Existence of solutions to a superlinear p-Laplacian equation *

Shibo Liu

Abstract

Using Morse theory, we establish the existence of solutions to the equation $-\Delta_{p} u=f(x, u)$ with Dirichlet boundary conditions. We assume that $\int_{0}^{s} f(x, t) d t$ lies between the first two eigenvalues of the p-Laplacian.

1 Introduction

Consider the Dirichlet problem for the p-Laplacian $(p>1)$,

$$
\begin{gather*}
-\Delta_{p} u=f(x, u), \quad \text { in } \Omega, \tag{1.1}\\
u=0, \quad \text { on } \partial \Omega .
\end{gather*}
$$

Here Ω is a bounded domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega$, and $-\Delta_{p} u$ is the p-Laplacian: $-\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$. We assume that $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function with subcritical growth; that is,

F1) The inequality $|f(x, u)| \leq C\left(1+|u|^{q-1}\right)$ holds for all $u \in \mathbb{R}, x \in \Omega$, and for some positive constant C, where $1 \leq q<\frac{N p}{N-p}$ if $N \geq p+1$, and $1 \leq q<\infty$ if $1 \leq N<p$.

It is well known that weak solutions $u \in W_{0}^{1, p}(\Omega)$ of (1.1) are the critical points of the C^{1} functional

$$
\Phi(u)=\frac{1}{p} \int|\nabla u|^{p} d x-\int F(x, u) d x
$$

where $F(x, s)=\int_{0}^{s} f(x, t) d t$.
Let λ_{1} and λ_{2} be the first and the second eigenvalues of $-\Delta_{p}$ on $W_{0}^{1 p}(\Omega)$. It is known that $\lambda_{1}>0$ is a simple eigenvalue, and that $\sigma\left(-\Delta_{p}\right) \cap\left(\lambda_{1}, \lambda_{2}\right)=\emptyset$, where $\sigma\left(-\Delta_{p}\right)$ is the spectrum of $-\Delta_{p}$, (cf. [2]).

We shall assume the following conditions:

[^0]F2) There exist $r>0, \bar{\lambda} \in\left(\lambda_{1}, \lambda_{2}\right)$ such that $|u| \leq r$ implies

$$
\lambda_{1}|u|^{p} \leq p F(x, u) \leq \bar{\lambda}|u|^{p}
$$

F3) There exist $\theta>p, M>0$ such that $|u| \geq M$ implies

$$
0<\theta F(x, u) \leq u f(x, u)
$$

Now, we are ready to state our main result.
Theorem 1.1 Assume (F1), (F2), and (F3). Then (1.1) has a nontrivial weak solution in $W_{0}^{1, p}(\Omega)$.

There are many papers devoted to the existence of solutions of (1.1); see for example $[1,4,5]$. In these papers, the main tool is the minmax argument. However, it seems difficult to use the minmax argument in our situation. Thus we will use a different approach: Morse theory [3]. To the best of our knowledge, [7] is the only work using Morse theory to obtain the solvability of p-Laplacian equations. Our work is motivated by [7].

2 Proof of main theorem

In this section we give the proof of Theorem 1.1. Let E denote the Sobolev space $W_{0}^{1, p}(\Omega)$, and $\|\cdot\|$ denote the norm in E. For Φ a continuously Fréchet differentiable map from E to \mathbb{R}, let $\Phi^{\prime}(u)$ denote its Fréchet derivative.

As stated in Section 1, weak solutions $u \in W_{0}^{1, p}(\Omega)$ of (1.1) are the critical points of the C^{1} functional

$$
\Phi(u)=\frac{1}{p} \int|\nabla u|^{p} d x-\int F(x, u) d x .
$$

We will try to find a nontrivial critical point of the functional Φ. First we state the following lemmas.

Lemma 2.1 Under conditions (F1) and (F3), the functional Φ satisfies the Palais-Smale condition.

