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COMPACT ATTRACTORS FOR TIME-PERIODIC
AGE-STRUCTURED POPULATION MODELS

PIERRE MAGAL

Abstract. In this paper we investigate the existence of compact attractors
for time-periodic age-structured models. So doing we investigate the eventual

compactness of a class of abstract non-autonomous semiflow (non necessarily
periodic). We apply this result to non-autonomous age-structured models. In
the time periodic case, we obtain the existence of a periodic family of compact

subsets that is invariant by the semiflow, and attract the solutions of the
system.

1. Introduction

In this paper, we are interested in non-autonomous age-structured models. Usu-
ally this model takes the form

u(t)(0) =
∫ +∞

0

β(t, u(t))(a)u(t)(a)da

∂u

∂t
(t)(a) +

∂u

∂a
(t)(a) = −µu(t)(a) +M(t, u(t))u(t)(a)

u(0) = ϕ

with u ∈ C1([0, T ], L1(0,+∞;R)N ). We refer the reader to the books by Webb
[18], Metz and Dieckmann [9], and Iannelli [6], for a nice survey on nonlinear age-
structured population dynamic models. Here

u(t) =


u1(t)
u2(t)

...
uN (t)

 ,

where ui(t) represents ith class of the population. For example the population
can be divided into several species, and several patches (when there is a spatial
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structure). Moreover,

µu(t) =


µ1u1(t)
µ2u2(t)

...
µNuN (t)

 , β(t, u(t))u(t) =


∑N
j=1 β1j(t, u(t))uj(t)∑N
j=1 β2j(t, u(t))uj(t)

...∑N
j=1 βNj(t, u(t))uj(t)

 ,

where µi(a) represents the natural mortality of class i, βij(t, u(t))(a) represents the
fertility of class j into class i, and

M(t, u(t))u(t) =


∑N
j=1m1j(t, u(t))uj(t)∑N
j=1m2j(t, u(t))uj(t)

...∑N
j=1mNj(t, u(t))uj(t)


represents for the application to fisheries problems, intra and inter-specific compe-
tition, fisheries, and migrations. One can note that it is very natural to introduce
periodic births and periodic mortalities in fisheries problems. We refer to Pelletier
and Magal [12] for the example of a fishery problem where the time periodicity is
necessary for continuous time model.

In this paper we will consider an abstract formulation of that type of evolu-
tion problem. The results that we present here are in the line of Thieme’s work
[13, 16, 17, 15]. The main point here is to study (in abstract manner) the even-
tual compactness of the non-autonomous semiflow associated to this system. This
problem is studied in the book by Webb [18] in the autonomous case, and with
bounded mortality rates. In this paper, we obtain similar results to those in the
book by Webb [18], but by using integrated solutions of the problem (see section 2
for a precise definition). Also, the first part of the paper (i.e. sections 2, 3 and 4))
is strongly related with the paper by Thieme [13]. But the goal of this article is not
to show the existence, the uniqueness, and the positivity of the solutions. Our aim
is to show the existence of compact attractors for the time periodic age structured
population models.

We now present the plan of the paper. In section 2, we recall some results
originating from the work of Da Prato and Sinestrari [4], concerning existence of
integrated solutions. We also recall some results due to Arendt [1][2], Kellermann
and Hieber [7], Neubrander [10], Thieme [14], concerning integrated semigroup.
In section 3, we present some results based on the usual semi-linear approach.
We adapt results of books by Cazenave and Haraux [3], and Webb [18] to this
situation. In section 4, we study the time differentiability of the solutions. This
part is strongly related with Proposition 3.6 and Theorem 3.7 in the paper by
Thieme [13]. This part is based on the usual differentiability result that can be
found in the book by Pazy [11] (see Theorem 1.5 p.187). This result is used in
section 6 to prove the existence of an absorbing subset for the system. In section
5, we prove an eventual compactness result for a class of non-autonomous semiflow
which is applied in section 6. Finally in section 6, we give conditions for existence,
uniqueness, global existence, and eventual compactness of the nonlinear and non-
autonomous semiflow generated by the age-structured models. These conditions
are close to the conditions given by Webb in [18] for autonomous age-structured
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models. Finally, we prove the existence of a ”global attractor” for the system when
t→ β(t, .) and t→M(t, .) are periodic maps.

2. Preliminaries

We consider the non homogeneous Cauchy problem

du(t)
dt

= Au(t) + f(t), t > t0;

u(t0) = x0.
(2.1)

Assumption 2.1.

a) A : D(A) ⊂ X → X is a linear operator, and assume that there exist real
constants M ≥ 1, and ω ∈ R such that (ω,+∞) ⊂ ρ(A), and

‖(λId−A)−n‖ ≤ M

(λ− ω)n
, for n ∈ N \ {0} and lambda > ω .

b) x0 ∈ X0 = D(A).
c) f : [0,+∞)→ X is continuous.

In the sequel, a linear operator A : D(A) ⊂ X → X satisfying Assumption 2.1 a)
will be called a Hille-Yosida operator.

Definition 2.1. A continuous function u : [t0,+∞[→ X is called an integral solu-
tion to (2.1) if

u(t) = x0 +A

∫ t

t0

u(s)ds+
∫ t

t0

f(s)ds, for all t ≥ t0. (2.2)

Note that (2.2) implies that
∫ t
t0
u(s)ds ∈ D(A). The main result of this section

is as follows.

Theorem 2.2 ([4, Thm 8.1]). Let A : D(A) ⊂ X → X be a linear operator
satisfying Assumption 2.1 a), and x ∈ D(A). Let F (t) = F (0) +

∫ t
0
f(s)ds (for

0 ≤ t ≤ T ) for some Bochner-integrable function f : (0, T )→ X, and assume that

Ax+ F (0) ∈ D(A).

Then there exists a unique function U ∈ C1([0, T ], X) ∩ C([0, T ], D(A)), such that

U ′(t) = AU(t) + F (t), for all t ∈ [0, T ]

U(0) = x .

We now recall some result concerning integrated semigroups. We refer the reader
to Arendt [1, 2], Kellermann and Hieber [7], Neubrander [10], Thieme [14] for more
details.

Definition 2.3. A family of bounded linear operators S(t), t ≥ 0, on a Banach
space X is called an integrated semigroup if and only if

i) S(0) = 0
ii) S(t) is strongly continuous in t ≥ 0.
iii) S(r)S(t) =

∫ r
0

(S(τ + t)− S(τ))dτ = S(t)S(r) for all t, r ≥ 0.
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An integrated semigroup is non-degenerate if S(t)x = 0 for all t > 0 occurs only
for x = 0. The generator A of a non-degenerate integrated semigroup is given by
the requiring that, for x, y ∈ X,

x ∈ D(A), y = Ax⇔ S(t)x− tx =
∫ t

0

S(s)yds, ∀t ≥ 0.

The following theorem is obtained by combining Theorem 4.1 in Arendt [2],
Proposition 2.2, Theorem 2.4, and their proofs in Kellermann and Hieber [7]. This
theorem is taken from Thieme [16, thm. 6].
Theorem 2.4. The following three statements are equivalent for a linear closed
operator A in a Banach space X:

i) A is the generator of an integrated semigroup S that is locally Lipschitz
continuous in the sense that, for any b > 0, there exists a constant Λ > 0
such that

‖S(t)− S(r)‖ ≤ Λ|t− r|, for all 0 ≤ r, t ≤ b.
ii) A is the generator of an integrated semigroup S and there exist constants

M ≥ 1, ω ∈ R, such that

‖S(t)− S(r)‖ ≤M
∫ t

r

eωsds, for all 0 ≤ r ≤ t < +∞.

iii) There exist constants M ≥ 1, ω ∈ R, such that (ω,+∞) is contained in the
resolvent set of A and

‖(λ−A)−n‖ ≤ M

(λ− ω)n
, for n ∈ N \ {0}, and λ > ω.

Moreover, if one (and then all) of i), ii), iii) holds, D(A) coincides with those
x ∈ X for which S(t)x is continuously differentiable. The derivatives S′(t)x, t ≥
0, x ∈ D(A), provide bounded linear operators S′(t) from X0 = D(A) into itself
forming a C0-semigroup on X0 which is generated by A0 the part of A in X0. That
is the linear operator defined by

D(A0) = {x ∈ D(A) : Ax ∈ X0} and A0x = Ax for all x ∈ D(A0).

Finally S(t) maps X into X0 and

S′(r)S(t) = S(t+ r)− S(r), for all r, t ≥ 0.

In Kellermann and Hieber [7], a very short proof of Theorem 2.2 is given by
using integrated semigroups. One has

u(t) =T0(t− t0)x0 +
d

dt

∫ t

t0

S(t− s)f(s)ds

=T0(t− t0)x0 +
∫ t

t0

dS(t− s)f(s),
(2.3)

where S(t) is the integrated semigroup generated by A, and the last integral is a
Stieltjes integral. Now by setting

u(t) = U ′(t), x = 0, and F (t) = x0 +
∫ t

0

f(s)ds, (2.4)

one immediately deduces the existence of a solution of equation (2.2).
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Theorem 2.5 ([4]). Under Assumption 2.1, there exists a unique solution to (2.2)
with value in X0 = D(A). Moreover, u satisfies the estimate

‖u(t)‖ ≤Meω(t−t0)‖x0‖+
∫ t

t0

Meω(t−s)‖f(s)‖ds, for all t ≥ t0. (2.5)

Assume now that f(t) ≡ 0, then the family of operators T0(t) : X0 → X0, t ≥ 0,
defined by

T0(t)x0 = u(t), for all t ≥ 0,

is the C0-semigroup generated by A0 the part of A in X0. For the rest of this
article, we denote by T0(t) the semigroup generated by A0.

In the paper by Thieme [13] the following approximation formula is obtained.
Assume that u is a solution of (2.2), then one has

d

dt
(λId−A)−1u(t) = A0(λId−A)−1u(t) + (λId−A)−1f(t), (2.6)

so,

λ(λId−A)−1u(t) = T0(t)λ(λId−A)−1x0 +
∫ t

0

T0(t−s)λ(λId−A)−1f(s)ds, (2.7)

thus limλ→+∞
∫ t

0
T0(t − s)λ(λId − A)−1f(s)ds exists because the other terms in

equation (2.7) converge (since x0 and u(t) belong to X0). So, we have

u(t) = T0(t)x0 + lim
λ→+∞

∫ t

0

T0(t− s)λ(λId−A)−1f(s)ds. (2.8)

To conclude this section, we remark that Lemma 5.1 p.17 in Pazy [11] holds, even
when the domain of the generator is non-dense. More precisely, let |.| be the norm
defined by

|x| = lim
µ→+∞

‖x‖µ, (2.9)

where

‖x‖µ = sup
n≥0
‖µn(µId− (A− ωId))−nx‖, for all µ > 0.

Then one has the following two properties:

‖x‖ ≤ |x| ≤M‖x‖, ∀x ∈ X,
|λ(λId− (A− ωId))−1x| < |x|, ∀x ∈ X,∀λ > 0.

