausdorff measure. Integrating (1.3), since x · ν > 0 on
the boundary ∂Ω, by (1.5) and (1.6) we obtain∫
Ω

λKeu dx =
∫
Ω

−div (∇ξL(u,∇u)) dx+
∫
Ω

DsL(u,∇u) dx

6−
∫
∂Ω

∇ξL(0,∇u) · ν dH n−1

6
∫
∂Ω

|∇ξL(0,∇u)| dH n−1

6
(∫

∂Ω

|∇ξL(0,∇u)|n
′
(x · ν) dH n−1

)n−1
n
(∫

∂Ω

(x · ν)−(n−1) dH n−1
) 1
n

6c1,n
(∫

∂Ω

|∇u|n(x · ν) dH n−1
)n−1

n
(∫

∂Ω

(x · ν)−(n−1) dH n−1
) 1
n

6c2,n
(∫

∂Ω

L(0,∇u)(x · ν) dH n−1
)n−1

n
(∫

∂Ω

(x · ν)−(n−1) dH n−1
) 1
n

which implies (
λ

∫
Ω

Keu dx
) n
n−1
6 A

∫
∂Ω

L(0,∇u)(x · ν) dH n−1 ,

where we set

A = c
n/n−1
2,n

(∫
∂Ω

(x · ν)−(n−1) dH n−1
) 1
n−1

.

In particular, by (4.1) we obtain

n− 1
A

(
λ

∫
Ω

Keu dx
) n
n−1

+ λB − nλ
∫
Ω

Keu dx 6 0 ,

where B =
∫
∂Ω
K x · ν dH n−1. Since the map ϕ : [0,+∞[→ R given by

ϕ(x) =
n− 1
A

x
n
n−1 + λB − nx

achieves its absolute minimum at x0 = An−1 with ϕ(x0) = λB −An−1, we get

λ 6 cn2,n

∫
∂Ω

(x · ν)−(n−1) dH n−1∫
∂Ω
K x · ν dH n−1

.

In particular, by setting

λ∗ = cn2,n

∫
∂Ω

(x · ν)−(n−1) dH n−1∫
∂Ω
K x · ν dH n−1

,

the assertion follows. �
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Remark 4.2. For the lagrangian

L(x, s, ξ) =
1
n
|ξ|n,

it was shown in [7] by an approximation procedure that the non-existence of smooth
solutions (C2) implies the non-existence of bounded solutions.

Remark 4.3. By Proposition 4.1 assumption (1.7) seems to be natural in order to
get existence of solutions of (1.3).
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