Proof Assume $\left(u_{n}\right) \subset E,\left|\Phi\left(u_{n}\right)\right| \leq B$ for some $B \in \mathbb{R}$, and $\Phi^{\prime}\left(u_{n}\right) \rightarrow 0$. Let $d:=\sup _{n} \Phi\left(u_{n}\right)$. Then by (F3) we have

$$
\begin{aligned}
\theta d+\left\|u_{n}\right\| \geq & \theta \Phi\left(u_{n}\right)+\left\langle\Phi^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
= & \left(\frac{\theta}{p}-1\right)\left\|u_{n}\right\|^{p}-\int_{\left|u_{n}\right| \geq M}\left[\theta F\left(x, u_{n}\right)-f\left(x, u_{n}\right) u_{n}\right] \\
& -\int_{\left|u_{n}\right| \leq M}\left[\theta F\left(x, u_{n}\right)-f\left(x, u_{n}\right) u_{n}\right] \\
\geq & \left(\frac{\theta}{p}-1\right)\left\|u_{n}\right\|^{p}-\int_{\left|u_{n}\right| \leq M}\left[\theta F\left(x, u_{n}\right)-f\left(x, u_{n}\right) u_{n}\right] \\
\geq & \left(\frac{\theta}{p}-1\right)\left\|u_{n}\right\|^{p}-D, \quad \text { for some } D \in \mathbb{R} .
\end{aligned}
$$

Thus $\left(u_{n}\right)$ is bounded in E. Up to a subsequence, we may assume that $u_{n} \rightharpoonup u$ in E. Now because of condition (F1), a standard argument shows that $u_{n} \rightarrow u$ in E and the proof is complete.

Let $V=\operatorname{span} \phi_{1}$ be the one-dimensional eigenspace associated to λ_{1}, where $\phi_{1}>0$ in Ω and $\left\|\phi_{1}\right\|=1$. Taking a subspace $W \subset E$ complementing V, that is $E=V \oplus W$. Obviously the genus of $W \backslash 0$ satisfies $\gamma(W \backslash 0) \geq 2$. Therefore, by the variational characterization of λ_{2}, for $\forall u \in W$,

$$
\int|\nabla u|^{p} \geq \lambda_{2} \int|u|^{p}
$$

Lemma 2.2 Under Assumption (F2), the functional Φ has a local linking at the origin with respect to $E=V \oplus W$. That is, there exists $\rho>0$, such that

$$
\begin{gathered}
\Phi(u) \leq 0, \quad u \in V, \quad\|u\| \leq \rho \\
\Phi(u)>0, \quad u \in W, \quad 0<\|u\| \leq \rho
\end{gathered}
$$

The proof of this lemma can be found in [7, Lemma 3.3].
For a C^{1}-functional $\Phi: E \rightarrow \mathbb{R}$ and u an isolate critical point of $\Phi, \Phi(u)=c$, we define the critical group of Φ at u as

$$
C_{q}(\Phi, u):=H_{q}\left(\Phi_{c}, \Phi_{c} \backslash\{u\}\right)
$$

Where $H_{q}(X, Y)$ is the q-th homology group of the topological pair (X, Y) over the ring \mathbb{Z}.

Since $\operatorname{dim} V=1<+\infty$, from Lemma 2.2 and Theorem 2.1 in [6], we have
Lemma 2.3 Under assumption (F2), 0 is a critical point of Φ and $C_{1}(\Phi, 0) \neq$ 0 .

To find a nontrivial critical point of Φ, we investigate the behavior of Φ near infinity.

Lemma 2.4 Under Assumption (F3), there exists a constant $A>0$ such that

$$
\Phi_{a} \simeq S^{\infty}, \quad \text { for } a<-A
$$

where S^{∞} is the unit sphere in E.