So, if u ∈ C([0, T ], X0) is a solution of

u(t) = x0 + (A− ωId)
∫ t

0

u(s)ds+
∫ t

0

f(s)ds, for all t ∈ [0, T ], (2.10)

then one has (by using (2.5) with M = 1, and ω = 0)

|u(t)| ≤ |x0|+
∫ t

0

|f(s)|ds, for all t ≥ 0. (2.11)
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3. Semi-linear problem

In this section, we first follow the approach of Cazenave and Haraux [3]. Here we
consider the case where the nonlinearity is Lipschitz on bounded sets. We consider
the following problem: u ∈ C([0, T ], X0) satisfies

u(t) = x0 +A

∫ t

0

u(s)ds+
∫ t

0

F (s, u(s))ds, for t ∈ [0, T ]. (3.1)

Assumption 3.1.

a) A : D(A) ⊂ X → X is a linear operator, and there exist real constant
M ≥ 1, and ω ∈ R such that (ω,+∞) ⊂ ρ(A), and

‖(λ−A)−n‖ ≤ M

(λ− ω)n
, for n ∈ N \ {0}, and λ > ω.

b) F : R+ ×X0 → X is continuous, and for all C > 0, there exists K(C) > 0,
such that

‖F (t, x)− F (t, y)‖ ≤ KF (C)‖x− y‖,∀x, y ∈ B(0, C) ∩X0,∀t ≥ 0,

where B(0, C) = {x ∈ X : ‖x‖ ≤ C}.
Problem (3.1) is equivalent to

u(t) = x0 + (A− ωId)
∫ t

0

u(s)ds+
∫ t

0

F (s, u(s)) + ωu(s)ds, ∀t ∈ [0, T ].

Then by using the equivalent norm |.| defined in (2.9), we can assume that M = 1,
ω = 0. Moreover, the map

G(t, x) = F (t, x) + ωx,∀x ∈ X0,∀t ≥ 0,

satisfies for all C > 0,

|G(t, x)−G(t, y)| ≤ (MKF (C) + ω)|x− y|,∀x, y ∈ B|.|(0, C) ∩X0,∀t ≥ 0,

where B|.|(0, C) = {x ∈ X : |x| ≤ C}. So without loss of generality, we can assume
that M = 1, and w = 0.
Lemma 3.1. Under Assumption 3.1, for each x0 ∈ X0, (3.1) admits at most one
solution u ∈ C([0, T ], X0).

Proof. Assume that (3.1) admits two solutions u, v ∈ C([0, T ], X0). We denote

C = sup
t∈[0,T ]

max(|u(t)|, |v(t)|).

Then one has

u(t)− v(t) = A

∫ t

0

u(s)− v(s)ds+
∫ t

0

F (s, u(s))− F (s, v(s))ds,∀t ∈ [0, T ],

thus

u(t)− v(t) =(A− ωId)
∫ t

0

u(s)− v(s)ds

+
∫ t

0

F (s, u(s))− F (s, v(s)) + ω(u(s)− v(s))ds, ∀t ∈ [0, T ].
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So from (2.11), we have (by using the equivalent norm |.| defined in (2.9))

|u(t)− v(t)| ≤
∫ t

0

|F (s, u(s))− F (s, v(s)) + ω(u(s)− v(s))|ds,∀t ∈ [0, T ],

thus

|u(t)− v(t)| ≤ (MKF (C) + ω)
∫ t

0

|u(s)− v(s)|ds,∀t ∈ [0, T ],

and by Gronwall’s lemma one deduces the result. �

Let CF = maxt∈[0,1/2] |F (t, 0)|, LC = 2C + CF for C ≥ 0, and

TC = [2KG(2C + CF ) + 2]−1 ∈]0, 1/2], for C ≥ 0,

where KG(C) = MKF (C) + ω for C ≥ 0. The following proposition is adapted
from Proposition 4.3.3 p.56 in the book by Cazenave and Haraux [3].
Proposition 3.2. Let C > 0, and let x0 ∈ X0 with |x0| ≤ C. Under Assumption
3.1, there exists a unique solution of problem (3.1), u ∈ C([0, TC ], X0).

Proof. Lemma 3.1 shows the uniqueness. Let x0 ∈ X0 with |x0| ≤ C, and let

E = {u ∈ C([0, TC ], X0) : |u(t)| ≤ LC ,∀t ∈ [0, TC ]}

be equipped with the metric

d(u, v) = max
t∈[0,TC ]

|u(t)− v(t)|,∀u, v ∈ E.

For u ∈ E, we define Φu ∈ C([0, TC ], X0), as the solution of the following equation,
∀t ∈ [0, TC ],

Φu(t) = (A− ωId)
∫ t

0

Φu(s)ds+ x0 +
∫ t

0

F (s, u(s)) + ωu(s)ds. (3.2)

We note that for all s ∈ [0, TC ], one has F (s, u(s)) = F (s, 0)+(F (s, u(s))−F (s, 0)),
thus

|F (s, u(s)) + ωu(s)| ≤ CF + LCKG(LC) ≤ (C + CF )/TC .
We deduce that

|Φu(t)| ≤|x0|+
∫ t

0

|F (s, u(s)) + ωu(s)|ds

≤C + (C + CF )t/TC = LC , ∀t ∈ [0, TC ].

So, Φ : E → E. Moreover, for all u, v ∈ E, one has

|Φu(t)− Φv(t)| ≤ KG(LC)
∫ t

0

|u(s)− v(s)|ds ≤ 1/2d(u, v),∀t ∈ [0, TC ].

So, Φ is a strict contraction and the theorem is proved. �

Theorem 3.3. Under Assumption 3.1. Let

T (x) = sup {T > 0 : ∃u ∈ C([0, T ], X0) solution of (3.1)} . (3.3)

Then

2KG(2|u(t)|+ sup
t∈[0,T (x)[

|F (t, 0)|) ≥ 1
T (x)− t

− 2,∀t ∈ [0, T (x)).

In particular, either T (x) = +∞, or T (x) < +∞ and limt↑T (x) |u(t)| = +∞.
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We refer the reader to Theorem 4.3.4 in the book by Cazenave and Haraux [3]
for the proof of the above theorem.

Proposition 3.4. Under Assumption 3.1, the following holds:

i) T : X → (0,+∞] is lower semi-continuous.
ii) If xn → x and if T < T (x), then un → u in C([0, T ], X0), where un and

u are the solution of (3.1) corresponding respectively to the initial value xn
and x.

We refer the reader to Proposition 4.3.7 p. 58 in the book by Cazenave and
Haraux [3] for the proof of this proposition. We summarize Propositions 3.2 and
3.4 in the following theorem.

Theorem 3.5. Under Assumption 3.1, the set
D = {(t, x) : x ∈ X0, 0 ≤ t < T (x)} is open in [0,+∞)×X0, and the map (t, x)→
ux(t) from D to X0 is continuous.

We are now interested in the positivity of the solutions, for which end we use
the conditions used by Webb in [19]. Let X+ ⊂ X be a cone of X. That is to say
that X+ is a closed convex subset of X, satisfying

i) λx ∈ X+,∀x ∈ X+ for all λ ≥ 0
ii) x ∈ X+ and −x ∈ X+ ⇒ x = 0.

It is clear that X0+ = X0 ∩ X+ is also a cone of X0. We recall that such a cone
defines a partial order on the Banach space X which is defined by

x ≥ y if and only if x− y ∈ X+.

Assumption 3.2.

c) (λId−A)−1X+ ⊂ X+ for λ > ω.
d) For all C > 0 and all T > 0, there exists γ(C, T ) > 0 such that

F (t, x) + ωx+ γ(C, T )x ∈ X+, ∀x ∈ B(0, C) ∩X0+,∀t ∈ [0, T ].

Proposition 3.6. Under Assumptions 3.1 and 3.2, for each x0 ∈ X0+, the corre-
sponding solution of equation (3.1) u satisfies

u(t) ∈ X0+, ∀t ∈ [0, T (x)).

Proof. For T ∈ [0, TC ], let

ET+ = {u ∈ C([0, T ], X0) : u(t) ∈ X0+, |u(t)| ≤ LC ,∀t ∈ [0, T ]} .

For t ∈ [0, T ], we define ΦTu (t) as the solution of the equation

ΦTu (t) =x0 + (A− (γ(LC , TC) + ω)Id)
∫ t

0

ΦTu (s)ds

+
∫ t

0

F (s, u(s)) + (γ(LC , TC) + ω)u(s)ds.
(3.4)
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Then we have to prove the positivity of Φu(t), for all t ∈ [0, T ]. But, we have

ΦTu (t) = lim
λ→+∞

λ(λId−A)−1ΦTu (t)

= lim
λ→+∞

λ(λId−A)−1e−(γ(LC ,TC)+ω)tT0(t)x0

+
∫ t

0

e−(γ(LC ,TC)+ω)(t−s)T0(t− s)λ

× (λId−A)−1[F (s, u(s)) + (γ(LC , TC) + ω)u(s)]ds,

so under Assumption 3.2 c) and d), we see that ∀u ∈ ET+, ∀λ > ω, ∀t ∈ [0, T ],

λ(λId−A)−1e−(γ(LC ,TC)+ω)tT0(t)x0 +
∫ t

0

e−(γ(LC ,TC)+ω)(t−s)T0(t− s)λ

×(λId−A)−1[F (s, u(s)) + (γ(LC , TC) + ω)u(s)]ds ∈ X0+.

So, by taking the limit as λ → +∞, and using the fact that X0+ is closed, we
deduce that

ΦTu (t) ∈ X0+, ∀t ∈ [0, T ].
So ΦT : ET+ → C([0, T ], X0+). Finally, for all T > 0 small enough, ΦT maps ET+
into itself, and ΦT is a strict contraction. The result follows. �

We recall, that a cone X+ of a Banach space (X, ‖.‖) is normal, if there exists a
norm ‖.‖1 equivalent to ‖.‖, which is monotone, that is to say

∀x, y ∈ X, 0 ≤ x ≤ y implies ‖x‖1 ≤ ‖y‖1.
Assumption 3.3.

e) There exist G1 : R+ ×X0 → X and G2 : R+ ×X0 → X continuous maps,
such that

F (t, x) = G1(t, x) +G2(t, x), ∀x ∈ X0,∀t ≥ 0,

where G1(t, x) ∈ −X+ for all x ∈ X0+, all t ≥ 0, and

‖G2(t, x)‖ ≤ kG2‖x‖, ∀x ∈ X0+,∀t ≥ 0.

f) X+ is a normal cone of (X, ‖.‖).
Proposition 3.7. Under Assumptions 3.1, 3.2, and 3.3, for each x0 ∈ X0+, there
exists a unique u ∈ C([0,+∞), X0+) solution of (3.1). Moreover, there exist C0 > 0
and C1 > 0, such that for all x0 ∈ X0+,

‖u(t)‖ ≤ ‖x0‖C0e
(C1kG2+ω)t, ∀t ≥ 0.

Proof. We start by letting |x|1 = limµ→+∞ ‖x‖1µ, where

‖x‖1µ = sup
n≥0
‖µn(µId− (A− ωId))−nx‖1, µ > 0.

Then since ‖.‖1 is monotone, and (λId−A)−1 is a positive operator for λ > ω, we
deduce that |.|1 is monotone, and satisfies

|µ(µId− (A− ωId))−1x|1 ≤ |x|1, for µ > 0, and x ∈ X.
Consider now

u(t) = x0 +A

∫ t

0

u(s)ds+
∫ t

0

F (s, u(s))ds, for t ∈ [0, T (x0)).
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Let T ∈ [0, T (x0)). Then by definition of T (x0), we have

Cu = sup
t∈[0,T ]

‖u(t)‖ < +∞.

By Assumption 3.2 d), there exists γ(Cu, T ) > 0 such that

F (t, x) + ωx+ γ(Cu, T )x ∈ X+,∀x ∈ B(0, Cu) ∩X0+, ∀t ∈ [0, T ].

We fix α > 0 such that α+ w > γ(Cu, T ). Then for all t ∈ [0, T ],

u(t) = x0 + (A− (ω + α)Id)
∫ t

0

u(s)ds+
∫ t

0

F (s, u(s)) + (ω + α)u(s)ds .

Therefore, for all t ∈ [0, T ],

|u(t)|1 ≤ e−αt|x0|1 +
∫ t

0

e−α(t−s)|F (s, u(s)) + (ω + α)u(s)|1ds .

Using the monotonicity of |.|1 one has

|u(t)|1 ≤ e−αt|x0|1 +
∫ t

0

e−α(t−s)|G2(s, u(s)) + (ω + α)u(s)|1ds .

Since the norm ‖.‖ and |.|1 are equivalent, we have for some constant C1 > 0,

|u(t)|1 ≤ e−αt|x0|1 +
∫ t

0

e−α(t−s)[C1kG2 + ω + α]|u(s)|1ds,∀t ∈ [0, T ].

By using Gronwall’s lemma we obtain

|u(t)|1 ≤ |x0|1e(C1kG2+ω)t, ∀t ∈ [0, T ].

Existence of a global solution follows from Theorem 3.3. �

4. Time differentiability of the solutions

In this section, we study only the time differentiability of the solutions. We refer
to Thieme [13] Theorem 3.4 and Corollary 3.5 for the differentiability with respect
to the space variable. Consider u ∈ C([0, T ], D(A)) a solution of

u(t) = x0 +A

∫ t

0

u(s)ds+
∫ t

0

F (s, u(s))ds, for t ∈ [0, T ], (4.1)

and assume that x0 ∈ D(A) and that F : [0, T ]×X0 → X is a C1 map. Then when
the domain is dense it is well known (see Pazy [11] Theorem 6.1.5 p. 187) that
t→ u(t) is continuously differentiable, u(t) ∈ D(A) for all t ∈ [0, T ], and satisfies

u′(t) = Au(t) + f(t),∀t ∈ [0, T ],

u(0) = x0.

We are now interested in the same type of result when the domain is non-dense.
We will use the following theorem.
Theorem 4.1 ([Thm. 6.3][4]). Let A : D(A)→ X be a Hille-Yosida operator. Let
f ∈ C([0, T ], X) and x0 ∈ X0. If u is a solution of

u(t) = x0 +A

∫ t

0

u(s)ds+
∫ t

0

f(s)ds,∀t ∈ [0, T ],
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belonging to C1([0, T ], X) or to C([0, T ], D(A)), then

u′(t) = Au(t) + f(t), ∀t ∈ [0, T ],

u(0) = x0.

with u ∈ C1([0, T ], X) ∩ C([0, T ], D(A)).

Assumption 4.1.

a) A : D(A) ⊂ X → X is a linear operator, and there exist two real constants
M ≥ 1, and ω ∈ R such that (ω,+∞) ⊂ ρ(A), and

‖(λ−A)−n‖ ≤ M

(λ− ω)n
, for n ∈ N \ {0}, and λ > ω.

b) F : [0, T ]×X0 → X is continuously differentiable from [0, T ]×X0 into X.
c) There exists u ∈ C([0, T ], D(A)) solution of

u(t) = x0 +A

∫ t

0

u(s)ds+
∫ t

0

F (s, u(s))ds, for all t ∈ [0, T ]. (4.2)

Theorem 4.2. Under Assumption 4.1, if in addition x0 ∈ D(A0) (i.e. x0 ∈ D(A)
and Ax0 ∈ D(A)) and F (0, x0) ∈ D(A); then there exists u ∈ C1([0, T ], X) ∩
C([0, T ], D(A)) satisfying

u′(t) = Au(t) + F (t, u(t)), ∀t ∈ [0, T ],

u(0) = x0.

Proof. We use the idea in the proof of Theorem 6.1.5 in Pazy [11]. Let w ∈
C([0, T ], D(A)) be a solution of the equation

w(t) =Ax0 + F (0, x0) +A

∫ t

0

w(s)ds

+
∫ t

0

∂

∂t
F (s, u(s)) +DxF (s, u(s))w(s)ds,∀t ∈ [0, T ].

(4.3)

It is clear that the solution w(t) exists and is uniquely determined, since u(t) exists
on [0, T ]. Let t ≥ 0. For h > 0, we have

u(t+ h)− u(t)
h

=
1
h
A[
∫ t+h

0

u(s)ds−
∫ t

0

u(s)ds] +
1
h

[
∫ t+h

0

F (s, u(s))ds−
∫ t

0

F (s, u(s))ds]

=A[
∫ t

0

u(s+ h)− u(s)
h

ds] +
1
h
A

∫ h

0

u(s)ds

+
∫ t

0

F (s+ h, u(s+ h))− F (s, u(s))
h

ds+
1
h

∫ h

0

F (s, u(s))ds .
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Therefore,

u(t+ h)− u(t)
h

− w(t)

=A
∫ t

0

u(s+ h)− u(s)
h

− w(s)ds

+
1
h
A

∫ h

0

u(s)ds+
1
h

∫ h

0

F (s, u(s))ds−Ax0 − F (0, x0)

+
∫ t

0

F (s+ h, u(s+ h))− F (s+ h, u(s))
h

−DxF (s, u(s))w(s)ds

+
∫ t

0

F (s+ h, u(s))− F (s, u(s))
h

− ∂

∂t
F (s, u(s))ds.

So by using (2.5), and Gronwall’s lemma, the right differentiability of u(t) will
follow if we prove that

lim
h↘0

1
h
A

∫ h

0

u(s)ds+
1
h

∫ h

0

F (s, u(s))ds+Ax0 + F (0, x0) = 0.

If t ≥ h > 0,

u(t− h)− u(t)
−h

=
1
−h

A[
∫ t−h

0

u(s)ds−
∫ t

h

u(s)ds]− 1
−h

A

∫ h

0

u(s)ds

+
1
−h

[
∫ t−h

0

F (s, u(s))ds−
∫ t

h

F (s, u(s))ds]− 1
−h

∫ h

0

F (s, u(s))ds

=A
∫ t

h

u(s− h)− u(s)
−h

ds+
∫ t

h

F (s− h, u(s− h))− F (s, u(s))
−h

ds

+
1
h
A

∫ h

0

u(s)ds+
1
h

∫ h

0

F (s, u(s))ds .

Therefore,

u(t− h)− u(t)
−h

− w(t) =A
∫ t

h

u(s− h)− u(s)
−h

ds−A
∫ t

h

w(s)ds−A
∫ h

0

w(s)ds

−Ax0 − F (0, x0) +
1
h
A

∫ h

0

u(s)ds+
1
h

∫ h

0

F (s, u(s))ds

+
∫ t

h

F (s− h, u(s− h))− F (s, u(s))
−h

ds

−
∫ t

0

∂

∂t
F (s, u(s)) +DxF (s, u(s))w(s)ds .
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We obtain

u(t− h)− u(t)
−h

− w(t)

=A
∫ t

h

u(s− h)− u(s)
−h

− w(s)ds−A
∫ h

0

w(s)ds

−Ax0 − F (0, x0) +
1
h
A

∫ h

0

u(s)ds+
1
h

∫ h

0

F (s, u(s))ds

+
∫ t

h

F (s− h, u(s− h))− F (s, u(s))
−h

ds

−
∫ t

h

∂

∂t
F (s− h, u(s− h)) +DxF (s− h, u(s− h))w(s− h)ds

−
∫ h

0

∂

∂t
F (s, u(s)) +DxF (s, u(s))w(s)ds.

Since by construction, we have

lim
h↘0

A

∫ h

0

w(s)ds = 0,

to prove the left differentiability of u it is sufficient to prove that

lim
h↘0

1
h
A

∫ h

0

u(s)ds+
1
h

∫ h

0

F (s, u(s))ds = Ax0 + F (0, x0).

Taking into account Theorem 4.1, Theorem 4.2 is a consequence of the following
lemma. �

Lemma 4.3. Under the assumptions of Theorem 4.2, one has

lim
h↘0

1
h
A

∫ h

0

u(s)ds+
1
h

∫ h

0

F (s, u(s))ds = Ax0 + F (0, x0).

Proof. This lemma will be proved if we show that

lim
h↘0

u(h)− x0

h
= Ax0 + F (0, x0).

We remark that u(t) = T0(t)x0 + v(t), where T0(t) is the semigroup generated by
A0 the part of A in D(A), and v ∈ C([0, T ], D(A)) is the solution of

v(t) = A

∫ t

0

v(s)ds+
∫ t

0

F (s, v(s) + T0(s)x0)ds .

Since x0 belongs to the domain of A0, it remains to prove that

lim
h↘0

v(h)
h

= F (0, x0).
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Clearly one has for λ > ω

v(t)− tλ(λId−A)−1F (0, x0)

=A[
∫ t

0

v(s)− sλ(λId−A)−1F (0, x0)ds]

+
t2

2
λA(λId−A)−1F (0, x0)− tλ(λId−A)−1F (0, x0) + tF (0, x0)

+
∫ t

0

F (s, v(s) + T0(s)x0)− F (0, x0)ds

Now using the fact that F (0, x0) ∈ D(A) one has

lim
λ→+∞

λ(λId−A)−1F (0, x0) = F (0, x0),

and using (2.5),

‖v(t)− tF (0, x0)‖ ≤‖v(t)− tλ(λId−A)−1F (0, x0)‖
+ t‖λ(λId−A)−1F (0, x0)− F (0, x0)‖

≤Meωt‖ t
2

2
λA(λId−A)−1F (0, x0)‖

+
∫ t

0

Meω(t−s)‖F (s, v(s) + T0(s)x0)− F (0, x0)‖ds

+ 2t‖λ(λId−A)−1F (0, x0)− F (0, x0)‖.

�

To extend the differentiability result to the case where F (0, x0) /∈ D(A), we
remark that, since u(t) ∈ D(A) for all t ∈ [0, T ], a necessary condition for the
differentiability is

Ax0 + F (0, x0) ∈ D(A).

In fact, this condition is also sufficient. Indeed, taking any bounded linear operator
B ∈ L(X), if u satisfies

u(t) = x0 +A

∫ t

0

u(s)ds+
∫ t

0

F (s, u(s))ds, ∀t ∈ [0, T ],

we have

u(t) = x0 + (A+B)
∫ t

0

u(s)ds+
∫ t

0

F (s, u(s))−Bu(s)ds, for t ∈ [0, T ].

So to prove the differentiability of u(t) it is sufficient to find B such that (A+B)x0 ∈
D(A). By taking B(ϕ) = −x∗(ϕ)Ax0, where x∗ ∈ X∗ is a continuous linear form,
with x∗(x0) = 1 if x0 6= 0, which is possible by the Hahn-Banach theorem. So we
have

x0 ∈ D(A) = D(A+B), and (A+B)x0 ∈ D(A) = D(A+B).

Moreover, assuming that Ax0 +F (0, x0) ∈ D(A), we obtain F (0, x0)−Bx0 ∈ D(A).
So, by using classical perturbation technics (see Pazy [11] Chapter 3), we deduce

that A+B is a Hille-Yosida operator, and we have the following theorem.
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Theorem 4.4. Under Assumption 4.1, if x0 ∈ D(A), and Ax0 +F (0, x0) ∈ D(A),
then there exists u ∈ C1([0, T ], X) ∩ C([0, T ], D(A)) satisfying

u′(t) = Au(t) + F (t, u(t)),∀t ∈ [0, T ],

u(0) = x0 .

We now consider the nonlinear generator,

ANϕ = Aϕ+ F (0, ϕ), for ϕ ∈ D(AN ) = D(A),

As in the linear case, one may define AN,0 the part AN in D(A) as follows

AN,0 = AN on D(AN,0) =
{
y ∈ D(A) : ANy ∈ D(A)

}
.

Of course, one may ask about the density of the domain D(AN,0) in D(A). This
property will be useful in section 6 to obtain a priori estimates (more precisely to
obtain the existence of an absorbing set).
Assumption 4.2.

d) F (0, .) : X0 → X is Lipschitz on bounded sets i.e. ∀C > 0, ∃K(C) > 0,
such that

‖F (0, x)− F (0, y)‖ ≤ K(C)‖x− y‖, ∀x, y ∈ B(0, C) ∩X0.

Lemma 4.5. Under Assumptions 4.1 a) and 4.2, D(AN,0) is dense in X0 = D(A).