Proof Integrating on the inequality of (F2), we obtain a constant $C_{1}>0$ such that

$$
F(x, t) \geq C_{1}|t|^{\theta}, \quad \text { for }|t| \geq M
$$

Thus, for $u \in S^{\infty}$, we have $\Phi(t u) \rightarrow-\infty$, as $t \rightarrow+\infty$. Set

$$
A:=\left(1+\frac{1}{p}\right) M|\Omega| \max _{\bar{\Omega} \times[-M, M]}|f(x, u)|+1
$$

Using (F3) we obtain

$$
\begin{aligned}
& \int F(x, v)-\frac{1}{p} \int v f(x, v) \\
= & \int_{|v| \geq M} F(x, v)+\int_{|v| \leq M} F(x, v)-\frac{1}{p} \int_{|v| \geq M} v f(x, v)-\frac{1}{p} \int_{|v| \leq M} v f(x, v) \\
\leq & \left(\frac{1}{\theta}-\frac{1}{p}\right) \int_{|v| \geq M} v f(x, v)+\int_{|v| \leq M} F(x, v)-\frac{1}{p} \int_{|v| \leq M} v f(x, v) \\
\leq & \left(\frac{1}{\theta}-\frac{1}{p}\right) \int_{|v| \geq M} v f(x, v)+\left(1+\frac{1}{p}\right) M|\Omega| \max _{\bar{\Omega} \times[-M, M]}|f(x, u)| \\
\leq & \left(\frac{1}{\theta}-\frac{1}{p}\right) \int_{|v| \geq M} v f(x, v)+A-1 .
\end{aligned}
$$

For $a<-A$ and

$$
\Phi(t u)=\frac{|t|^{p}}{p}-\int F(x, t u) \leq a, \quad\left(u \in S^{\infty}\right)
$$

we have

$$
\begin{aligned}
\frac{d}{d t} \Phi(t u) & =\left\langle\Phi^{\prime}(t u), u\right\rangle=|t|^{p-2} t-\int u f(x, t u) \\
& \leq \frac{p}{t}\left\{\int F(x, t u)-\frac{1}{p} \int t u f(x, t u)+a\right\} \\
& \leq \frac{p}{t}\left\{\left(\frac{1}{\theta}-\frac{1}{p}\right) \int_{|t u| \geq M} t u f(x, t u)+A-1+a\right\} \\
& \leq \frac{p}{t}\left\{\left(\frac{1}{\theta}-\frac{1}{p}\right) \int_{|t u| \geq M} t u f(x, t u)-1\right\} \\
& \leq \frac{p}{t}\left\{\left(\frac{1}{\theta}-\frac{1}{p}\right) C_{1} \theta \int_{|t u| \geq M}|t u|^{\theta}-1\right\}<0 .
\end{aligned}
$$

By the Implicit Function Theorem, there is a unique $T \in C\left(S^{\infty}, \mathbb{R}\right)$ such that

$$
\Phi(T(u) u)=a, \quad \forall u \in S^{\infty}
$$

For $u \neq 0$, set $\tilde{T}(u)=\frac{1}{\|u\|} T\left(\frac{u}{\|u\|}\right)$. Then $\tilde{T} \in C(E \backslash 0, \mathbb{R})$ and for all $u \in E \backslash 0$, $\Phi(\tilde{T}(u) u)=a$. Moreover, if $\Phi(u)=a$, then $\tilde{T}(u)=1$.

We define a function $\hat{T}: E \backslash 0 \rightarrow \mathbb{R}$ as

$$
\hat{T}(u):= \begin{cases}\tilde{T}(u), & \text { if } \Phi(u) \geq a \\ 1, & \text { if } \Phi(u) \leq a\end{cases}
$$

Since $\Phi(u)=a$ implies $\tilde{T}(u)=1$, we conclude that $\hat{T} \in C(E \backslash\{0\}, \mathbb{R})$.
Finally we set $\eta:[0,1] \times(E \backslash 0) \rightarrow E \backslash 0$ as

$$
\eta(s, u)=(1-s) u+s \hat{T}(u) u
$$

It is easy to see that η is a strong deformation retract from $E \backslash 0$ to Φ_{a}. Thus $\Phi_{a} \simeq E \backslash 0 \simeq S^{\infty}$ and present proof is complete.