Proof. Let y ∈ D(A) be fixed. Consider the following fixed point problem: xλ ∈
D(A) satisfying

(Id− λA− λF )xλ = y ⇔ xλ = (Id− λA)−1y + λ(Id− λA)−1F (0, xλ).

We denote

Φλ(x) = (Id− λA)−1y + λ(Id− λA)−1F (0, x),∀x ∈ X0.

Then r > 0 being fixed, one can prove that there exists η = η(r) > 0 (with
[η−1,+∞[⊂ ρ(A)) such that

Φλ(B(y, r)) ⊂ B(y, r),∀λ ∈ (0, η],

where B(y, r) denotes the ball of center y with radius r in X0. Moreover, one
can assume that Φλ is a strict contraction on B(y, r). So, ∀λ ∈]0, η], there exists
xλ ∈ B(y, r), such that Φλ(xλ) = xλ. Finally, by using the fact that y ∈ D(A), we
deduce

lim
λ↘0

(Id− λA)−1y = lim
λ↘0

λ−1(λ−1Id−A)−1y = y,

so limλ→+∞ xλ = y. �

5. Eventual compactness

In this section we are interested in the eventual compactness of the nonlinear
non-autonomous semiflow generated by

ux0(t) = x0 +A

∫ t

0

ux0(s)ds+
∫ t

0

F (s, ux0(s))ds, for t ∈ [0, T ]. (5.1)

We recall that a family of operators U(t, s) (with t ≥ s ≥ 0) is called a non-
autonomous semiflow (see Thieme [13]) if

U(t, r)U(r, s) = U(t, s) if t ≥ r ≥ s, and U(t, t) = Id.
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Here we are interested by the non-autonomous semiflow defined by

U(t, s)x0 = x0 +A

∫ t

s

U(l, s)x0dl +
∫ t

s

F (l, U(l, s)x0)dl, for t ≥ s,

and we want to investigate the eventual compactness of the family of nonlinear
operators {U(s+ t, s)}t≥0(i.e. the complete continuity of U(s+ t, s) for t ≥ 0 large
enough). In the sequel, we only consider the case where s = 0, the case s > 0 being
similar.

This problem is studied in the linear autonomous case by Thieme in [16], and
we refer to the paper by Webb [18] for the semi-linear case with dense domain.
This problem is also investigated in the book by Webb [19] for nonlinear age struc-
tured model with bounded mortality rate, in the autonomous case. Here, we follow
Webb’s approach in [19] , and we adapt his approach to the abstract problem.
Assumption 5.1.

a) A : D(A) ⊂ X → X is a Hille-Yosida operator.
b) F : [0, T ]×X0 → X is a continuous map, which satisfies

F (t, x) = F1(t, x) + F2(t, x),

where F1 : [0, T ] × X0 → X, and F2 : [0, T ] × X0 → X0 satisfy: ∀C > 0,
∃K(C) > 0, such that

‖Fi(t, x)− Fi(t, y)‖ ≤ K(C)‖x− y‖,∀x, y ∈ B(0, C) ∩X0,∀t ∈ [0, T ], i = 1, 2.

c) There exists a bounded set B ⊂ X0 such that, for each x0 ∈ B, there exists
a continuous solution ux0 : [0, T ]→ X0 of (5.1), and

sup
x0∈B

sup
t∈[0,T ]

‖ux0(t)‖ ≤ α0.

d) For each t ∈ [0, T ], ϕ→ F1(t, ϕ) is continuous and maps bounded sets into
relatively compact sets, and ∀C > 0, ∃k(C) > 0, such that

‖F1(t, x)− F1(l, x)‖ ≤ k(C)|t− l|, ∀x ∈ B(0, C) ∩X0, ∀t, l ∈ [0, T ].

e) There exists k = k(B) ≥ 0, such that

‖F1(t, ux0(t))− F1(l, ux0(l))‖ ≤ k|t− l|, ∀x0 ∈ B, ∀t, l ∈ [0, T ].

We now consider the system of equations

u1x0(t) = A

∫ t

0

u1x0(s)ds+
∫ t

0

F1(s, ux0(s))ds, for t ∈ [0, T ],

u2x0(t) = x0 +A

∫ t

0

u2x0(s)ds+
∫ t

0

F2(s, ux0(s))ds, for t ∈ [0, T ].

Then the solution of the previous system clearly exists, and by uniqueness
of the solution of the problem

v(t) = x0 +A

∫ t

0

v(s)ds+
∫ t

0

F (s, ux0(s))ds, for all t ∈ [0, T ],

we have

ux0(t) = u1x0
(t) + u2x0

(t), for all t ∈ [0, T ].

Theorem 5.1. Under Assumption 5.1, the set {u1x0(t) : t ∈ [0, T ], x0 ∈ B} has
compact closure.
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Proof. For each x0 ∈ B, we denote vn,x0 ∈ C([0, T ], X0) the solution of the problem

vn,x0(t) = A

∫ t

0

vn,x0(s)ds+
∫ t

0

ρn ∗ F̃1(., ux0(.))(s)ds,∀t ∈ [0, T ],

where ρn : R→ R+ is a mollifier, with support in [− 1
n ,

1
n ],

F̃1(t, ux0(t)) =


F1(0, ux0(0)), if t ≤ 0,
F1(t, ux0(t)), if 0 ≤ t ≤ T,
F1(T, ux0(T )), if t ≥ T,

ρn ∗ F̃1(., ux0(.))(t) =
∫ +∞

−∞
ρn(θ)F̃1(t− θ, ux0(t− θ))dθ.

On the other hand, we know (see Thieme [13]) that

vn,x0(t) =
∫ t

0

dS(s)ρn ∗ F̃1(., ux0(.))(t− s),

where S(t) denotes the integrated semigroup generated by A. We then have,

vn,x0(t) =S(t)[ρn ∗ F̃1(., ux0(.))(0)]− S(0)[ρn ∗ F̃1(., ux0(.))(t)]

+
∫ t

0

S(s)ρ′n ∗ F̃1(., ux0(.))(t− s)ds .

Since S(0)x = 0, for all x ∈ X,

vn,x0(t) = S(t)[ρn ∗ F̃1(., ux0(.))(0)] +
∫ t

0

S(s)ρ′n ∗ F̃1(., ux0(.))(t− s)ds .

By using Assumption 5.1 d), one deduces that F1([0, T ]× (B(0, α0) ∩X0)) is com-
pact, and Mazur’s theorem conv(F1([0, T ]× (B(0, α0) ∩X0))) is compact. Indeed,
let k > 0 be fixed such that

‖F1(t, x)− F1(r, x)‖ ≤ k|t− r|,∀x ∈ B(0, α0) ∩X0,∀t, r ∈ [0, T ].

For each n ∈ N \ {0}, let tni = i
nT for i = 0, . . . , n. Then for i = 0, 1, . . . , n− 1,

‖F1(tni , x)− F1(t, x)‖ ≤ kT/n, ∀t ∈ [tni , t
n
i+1].

Let ε > 0 and n ∈ N \ {0} be such that kT/n ≤ ε/2. As F1(tni , B(0, α0) ∩X0) is
relatively compact, so there exists

{
xi1, x

i
2, . . . , x

i
k(i)

}
⊂ B, such that for all x ∈ B,

there exists j ∈ {1, 2, . . . , k(i)}, satisfying

‖F1(tni , x
i
j)− F1(tni , x)‖ ≤ ε

2
.

We have

F1([0, T ]× (B(0, α0) ∩X0)) ⊂ ∪i=1,...,n j=1,...,k(i)B(xij , ε),

and the compactness of F1([0, T ]× (B(0, α0) ∩X0)) follows. From Theorem 2.4,
we know that S(t) is locally Lipschitz, so by using the same argument as above, we
deduce that

∪t∈[0,T ] ∪x0∈B S(t)[ρn ∗ F̃1(., ux0(.))(0)]

is relatively compact, and

∪t∈[0,T ] s∈[0,T ] ∪x0∈B S(t)ρ′n ∗ F̃1(., ux0(.))(s)
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is also relatively compact. Thus for each n ∈ N\{0}, there exists a compact subset
Cn ⊂ X0, such that

vn,x0(t) ∈ Cn,∀x0 ∈ B,∀t ∈ [0, T ].

To complete the proof, it remains to prove the uniform convergence of vn,x0(t) to
u1,x0(t). That is to say ∀ε > 0,∃n0 ∈ N \ {0}, such that

‖u1,x0(t)− vn,x0(t)‖ ≤ ε,∀x0 ∈ B,∀t ∈ [0, T ],∀n ≥ n0.

We have ∀t ∈ [0, T ],

u1,x0(t)− vn,x0(t)

= A

∫ t

0

u1,x0(s)− vn,x0(s)ds+
∫ t

0

F1(s, ux0(s))− ρn ∗ F̃1(., ux0(.))(s)ds,

so that

‖u1,x0(t)− vn,x0(t)‖ ≤M
∫ t

0

eω(t−s)‖F1(s, ux0(s))− ρn ∗ F̃1(., ux0(.))(s)‖ds.

Then ∀s ∈ [0, T ],

F1(s, ux0(s))− ρn ∗ F̃1(., ux0(.))(s)

= F1(s, ux0(s))−
∫ +∞

−∞
ρn(θ)F̃1(s− θ, ux0(s− θ))dθ

=
∫ +∞

−∞
ρn(θ)F̃1(s, ux0(s))− F̃1(s− θ, ux0(s− θ))dθ .

So by using Assumption 5.1 e), one has

‖F1(s, ux0(s))− ρn ∗ F̃1(., ux0(.))(s)‖ ≤ k
∫ +∞

−∞
ρn(θ)|θ|dθ ≤ k

n
,

and we have

‖u1,x0(t)− vn,x0(t)‖ ≤MeωTT
k

n
,∀x0 ∈ B,∀t ∈ [0, T ],∀n ≥ 1.

�

Assumption 5.2.
f) Let (Z, ‖.‖Z) be a Banach space, let H : Z × X0 → X0 be a continuous

bilinear map, and let be a Lipschitz continuous map G : R+ × X0 → Z
which maps bounded sets into relatively compact sets. We assume that

F2(t, x) = H(G(t, x), x),∀x ∈ X0,∀t ≥ 0.

g) Let wx0 ∈ C([0, T ], X0) be the solution of

wx0(t) = T0(t)x0 +
∫ t

0

T0(t− s)H(G(s, ux0(s)), wx0(s))ds,∀x0 ∈ B,∀t ∈ [0, T ].

We assume that there exists T ′, 0 < T ′ ≤ T , such that

wx0(t) = 0,∀x0 ∈ B, ∀t ≥ T ′.
The following theorem gives the eventual compactness of the non-autonomous semi-
flow.
Theorem 5.2. Under Assumptions 5.1-5.2, the set {ux0(t) : t ∈ [T ′, T ], x0 ∈ B}
has compact closure.
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Proof. By taking into account Theorem 5.1, it remains to investigate the eventual
compactness of the second component u2x0(t). We have

u2x0(t) = T0(t)x0 + Lx0(u2x0(.))(t) + Lx0(u1x0(.))(t),∀t ∈ [0, T ],

where

Lx0(ψ(.))(t) =
∫ t

0

T0(t− s)H(G(s, ux0(s)), ψ(s))ds,∀t ∈ [0, T ].

As an immediate consequence one has

u2x0(t) =
∞∑
k=0

Lkx0
(T0(.)x0)(t) +

∞∑
k=1

Lkx0
(u1x0(.))(t), ,∀t ∈ [0, T ],

thus

u2x0(t) = wx0(t) +
∞∑
k=1

Lkx0
(u1x0(.))(t), ,∀t ∈ [0, T ],

where wx0(t) is the continuous solution of

wx0(t) = T0(t)x0 +
∫ t

0

T0(t− s)H(G(s, ux0(s)), wx0(s))ds,∀t ∈ [0, T ].

By Assumption 5.2 g), one deduces that

u2x0(t) =
∞∑
k=1

Lkx0
(u1x0(.))(t),∀t ∈ [T ′, T ] .

So for each integer m ≥ 1,

u2x0(t) =
m∑
k=1

Lkx0
(u1x0(.))(t) +

∞∑
k=m+1

Lkx0
(u1x0(.))(t),∀t ∈ [T ′, T ].

We recall that

Lx0(u1x0(.))(t) =
∫ t

0

T0(t− s)H(G(s, ux0(s)), u1x0(s))ds,∀t ∈ [0, T ].

Moreover, by using Assumption 5.2 f), and Theorem 5.1, one deduces that

M0
def= {H(G(t, ux0(t)), u1x0(t)) : x0 ∈ B, t ∈ [0, T ]}

is relatively compact. By compactness of [0, T ]×M0, and by continuity of (t, x)→
T0(t)x, one deduces that

M1
def= {T0(t)x : x ∈M0, t ∈ [0, T ]}

is also relatively compact. Therefore,

Lx0(u1x0(.))(t) ∈ conv(M1) def= E0, ∀t ∈ [0, T ],

and by Mazur’s theorem E0 is compact. By using induction arguments we deduce
that for each m ≥ 1, there exists a compact subset Em ⊂ X0, such that

m∑
k=1

Lkx0
(u1x0(.))(t) ∈ Em, ∀t ∈ [0, T ].

Moreover, by using Assumption 5.1 c), we know that there exists a constant C > 0,
such that

‖Lkx0
(u1x0(.))(t)‖ ≤ α0e

ωTCk
T k

k!
,
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where C = M‖H‖L(Z×X0,X0)[‖G(0, 0)‖ + ‖G‖Lip[α0 + T ]], α0 > 0 is the constant
introduced in Assumption 5.1 c), and where R × X0 is endowed with the norm
‖(t, x)‖ = |t|+ ‖x‖. So, we deduce that ∀t ∈ [0, T ],

‖
∞∑

k=m+1

Lkx0
(u1x0(.))(t)‖ ≤α0e

ωT
∞∑

k=m+1

(CT )k

k!

≤α0e
ωT (eCT −

m∑
k=0

(CT )k

k!
) def= γm → 0

as m → +∞. Let E = ∪t∈[T ′,T ] x0∈B {u2x0(t)}. Then for all x ∈ E there exists
y ∈ Em such that ‖x − y‖ ≤ γm. Let ε > 0, and let be m > 0 such that γm ≤ ε

2 .
Since Em is compact we can find a finite sequence {yj}j=1,...,p such that

Em ⊂ ∪j=1,...,pB(yj ,
ε

2
),

and since γm ≤ ε
2 , we also have E ⊂ ∪j=1,...,pB(yj , ε). So E is relatively compact.

�

We are now in position to investigate compact global attractors for periodic
non-autonomous semiflow generated by the Cauchy problem

dU(t, s)x0

dt
= AU(t, s)x0 + F (t, U(t, s)x0), for t ≥ s,

U(s, s)x0 = x0,

where F is time periodic.
Assumption 5.3.

a) A : D(A) ⊂ X → X is a Hille-Yosida operator.
b) F : [0,+∞)×X0 → X is a continuous map, which satisfies

F (t, x) = F1(t, x) + F2(t, x),

where F1 : [0,+∞) × X0 → X, and F2 : [0,+∞) × X0 → X0 satisfying:
∀C > 0, ∃K(C) > 0, such that

‖Fi(t, x)− Fi(t, y)‖ ≤ K(C)‖x− y‖,∀x, y ∈ B(0, C) ∩X0,∀t ≥ 0, i = 1, 2.

c) There exists a closed convex subset E0 ⊂ X0 such that, for each s ≥ 0, and
each x0 ∈ E0 there exists a continuous solution U(., s)x0 : [s,+∞) → X0

of

U(t, s)x0 = x0 +A

∫ t

s

U(l, s)x0dl +
∫ t

s

F (l, U(l, s)x0)dl, ∀t ≥ s,

U(t, s)E0 ⊂ E0,∀t ≥ s ≥ 0,

and for each s ≥ 0, each T ≥ 0, and each bounded subset B ⊂ E0, the set

{U(t+ s, s)x0 : 0 ≤ t ≤ T, x0 ∈ B} is bounded.

d) For each t ≥ 0, ϕ → F1(t, ϕ) is continuous and maps bounded sets into
relatively compact sets, and for each C > 0, for each T ≥ 0, there exists
k = k(C, T ) > 0, such that

‖F1(t, x)− F1(l, x)‖ ≤ k|t− l|,∀x ∈ B(0, C) ∩X0,∀t, l ∈ [0, T ].
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e) For each bounded subset B ⊂ E0, for each s ≥ 0, and for each T ≥ s, there
exists k = k(B, s, T ) ≥ 0, such that

‖F1(t, U(t, s)x0)− F1(l, U(l, s)x0)‖ ≤ k|t− l|,∀x0 ∈ B,∀t, l ∈ [s, T ].

f) Let (Z, ‖.‖Z) be a Banach space, let H : Z × X0 → X0 be a continuous
bilinear map, and let be a Lipschitz continuous map G : R+ × X0 → Z
which maps bounded sets into relatively compact sets. We assume that

F2(t, x) = H(G(t, x), x),∀x ∈ X0,∀t ≥ 0.

g) For each s ≥ 0, and for each x0 ∈ E0, let wx0(., s) ∈ C([s,+∞), X0) be the
solution of

wx0(t, s) = T0(t− s)x0 +
∫ t

s

T0(t− l)H(G(l, U(l, s)x0), wx0(l, s))dl, ∀t ≥ s.

We assume that there exists T ′ > 0, such that

wx0(t, s) = 0,∀x0 ∈ E0,∀t ≥ T ′ + s.

h) There exists ω > 0 such that

F (t+ ω, x) = F (t, x),∀t ≥ 0,∀x ∈ X0.

i) There exists a closed bounded subset E1 ⊂ E0 such that for each s ≥ 0, for
each bounded subset B ⊂ E0, there exists t0 = t0(B, s) ≥ s such that

U(t, s)B ⊂ E1,∀t ≥ t0.

In section 6, we will verify Assumption 5.3 for the age-structured model
with E0 = X0+, and E1 = B(0,M) ∩ X0+ for some M > 0. But it is
possible to consider different situations.

The following theorem describes the global attractor for a periodic non-autonomous
semiflow. The compactness of A and its attractor properties have already been
proved by Zhao [20] under more general assumptions. Zhao’s proof also contains
vi), but not iii).
Theorem 5.3. Under Assumption 5.3, the non-autonomous semiflow U(t, s) re-
stricted to E0 is ω-periodic, that is to say that

U(t+ ω, s+ ω)x0 = U(t, s)x0, for all x0 ∈ E0, for all t ≥ s ≥ 0.

Moreover, there exists a family {At}t≥0 of subsets of E0, satisfying:

i) At = At+ω for all t ≥ 0.
ii) For all t ≥ 0, At is compact and connected.
iii) For all t ≥ s ≥ 0, U(t, s)As = At.
iv) A = ∪0≤t≤ωAt is compact.
v) The map t→ At is continuous with respect to the Hausdorff metric, that is

to say that h(At, At0)→ 0, as t→ t0, where

h(A,B) = max(dist(A,B),dist(B,A)),

with dist(A,B) = supx∈A dist(x,B), and dist(x,B) = inf{‖x−y‖ : y ∈ B}.
vi) For each bounded set B ⊂ E0, and for each s ≥ 0,

lim
t→+∞

dist(U(t, s)B,At) = 0.
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Proof. One can first note that under Assumption 5.3 a)-g), Assumptions 5.1 and
5.2 are satisfied for any bounded set B ⊂ E0 and for any T ≥ T ′. So Theorem 5.2
implies that for each s ≥ 0, and for each T ≥ T ′

{U(t+ s, s)x0 : t ∈ [T ′, T ], x0 ∈ B} has compact closure.

The periodicity of U(t, s) is immediate. Let us denote for each t ≥ 0, the map
Tt : E0 → E0, defined by

Tt(x) = U(t+ ω, t)x,∀x ∈ E0.

From Assumption 5.3 i), it is not difficult to see that E1 is an absorbing set for Tt,
that is to say that for each bounded set B ⊂ E0, there exists an integer k0 ∈ N,
such that

T kt (B) ⊂ E1,∀k ≥ k0.

Moreover, from Theorem 3.5 and Theorem 5.2 we know that for all m ∈ N, such
that mω ≥ T ′, Tmt is continuous and maps bounded sets into relatively compact
sets. Thus from Theorem 2.4.2 p.17 in the book by Hale [5], we deduce that for
each t ≥ 0, there exists At ⊂ E0 a global attractor for Tt. Namely i) At is compact;
ii) TtAt = At; and iii) for every bounded subset B ⊂ E0,

lim
m→+∞

dist(Tmt (B), At) = 0. (5.2)

Furthermore, since E0 is closed and convex, we deduce that conv(At) ⊂ E0. More-
over by Mazur’s theorem conv(At) is compact, so At attracts conv(At) with respect
to the map Tt. By applying the method of the proof of Lemma 2.4.1 p.17 in the
book by Hale [5], we deduce that At is connected. We now prove that

U(t, s)As = At,∀t ≥ s ≥ 0.

Let t ≥ s ≥ 0 be fixed, and let us denote

Bt = U(t, s)As.

Then

TtBt =U(t+ ω, t)U(t, s)As = U(t+ ω, s+ ω)U(s+ ω, s)As
=U(t, s)TsAs = U(t, s)As = Bt.

So Bt is compact and invariant by Tt. We deduce from (5.2) that Bt ⊂ At. Moreover
if k ∈ N is such that s+ kω > t, and m ≥ k

At = Tmt (At) = U(t+mω, t)At
= U(t+mω, s+ kω)U(s+ kω, t)At
= U(t+mω, s+mω)U(s+mω, s+ kω)U(s+ kω, t)At

= U(t+mω, s+mω)Tm−ks U(s+ kω, t)At

= U(t, s)Tm−ks U(s+ kω, t)At.

So by using again (6.2), and by taking the limit when m goes to infinity, one deduces
that

At ⊂ U(t, s)As = Bt.

So,
At = U(t, s)As,∀t ≥ s ≥ 0. (5.3)

We now prove iv). Let {xn}n≥0 be a sequence in A. Then there exists numbers
tn ∈ [0, ω] such that xn ∈ Atn . Since At = U(t, 0)A0, there exists elements yn in
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A0 such that xn = U(tn, 0)yn. Since A0 is compact, yn → y ∈ A0 after choosing a
subsequence. Further tn → t ∈ [0, ω] after choosing a further subsequence. Since
the map (t, x) → U(t, 0)x is continuous by Theorem 3.5, xn → U(t, 0)y ∈ At after
choosing a subsequence.

We now prove v). Claim 1: dist(As, At) → 0 as s → t. Suppose that is not the
case, then there exists some ε > 0 and a sequence tn → t such that dist(Atn , At) ≥ ε
for all n ∈ N. By definition of dist(., .), there exist elements xn ∈ Atn such that
dist(xn, At) ≥ ε for all n ∈ N. Since Atn = U(tn, 0)A0, there exist elements yn ∈ A0

such that xn = U(tn, 0)yn for all n ∈ N. Since A0 is compact, yn → y ∈ A0 after
choosing a subsequence. So xn → U(t, 0)y ∈ At after choosing a subsequence, and
dist(xn, At)→ 0, which gives a contradiction.
Claim 2: dist(At, As) → 0 as s → t. Suppose that is is not the case, then there
exists some ε > 0 and a sequence tn → t such that dist(At, Atn) ≥ ε for all n ∈ N.
By definition of dist(., .), there exist elements xn ∈ At such that dist(xn, Atn) ≥ ε
for all n ∈ N Then there exist elements yn ∈ A0 such that xn = U(t, 0)yn. After
choosing a subsequence, xn → U(t, 0)y for some y ∈ A0. By definition of dist(., .),

‖U(t, 0)yn − U(tn, 0)y‖ = ‖xn − U(tn, 0)y‖ ≥ dist(xn, Atn) ≥ ε > 0.