We also use the following topological result,which was proved by Perera [8].
Lemma 2.5 Let $Y \subset B \subset A \subset X$ be topological spaces and $q \in \mathbb{Z}$. If

$$
H_{q}(A, B) \neq 0 \quad \text { and } \quad H_{q}(X, Y)=0
$$

then

$$
H_{q+1}(X, A) \neq 0 \quad \text { or } \quad H_{q-1}(B, Y) \neq 0
$$

Now we can prove the main theorem.
Proof of Theorem 1.1 By Lemma 2.1, Φ satisfies the Palais-Smale condition. Note that $\Phi(0)=0$, from [3] Chapter I, Theorem 4.2, there is a $\varepsilon>0$, such that

$$
H_{1}\left(\Phi_{\varepsilon}, \Phi_{-\varepsilon}\right)=C_{1}(\Phi, 0) \neq 0 .
$$

By Lemma 2.4, for $a<-A$ (A is as in the lemma) we have $\Phi_{a} \simeq S^{\infty}$. Since $\operatorname{dim} E=+\infty$,

$$
H_{1}\left(E, \Phi_{a}\right)=H_{1}\left(E, S^{\infty}\right)=0
$$

So that Lemma 2.5 yields

$$
H_{2}\left(E, \Phi_{\varepsilon}\right) \neq 0 \quad \text { or } \quad H_{0}\left(\Phi_{-\varepsilon}, \Phi_{a}\right) \neq 0
$$

It follows that Φ has a critical point u for which

$$
\Phi(u)>\varepsilon \quad \text { or } \quad-\varepsilon>\Phi(u)>a .
$$

Therefore, u is a nonzero critical point of Φ, and (1.1) has a nontrivial solution.
Remark Result similar to Lemma 2.4 has been proved (for $p=2$) in [9] and [3], under the additional conditions

$$
f \in C^{1}(\Omega \times \mathbb{R}, \mathbb{R}), \quad f(x, 0)=\left.\frac{\partial f(x, t)}{\partial t}\right|_{t=0}=0
$$

From these two references, we have obtained the motivation for this paper.

References

[1] A. R. El Amrouss \& M. Moussaoui, Minimax principles for critical-point theory in applications to quasilinear boundary-value problems, Electron. J. Diff. Eqns.,, 2000(2000), No. 18, 1-9.
[2] A. Anane \& N. Tsouli, On the second eigenvalue of the p-Laplacian, Nonlinear Partial Differential Equations, Pitman Research Notes 343(1996), 1-9.
[3] K. C. Chang, Infinite dimensional Morse theory and multiple solution problems, Birkhäuser, Boston, 1993.
[4] D. G. Costa \& C. A. Magalhães, Existence results for perturbations of the p-Laplacian, Nonlinear Analysis, 24(1995), 409-418.
[5] X. L. Fan \& Z. C. Li, Linking and existence results for perturbations of the p-Laplacian, Nonlinear Analysis, 42(2000), 1413-1420.
[6] J. Q. Liu, The Morse index of a saddle point, Syst. Sc. \&J Math. Sc., 2(1989), 32-39.
[7] J. Q. Liu \& J. B. Su, Remarks on multiple nontrivial solutions for quasilinear resonant problems, J. Math. Anal. Appl., 258(2001), 209-222.
[8] K. Perera, Critical groups of critical points produced by local linking with applications, Abstract and Applied Analysis, 3(1998), 437-446.
[9] Z. Q. Wang, On a superlinear elliptic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8(1991), 43-5\%.

Shibo Liu
Institute of Mathematics,
Academy of Mathematics and Systems Sciences, Academia Sinica,
Beijing, 100080, P. R. China
e-mail address: liusb@math08.math.ac.cn

[^0]: *Mathematics Subject Classifications: 49J35, 35J65, 35B34.
 Key words: p-Laplacian, critical group.
 (C)2001 Southwest Texas State University.

 Submitted August 21, 2001. Published October 11, 2001.