But

‖U(t, 0)yn − U(tn, 0)y‖ → ‖U(t, 0)y − U(t, 0)y‖ = 0.

To complete the proof it remains to prove vi). Assume vi) does not hold. Then
there exists a sequence tn → +∞ and some ε > 0 such that

dist(U(tn, s)B,Atn) ≥ ε > 0, ∀n ∈ N.

Let θn ∈ [0, ω], and mn ∈ N, be such that t = mnω + θn + s, then one has

U(tn, s) =U(mnω + θn + s, s)

=U(mnω + θn + s,mnω + s)U(mnω + s, s)

=U(θn + s, s)U(mnω + s, s) = U(θn + s, s)Tmns .

(5.4)

By (5.4) there exist elements xn ∈ B such that

dist(U(θn + s, s)Tmns xn, Aθn+s) ≥ ε > 0,∀n ∈ N,

and mn → +∞ as n → +∞. Since As attracts B under Ts and As is compact,
yn = Tmns xn → y ∈ As after choosing a subsequence. Since U(θn + s, s)y ∈ Aθn+s,

0 ≤ ε ≤ dist(U(θn + s, s)Tmns xn, Aθn+s) ≤ ‖U(θn + s, s)yn − U(θn + s, s)y‖.

After choosing another subsequence θn → θ,

0 < ε ≤ ‖U(θ + s, s)y − U(θ + s, s)y‖,

which gives a contradiction. �
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6. Applications

In this section, we consider the following system, for i = 1, . . . , N ,

ui(t)(0) =
∫ +∞

0

N∑
j=1

βij(t, u(t))(a)uj(t)(a)da,

∂ui
∂t

+
∂ui
∂a

= −µi(a)ui(t)(a) +
N∑
j=1

mij(t, u(t))(a)uj(t)(a), a.e. a ∈ (0, ai†),

ui(t)(a) = 0, a.e. a ∈ (ai†,+∞),

ui(0)(a) = ψi(a), a.e. a ∈ (0,+∞),

where ai† > 0 is the maximum age of the class i, βij(t, u(t))(a) the birth rate of
individuals of the class j in the class i, µi(a) is the mortality of individuals of class
i, and mij(t, u(t))(a) represents: 1) if i 6= j a migration from class j to class i; 2)
if i = j intra-specific or inter-specific competition, and loss due to migration from
class i to another class.

Let us consider
Y = Y1 × Y2 × · · · × YN ,

with

Yi =
{
ϕ ∈ L1(0,+∞) : ϕ(a) = 0, a.e. a ∈ (ai†,+∞)

}
, i = 1, . . . , N .

Here the Banach space X is
X = R

N × Y
which is endowed with a usual product norm of RN × L1(0,+∞)N , and

X+ = R
N
+ × Y+

where Y+ = Y1+ × Y2+ × · · · × YN+, with Yi+ = Yi ∩ L1
+(0,+∞), for i = 1, . . . , N .

Following Thieme’s approach [13, p. 1037], we define A : D(A) ⊂ X → X

A

(
0
ϕ

)
= (−ϕ(0), Bϕ), for

(
0
ϕ

)
∈ D(A) = {0RN } ×D(B),

where B : D(B) ⊂ Y → Y is defined by

(Bϕ)i(a) =
{
−ϕ′i(a)− µi(a)ϕi(a), a.e. a ∈ (0, ai†)
0, a.e. a ∈ (ai†,+∞),

and

D(B) =
{
ϕ ∈W 1,1(0,+∞)N : µiϕi ∈ L1(0,+∞), ϕi(a) = 0, a.e. a ∈ (ai†,+∞)

}
.

So here X0 = D(A) = {0RN } × Y , and X0+ = {0RN } × Y+. We also introduce the
nonlinear map F : R+ ×X0 → X is,

F (t, (0RN , ϕ)) = F1(t, ϕ) + F2(t, ϕ), for t ≥ 0, and ϕ ∈ Y,

where F1 : R+ × Y → X is

F1(t, ϕ) =
(
F̃1(t, ϕ)

0Y

)
, with F̃1(t, ϕ)i =

∫ +∞

0

N∑
j=1

βij(t, ϕ)(a)ϕj(a)da
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and F2 : R+ × Y → Y is

F2(t, ϕ) =
(

0RN
F̃2(t, ϕ)

)
, with F̃2(t, ϕ)i =

N∑
j=1

mij(t, ϕ)ϕj

Assumption 6.1.
a) (Concerning the unbounded linear operator A) For i = 1, . . . , N , µi ∈

L1
loc([0, ai†),R) and satisfies∫ a

0

µi(s)ds < +∞,∀a ∈ [0, ai†[, lim
a↗ai†

∫ a

0

µi(s)ds = +∞,

µi(a) ≥ 0, a.e. a ∈ (0, ai†), µi(a) = 0, a.e. a ∈ (ai†,+∞)

b) (Concerning the existence and uniqueness of the solutions) For all t ≥ 0,
∀ϕ ∈ Y , ∀i, j = 1, . . . , N , the functions βij : R+ × Y → L∞(0,+∞) and
mij : R+ × Y → L∞(0,+∞) are continuous maps, and

if i 6= j, mij(t, ϕ)(a) = 0, a.e. a ≥ ai†.

Moreover, for i, j = 1, . . . , N , ∀C > 0, there exist kβij1 (C) > 0, kβij2 (C) > 0,
k
mij
1 (C) > 0, and k

mij
2 (C) > 0, such that ∀ϕ1, ϕ2 ∈ Y ∩B(0, C), ∀t ≥ 0,

‖βij(t, ϕ1)− βij(t, ϕ2)‖L∞(0,+∞) ≤ k
βij
1 (C)‖ϕ1 − ϕ2‖L1(0,+∞)N ,

‖mij(t, ϕ1)−mij(t, ϕ2)‖L∞(0,+∞) ≤ k
mij
1 (C)‖ϕ1 − ϕ2‖L1(0,+∞)N ,

‖βij(t, ϕ1)‖L∞(0,+∞) ≤ k
βij
2 (C),

‖mij(t, ϕ1)‖L∞(0,+∞) ≤ k
mij
2 (C).

c) (Positivity of the solutions) For all i, j = 1, . . . , N , ∀ϕ ∈ Y+,∀t ≥ 0, we
have

βij(t, ϕ) ≥ 0, and if i 6= j, mij(t, ϕ) ≥ 0.

d) (Global existence of the nonnegative solutions) For all i, j = 1, . . . , N ,
∃kβij3 > 0, ∃kmij3 > 0, ∀ϕ ∈ Y+,∀t ≥ 0,

sup
t≥0,ϕ∈Y+

‖βij(t, ϕ)‖L∞(0,+∞) ≤ k
βij
3 ,

sup
t≥0,ϕ∈Y+

‖mij(t, ϕ)+‖L∞(0,+∞) ≤ k
mij
3 ,

where mij(t, ϕ)+(a) = max(0,mij(t, ϕ)(a)), a.e. a ≥ 0.
Theorem 6.1. Under Assumption 6.1 a), the operator A : D(A) ⊂ X → X
satisfies (0,+∞) ⊂ ρ(A), and for all λ > 0,

‖(λId−A)−1‖ ≤ 1
λ
.

Moreover, for all λ > 0, (λId − A)−1X+ ⊂ X+. Also T0(t) = (0, T̃0(t)) the
C0−semigroup generated by A0, the part of A in D(A), is given by

T̃0(t)ϕi(a) =


0, a.e. a ∈ (0,min(t, ai†)),
exp(−

∫ a
a−t µi(σ)dσ)ϕi(a− t), a.e. a ∈ (min(t, ai†), a

i
†),

0, a.e. a ∈ (ai†,+∞).
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Proof. We consider the case N = 1, the case N > 1 being similar. Let us start by

computing the resolvent of A. Let
(α
ψ

)
∈ R × Y (since N = 1 we have Y = Y1).

We look for ϕ ∈ Y1 solution for λ > 0 of(
α
ψ

)
= (λId−A)

(
0
ϕ

)
⇔
(
α
ψ

)
=
(

ϕ(0)
λϕ+ ϕ′ + µϕ

)
Thus

ϕ(a) = e−
∫ a
0 λ+µ(l)dlα+

∫ a

0

e−
∫ a
s
λ+µ(l)dlψ(s)ds, a.e. a ∈ (0, a1

†).

We conclude that the resolvent operator is positive i.e. (λId − A)−1(R+ × Y+) ⊂
{0} × Y+. Moreover, for λ > 0,

‖(λId−A)−1

(
α
ψ

)
‖ =

∫ a1
†

0

|e−
∫ a
0 λ+µ(l)dlα+

∫ a

0

e−
∫ a
s
λ+µ(l)dlψ(s)ds|da

≤
∫ a1

†

0

e−
∫ a
0 λ+µ(l)dlda|α|+

∫ a1
†

0

∫ a

0

e−
∫ a
s
λ+µ(l)dl|ψ(s)|dsda

≤
∫ a1

†

0

e−λada|α|+
∫ a1

†

0

∫ a1
†

a

e−λadaeλs|ψ(s)|ds

≤ (1− e−λa
1
†)

λ
|α|+

∫ a1
†

0

(e−λs − e−λa
1
†)

λ
eλs|ψ(s)|ds

≤ 1
λ

[|α|+
∫ a1

†

0

|ψ(s)|ds] =
1
λ
‖
(
α
ψ

)
‖,

so A is a Hille-Yosida operator. To complete the proof of this theorem, it remains

to give the explicit formula for the linear semigroup T0(t). Let
(

0
ϕ

)
∈ D(A) (i.e.

ϕ ∈ Y1). We denote

T1(t)
(

0
ϕ

)
=
(

0
T̃1(t)ϕ

)
,

where

T̃1(t)(ϕ)(a) =


0, a.e. a ∈ (0,min(t, a1

†)),
exp(−

∫ a
a−t µi(σ)dσ)ϕi(a− t), a.e. a ∈ (min(t, a1

†), a
1
†),

0, a.e. a ∈ (a1
†,+∞).

From section 2, to prove that T0(t)
(

0
ϕ

)
= T1(t)

(
0
ϕ

)
,∀t ≥ 0, it is sufficient to

verify that

T1(t)
(

0
ϕ

)
=
(

0
ϕ

)
+A

∫ t

0

T1(s)
(

0
ϕ

)
ds,∀t ≥ 0. (6.1)

To show this, we need to compute
∫ t

0
T̃1(ϕ)(s)ds. We define ψ1 ∈ C(R, Y ), for all

t ≥ 0, by

ψ1(t)(a) =


∫ a

0
exp(−

∫ a
a−s µi(σ)dσ)ϕ(a− s)ds, a.e. a ∈ (0,min(t, a1

†)),∫ t
0

exp(−
∫ a
a−s µi(σ)dσ)ϕ(a− s)ds, a.e. a ∈ (min(t, a1

†), a
1
†),

0, a.e. a ∈ (a1
†,+∞).
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We now want to prove that ψ1(t) =
∫ t

0
T̃1(ϕ)(s)ds, for all t ≥ 0. By the Hahn-

Banach theorem, it is sufficient to show that∫ +∞

0

f(a)(
∫ t

0

T̃1(s)(ϕ)ds)(a)da =
∫ +∞

0

f(a)ψ1(t)(a)da,∀f ∈ L∞(0,+∞).

Moreover, it is not difficult to see that T1(t) has the semigroup property, and it
is sufficient to prove (6.1) for t ≤ a1

†. We deduce that it is sufficient to prove the
above equality for t ≤ a1

†. Let t ∈ [0, a1
†]. and f ∈ L∞(0,+∞),∫ +∞

0

f(a)(
∫ t

0

T̃1(s)(ϕ)ds)(a)da

=
∫ t

0

∫ +∞

0

f(a)T̃1(s)(ϕ)(a)dads

=
∫ t

0

∫ a1
†

s

f(a)T̃1(s)(ϕ)(a)dads

=
∫ t

0

∫ t

s

f(a) exp(−
∫ a

a−s
µi(σ)dσ)ϕ(a− s)dads

+
∫ t

0

∫ a1
†

t

f(a) exp(−
∫ a

a−s
µi(σ)dσ)ϕ(a− s)dads

=
∫ t

0

f(a)
∫ a

0

exp(−
∫ a

a−s
µi(σ)dσ)ϕ(a− s)dsda

+
∫ a1

†

t

f(a)
∫ t

0

exp(−
∫ a

a−s
µi(σ)dσ)ϕ(a− s)dsda

=
∫ t

0

f(a)ψ1(t)(a)da+
∫ a1

†

t

f(a)ψ1(t)(a)da

=
∫ +∞

0

f(a)ψ1(t)(a)da.

Now it remains to replace T1(t) and ψ1(t) in equation (6.1 ). �

Theorem 6.2. Under Assumption 6.1, for each s ≥ 0, and each x0 ∈ X0, there
exists a unique maximal solution U(., s)x0 ∈ C([s, Ts(x0)), X0) of

U(t, s)x0 = x0 +A

∫ t

s

U(l, s)x0dl +
∫ t

s

F (l, U(l, s)x0)dl, ∀t ∈ [s, Ts(x0)), (6.2)

where the map Ts : X0 → (s,+∞] is

Ts(x0) = sup {T > s : ∃u ∈ C([s, T ], X0) solution of (6.2)} ,

and U(t, s) is a non-autonomous semiflow, that is to say that

U(t, r)U(r, s)x0 = U(t, s)x0,∀x0 ∈ X0,∀0 ≤ s ≤ r ≤ t < Ts(x0).

Moreover for each s ≥ 0, the set Ds = {(t, x) : x ∈ X0, s ≤ t < Ts(x0)} is an open
set in [s,+∞) × X0, and the map (t, x) → U(t, s)x from D to X0 is continuous.
Furthermore, for each s ≥ 0, and each x0 ∈ X0+, there exists a unique solution
U(., s)x0 ∈ C([s,+∞), X0) of (6.2) (i.e. Ts(x0) = +∞),

U(t, s)X0+ ⊂ X0+,∀t ≥ s ≥ 0,
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and there exists C0 > 0, and C1 > 0 such that

‖U(t, s)x0‖L1(0,+∞)N ≤ ‖x0‖L1(0,+∞)NC0e
C1(t−s),∀t ≥ s ≥ 0,∀x0 ∈ X0+. (6.3)

Proof. From Theorem 6.1, we know that Assumption 3.1 a) is satisfied with M = 1,
and ω = 0. By using Assumption 6.1 b) it is not difficult to see that Assumption
3.1 b) is satisfied. By using Theorem 6.1, and Assumption 6.1 c), one can easily
see that Assumption 3.2 is satisfied. Finally, we define ∀t ≥ 0,∀ϕ ∈ Y

G1(t, ϕ) =
(

0
G̃1(t, ϕ)

)
, and G2(t, ϕ) =

(
F̃1(t, ϕ)

F̃2(t, ϕ)− G̃1(t, ϕ)

)
,

where for i = 1, . . . , N ,
G̃1(t, ϕ)i = −mii(t, ϕ)−ϕi

where mii(t, ϕ)−(a) = max(−mii(t, ϕ)(a), 0), a.e. a ≥ 0. Then clearly Assumption
3.3 is satisfied. �

Assumption 6.2.
e) (Differentiability of the solutions) For i, j = 1, . . . , N , βij : R+ × Y →

L∞(0,+∞) andmij : R+×Y → L∞(0,+∞) are continuously differentiable.

Theorem 6.3. Under Assumptions 6.1 and 6.2, let s ≥ 0, and let x0 =
(

0
ϕ

)
∈ X0

be such that
x0 ∈

{
y ∈ D(A) : Ay + F (s, y) ∈ D(A)

}
,

namely

ϕ ∈ Y ∩W 1,1(0,+∞)N , µϕ =


µ1ϕ1

µ2ϕ2

...
µNϕN

 ∈ L1(0,+∞)N , and ϕ(0) = F̃1(s, ϕ).

Then the map t→ U(t, s)x0 is continuously differentiable, and

dU(t, s)x0

dt
= AU(t, s)x0 + F (t, U(t, s)x0),∀t[s, Ts(x0)).

Moreover, for the domain D(AN,0,s) =
{
x0 ∈ D(A) : Ax0 + F (s, x0) ∈ D(A)

}
we

have that D(AN,0,s) ∩X0+ is dense in X0+.

Proof. The proof of the first part of Theorem 6.3 is a direct consequence of the
results of section 4. It remains to show that we can approximate an element of X0+

by an element of D(AN,0,s) ∩X0+. We denote Fs(x) = F (s, x), ∀s ≥ 0, ∀x ∈ X0.
Let y ∈ X0+. Then as in section 4, we consider the following fixed point problem,

(Id+ λµId− λA− λ(Fs + µId))xλµ = y
⇔ xλµ = (Id− λ(A− µId))−1y + λ(Id− λ(A− µId))−1(Fs + µId)(xλµ)

By fixing µ > 0, large enough, such that

(Fs + µId)(z) ∈ X+,∀z ∈ B(0, 2‖y‖) ∩X0+,

then for all λ > 0 small enough, the map

Φλ(x) = (Id− λ(A− µId))−1y + λ(Id− λ(A− µId))−1(Fs + µId)(x),
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maps B(0, 2‖y‖) ∩X0+ into itself, and for all λ > 0 small enough Φλ restricted to
B(0, 2‖y‖) ∩X0+ is a contraction. The result follows. �

Assumption 6.3.
f) (Eventual Compactness) For all C > 0, ∀T > 0, for i, j = 1, . . . , N , there

exists kβij4 (C, T ) > 0, such that ∀t, l ∈ [0, T ],

‖βij(t, ϕ)− βij(l, ϕ)‖L∞(0,+∞) ≤ k
βij
4 (C, T )|t− l|.

g) For i, j = 1, . . . , N , ∀t > 0, ∀ϕ ∈ Y , one has βij(t, ϕ)µj ∈ L∞(0,+∞), and
∀C > 0, ∀T > 0,

sup
ϕ∈Y ∩B(0,C)

t∈[0,T ]

‖βij(t, ϕ)µj‖L∞(0,+∞) < +∞;

h) For i, j = 1, . . . , N , ∀t > 0, ∀ϕ ∈ Y , one has βij(t, ϕ) ∈W 1,∞(0,+∞), and
∀C > 0,∀T > 0,

sup
ϕ∈Y ∩B(0,C) t∈[0,T ]

‖ d
da
βij(t, ϕ)‖L∞(0,+∞) < +∞;

i) There exists M ∈ N \ {0}, for i, j = 1, . . . , N , for all C > 0, for all T > 0,
there exists kβij5 (C, T ) > 0, such that for all t ∈ [0, T ], for all ϕ1, ϕ2 ∈
B(0, C) ∩ Y ,

‖βij(t, ϕ1)− βij(t, ϕ2)‖∞

≤kβij5 (C, T )
M∑
l=1

N∑
p=1

|
∫ +∞

0

f ijlp (t, ϕ1, ϕ2)(a)(ϕ1(a)p − ϕ2(a)p)da|,

where for i, j, p = 1, . . . , N , l = 1, . . . ,M ,

f ijlp (t, ϕ1, ϕ2)(.) ∈W 1,∞(0,+∞),

µp(.)f
ij
lp (t, ϕ1, ϕ2)(.) ∈ L∞(0,+∞),

sup
‖ϕ1‖≤C,‖ϕ2‖≤C

0≤t≤T

‖ d
da
f ijlp (t, ϕ1, ϕ2)‖L∞(0,+∞) < +∞,

sup
‖ϕ1‖≤C,‖ϕ2‖≤C

0≤t≤T

‖µpf ijlp (t, ϕ1, ϕ2)‖L∞(0,+∞) < +∞.

Lemma 6.4. Under Assumptions 6.1 and 6.3, Assumptions 5.3 a)-e) are satisfied
with E0 = X0+.

Proof. Assumptions 5.3 a)-d) are clearly satisfied, and we only have to prove As-
sumption 5.3 e). We must prove that given a bounded set B ⊂ X0+, and given
s ≥ 0, and T > s, there exists a constant k = k(B, s, T ) ≥ 0, such that

‖F1(t, U(t, s)x0)− F1(l, U(l, s)x0)‖ ≤ k|t− l|,∀t, l ∈ [s, T ],∀x0 ∈ B.
We assume that s = 0, the case s ≥ 0 being similar, and we denote

ux0(t) = U(t, 0)x0, ∀t ≥ 0,∀x0 ∈ X0+.

Let x0 ∈ B. It is sufficient to consider, for each i, j = 1, . . . , N ,

I =
∣∣∣ ∫ +∞

0

βi,j(t, ux0(t))(a)ux0j(t)(a)− βi,j(l, ux0(l))(a)ux0j(l)(a)da
∣∣∣ ,
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where ux0j(t) denotes the jth component of ux02(t), with ux0(t) =
(

0RRN
ux02(t)

)
. Then

I ≤
∣∣∣ ∫ +∞

0

βi,j(t, ux0(t))(a)[ux0j(t)(a)− ux0j(l)(a)]da
∣∣

+
∣∣∣ ∫ +∞

0

[βi,j(t, ux0(t))(a)− βi,j(l, ux0(l))(a)]ux0j(l)(a)da
∣∣∣ .

Note that

ux0(t) = x0 +A

∫ t

0

ux0(s)ds+
∫ t

0

F (s, ux0(s))ds, ∀t ≥ 0,

and we know that there exist two constants C0 > 0, and C1 > 0, such that

‖ux0(t)‖ ≤ C0‖x0‖eC1kG2 t, ∀t ≥ 0.

So

ux0(t)− ux0(l)

=A[
∫ t

0

ux0(s)ds−
∫ l

0

ux0(s)ds] + [
∫ t

0

F (s, ux0(s))ds−
∫ l

0

F (s, ux0(s))ds] .

Therefore,

I ≤ |
∫ +∞

0

βi,j(t, ux0(t))(a)
∂

∂a
[(
∫ t

0

ux0j(s)ds)(a)− (
∫ l

0

ux0j(s)ds)(a)]da|

+ |
∫ +∞

0

βi,j(t, ux0(t))(a)µj(a)[(
∫ t

0

ux0j(s)ds)(a)− (
∫ l

0

ux0j(s)ds)(a)]da|

+ |
∫ +∞

0

βi,j(t, ux0(t))(a)[(
∫ t

0

F (s, ux0(s))ds)2j(a)− (
∫ l

0

F (s, ux0(s))ds)2j(a)]da|

+ ‖ux0(l)‖L1(0,+∞)N ‖βi,j(t, ux0(t))− βi,j(l, ux0(l))‖L∞(0,+∞),

and since (
∫ t

0
ux0j(s)ds)(a

j
†) = 0, ∀t ≥ 0, and βi,j(t, ux0(t))(ai†) = 0 (because of

Assumptions 6.1 a) 6.3 g) and 6.3 h)), by integrating by parts we get

I ≤ |βi,j(t, ux0(t))(0)[(
∫ t

0

ux0j(s)ds)(0)− (
∫ l

0

ux0j(s)ds)(0)]|

+ |
∫ +∞

0

∂

∂a
βi,j(t, ux0(t))(a)[(

∫ t

0

ux0j(s)ds)(a)− (
∫ l

0

ux0j(s)ds)(a)]da|

+ |
∫ +∞

0

βi,j(t, ux0(t))(a)µj(a)[(
∫ t

0

ux0j(s)ds)(a)− (
∫ l

0

ux0j(s)ds)(a)]da|

+ |
∫ +∞

0

βi,j(t, ux0(t))(a)[(
∫ t

0

F (s, ux0(s))ds)2j(a)− (
∫ l

0

F (s, ux0(s))ds)2j(a)]da|

+ ‖ux0(l)‖L1(0,+∞)N ‖βi,j(t, ux0(t))− βi,j(l, ux0(l))‖L∞(0,+∞).
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So, one has

I ≤ sup
0≤t≤T

‖βi,j(t, ux0(t))‖L∞(0,+∞)|
∫ t

l

‖F̃1(s, ux0j(s))‖ds|

+ sup
0≤t≤T

‖ ∂
∂a
βi,j(t, ux0(t))‖L∞(0,+∞)|

∫ t

l

‖ux0j(s)‖L1(0,+∞)ds|

+ sup
0≤t≤T

‖µjβi,j(t, ux0(t))‖L∞(0,+∞)|
∫ t

l

‖ux0j(s)‖L1(0,+∞)ds|

+ sup
0≤t≤T

‖βi,j(t, ux0(t))‖L∞(0,+∞)|
∫ t

l

‖F (s, ux0(s))2j‖L1(0,+∞)ds|

+ ‖ux0(l)‖L1(0,+∞)N ‖βi,j(t, ux0(t))− βi,j(l, ux0(l))‖L∞(0,+∞).

It remains to consider

J =‖βi,j(t, ux0(t))− βi,j(l, ux0(l))‖L∞(0,+∞)

≤‖βi,j(t, ux0(t))− βi,j(t, ux0(l))‖L∞(0,+∞)

+ ‖βi,j(t, ux0(l))− βi,j(l, ux0(l))‖L∞(0,+∞).

By using Assumption 6.3 f), it remains to consider

K = ‖βi,j(t, ux0(l))− βi,j(t, ux0(l))‖L∞(0,+∞).

But by using Assumption 6.3 i), and arguments similar to the previous part of the
proof, the result follows. �

Assumption 6.4.
(1) j) (Eventual Compactness) For i, j = 1, . . . , N , mij : R+×Y → L∞(0,+∞)

is completely continuous.
Theorem 6.5. Under Assumptions 6.1, 6.3, and 6.4, Assumptions 5.3 a)-g) are
satisfied with E0 = X0+, and T ′ = maxi=1,...,n(ai†). Moreover for each s ≥ 0, for
each bounded set B ⊂ X0+, and for each T ≥ maxi=1,...,n(ai†), the set{

U(t+ s, s)x0 : max
i=1,...,n

(ai†) ≤ t ≤ T, x0 ∈ B
}

has compact closure.

Proof. By taking into account Lemma 6.4, it only remains to show Assumptions
5.3 f) and g). We denote

Z = L∞(0,+∞)N
2
.

We define H : Z ×X0 → X0, for all α = (αij) ∈ L∞(0,+∞)N
2
, and all ϕ ∈ Y by

H(α,
(

0RN
ϕ

)
) =

(
0RN

H2(α, ϕ)

)
with

H2(α, ϕ)i =
N∑
j=1

αij(a)ϕj(a).

Under Assumption 6.4, G : R+ × Y → Z defined by

G(t, ϕ)ij = mij(t, ϕ),
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is completely continuous, and we have

F2(t,
(

0
ϕ

)
) = H(G(t, ϕ),

(
0
ϕ

)
),∀ϕ ∈ Y,∀t ≥ 0.

So Assumption 5.3 f) is satisfied by F2. It remains to prove Assumption 5.3 g). We
assume that s = 0, the case s ≥ 0 being similar, and we denote

ux0(t) = U(t, 0)x0,∀t ≥ 0,∀x0 ∈ X0+.

Let x0 ∈ X0+. We must show that if wx0(t) is solution of

wx0(t) = T0(t)x0 +
∫ t

0

T0(t− s)H(G(s, ux0(s)), wx0(s))ds,∀t ≥ 0,

then wx0(t) = 0 for all t ≥ maxi=1,...,N (ai†). We have

wx0(t) = T0(t)x0 + Lx0(wx0(.))(t),∀t ≥ 0,

where

Lx0(ψ(.))(t) =
∫ t

0

T0(t− s)H(G(s, ux0(s)), ψ(s))ds,∀t ≥ 0,

thus

wx0(t) =
∞∑
k=0

Lkx0
(T0(.)x0)(t),∀t ≥ 0,

where
L0
x0

= Id, and Lk+1
x0

= Lx0 ◦ Lkx0
, for k ≥ 0.

So, it remains to prove that,

Lkx0
(wx0(.))(t) = 0,∀t ≥ max

i=1,...,N
(ai†),∀k ≥ 0.

For k = 0, the result follows from the explicit formulation of T0(t) given in Theorem
6.1. For k = 1, we have

‖Lx0(T0(.)x0)(t)‖L1(0,+∞)N

≤
∫ t

0

‖T0(t− s)H(G(s, ux0(s)), T0(s)x0)‖L1(0,+∞)Nds

≤
∫ t

0

‖|T0(t− s)H(G(s, ux0(s)), T0(s)x0)|‖L1(0,+∞)Nds

≤
∫ t

0

‖T0(t− s)|H(G(s, ux0(s)), T0(s)x0)|‖L1(0,+∞)Nds

≤ k6(C, T )
∫ t

0

‖T0(t− s)JT0(s)|x0|‖L1(0,+∞)Nds

where

J =


J11 J12 · · · J1n

...
. . .

...
...

. . .
...

Jn1 · · · · · · Jnn

 ,
with i, j = 1, . . . , N,∀ϕj ∈ Yj

Jij(ϕj)(a) =
{
ϕj(a), a.e. a ∈ (0, ai†),
0, a.e. a ∈ (ai†,+∞).
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By using the explicit formulation of T0(t) given in Theorem 6.1 , we get for i, j =
1, . . . , N ,

if t1 ≥ 0, t2 ≥ 0, and t1 + t2 ≥ max
i=1,...,N

(ai†), then T0i(t1)JijT0j(t2) = 0,

and we deduce that

Lx0(T0(.)x0)(t) = 0, for t ≥ max
i=1,...,N

(ai†).

For k ≥ 2, the result follows from the fact that ∀(i1, i2, . . . , ik) ∈ {1, . . . , N},
∀(t1, t2, . . . , tk) ∈ Rk+,

if ti ≥ 0,∀i = 1, . . . , k, and t1 + t2 + · · ·+ tk ≥ maxi=1,...,N (ai†),
then T0i1(t1)Ji1i2T0i2(t2) . . . .Jik−1ikT0ik(tk) = 0,

and by using similar arguments we deduce that

Lkx0
(T0(.)x0)(t) = 0, for t ≥ max

i=1,...,N
(ai†).

�

Assumption 6.5.

k) (Existence of absorbing set) For i = 1, . . . , N , there exists δi > 0, such that

−mii(t, ϕ)(a) ≥ δi
∫ +∞

0

ϕi(a)da,∀ϕ ∈ Y+.

Theorem 6.6. Under Assumptions 6.1, 6.2, 6.3, 6.4, and 6.5, Let us denote δ =

N2
∑N
i=1 maxj=1,...,N (k

βij
3 +k

mij
3 )

mini=1,...,N (δi)
> 0. Then for each ε > 0, for any bounded set B ⊂

X0+, and for each s ≥ 0, there exists t0 = t0(ε,B) ≥ 0, such that

U(t+ s, s)B ⊂ B(0, δ + ε) ∩X0+,∀t ≥ t0,
U(t+ s, s)B(0, δ + ε) ∩X0+ ⊂ B(0, δ + ε) ∩X0+,∀t ≥ 0.

Proof. To prove the theorem we consider the case s = 0, the case s > 0 being
similar. Let ϕ ∈ D(AN,0) ∩ X0+ =

{
ψ ∈ D(A) : Aψ + F (0, ψ) ∈ D(A)

}
∩ X0+.

Then from Theorem 6.3, u(t) = U(t, 0)ϕ satisfies

du2i

dt
= −∂u2i

∂a
− µiu2i +

N∑
i=1

mij(t, u(t))u2j(t)

so

d

dt

∫ +∞

0

u2i(t)(a)da

=u2i(t)(0)−
∫ +∞

0

µi(a)u2i(t)(a)da+
N∑
i=1

∫ +∞

0

mij(t, u(t))(a)u2j(t)(a)da

≤( max
j=1,...,N

(kβij3 + k
mij
3 ))

N∑
j=1

∫ +∞

0

u2j(t)(a)da− δi(
∫ +∞

0

u2j(t)(a)da)2 .
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Therefore,

d

dt

N∑
i=1

∫ +∞

0

u2i(t)(a)da ≤ (
N∑
i=1

max
j=1,...,N

(kβij3 + k
mij
3 ))

N∑
j=1

∫ +∞

0

u2j(t)(a)da

− min
i=1,...,N

(δi)
N∑
j=1

(
∫ +∞

0

u2j(t)(a)da)2

≤(
N∑
i=1

max
j=1,...,N

(kβij3 + k
mij
3 ))

N∑
j=1

∫ +∞

0

u2j(t)(a)da

− 1
N2

min
i=1,...,N

(δi)(
N∑
j=1

∫ +∞

0

u2j(t)(a)da)2.

From this inequality, we deduce that

‖u(t)‖ ≤ ‖ϕ‖+
∫ t

0

C1(δ − ‖u(s)‖)‖u(s)‖ds,∀t ≥ 0, (6.4)

with C1 =
∑N
i=1 maxj=1,...,N (kβij3 + k

mij
3 ). By density of D(AN,0) ∩X0+ in X0+,

we deduce that inequality (6.4) holds for all ϕ ∈ X0+, and the result follows. �

Assumption 6.6.

l) (Periodicity) There exists ω > 0, ∀i, j = 1, . . . , N,∀t ≥ 0, mij(t + ω, .) =
mij(t, .), and βij(t+ ω, .) = βij(t, .).

The next result gives the existence of a family of compact attracting subsets.

Theorem 6.7. Under Assumptions 6.1-6.5, the non-autonomous semiflow U(t, s)
restricted to X0+ is ω-periodic, that is to say that

U(t+ ω, s+ ω)x0 = U(t, s)x0, for all x0 ∈ X0+, for all t ≥ s ≥ 0.

Moreover, there exists a family {At}t≥0 of subsets of X0+, satisfying:

i) At = At+ω,∀t ≥ 0.
ii) For all t ≥ 0, At is compact and connected.
iii) For all t ≥ s ≥ 0, U(t, s)As = At. iv) A = ∪0≤t≤ωAt is compact.
v) The map t→ At is continuous with respect to the Hausdorff metric, that is

to say that
h(At, At0)→ 0, as t→ t0,

where h(A,B) = max(dist(A,B),dist(B,A)).
vi) For each bounded set B ⊂ X0+, and for each s ≥ 0,

lim
t→+∞

dist(U(t, s)B,At) = 0.

Proof. To prove Theorem 6.7 it is sufficient to apply Theorem 5.3 with E0 = X0+,
T ′ = maxi=1,...,n(ai†), and E1 = B(0, δ + ε), for a certain ε > 0, where δ ≥ 0 is the
constant introduced in Theorem 6.6. �
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Unité de Biométrie, INRA, 78352 Jouy-en-Josas Cedex France

E-mail address: magal.pierre@wanadoo.fr


