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Existence of solutions to a superlinear

p-Laplacian equation ∗

Shibo Liu

Abstract

Using Morse theory, we establish the existence of solutions to the equa-
tion −∆pu = f(x, u) with Dirichlet boundary conditions. We assume that∫ s

0
f(x, t) dt lies between the first two eigenvalues of the p-Laplacian.

1 Introduction

Consider the Dirichlet problem for the p-Laplacian (p > 1),

−∆pu = f(x, u), in Ω,
u = 0, on ∂Ω.

(1.1)

Here Ω is a bounded domain in RN with smooth boundary ∂Ω, and −∆pu is
the p-Laplacian: −∆pu := div(|∇u|p−2∇u). We assume that f : Ω× R→ R is
a Carathéodory function with subcritical growth; that is,

F1) The inequality |f(x, u)| ≤ C(1 + |u|q−1) holds for all u ∈ R, x ∈ Ω, and
for some positive constant C, where 1 ≤ q < Np

N−p if N ≥ p + 1, and
1 ≤ q <∞ if 1 ≤ N < p.

It is well known that weak solutions u ∈W 1,p
0 (Ω) of (1.1) are the critical points

of the C1 functional

Φ(u) =
1
p

∫
|∇u|p dx−

∫
F (x, u) dx ,

where F (x, s) =
∫ s

0

f(x, t) dt.

Let λ1 and λ2 be the first and the second eigenvalues of −∆p on W 1p
0 (Ω).

It is known that λ1 > 0 is a simple eigenvalue, and that σ(−∆p)∩ (λ1, λ2) = ∅,
where σ(−∆p) is the spectrum of −∆p, (cf. [2]).

We shall assume the following conditions:
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F2) There exist r > 0, λ̄ ∈ (λ1, λ2) such that |u| ≤ r implies

λ1|u|p ≤ pF (x, u) ≤ λ̄|u|p,

F3) There exist θ > p, M > 0 such that |u| ≥M implies

0 < θF (x, u) ≤ uf(x, u).

Now, we are ready to state our main result.

Theorem 1.1 Assume (F1), (F2), and (F3). Then (1.1) has a nontrivial weak
solution in W 1,p

0 (Ω).

There are many papers devoted to the existence of solutions of (1.1); see
for example [1, 4, 5]. In these papers, the main tool is the minmax argument.
However, it seems difficult to use the minmax argument in our situation. Thus
we will use a different approach: Morse theory [3]. To the best of our knowledge,
[7] is the only work using Morse theory to obtain the solvability of p-Laplacian
equations. Our work is motivated by [7].

2 Proof of main theorem

In this section we give the proof of Theorem 1.1. Let E denote the Sobolev
space W 1,p

0 (Ω), and ‖.‖ denote the norm in E. For Φ a continuously Fréchet
differentiable map from E to R, let Φ′(u) denote its Fréchet derivative.

As stated in Section 1, weak solutions u ∈ W 1,p
0 (Ω) of (1.1) are the critical

points of the C1 functional

Φ(u) =
1
p

∫
|∇u|p dx−

∫
F (x, u) dx .

We will try to find a nontrivial critical point of the functional Φ. First we state
the following lemmas.

Lemma 2.1 Under conditions (F1) and (F3), the functional Φ satisfies the
Palais-Smale condition.

Proof Assume (un) ⊂ E, |Φ(un)| ≤ B for some B ∈ R, and Φ′(un)→ 0. Let
d := supn Φ(un). Then by (F3) we have

θd+ ‖un‖ ≥ θΦ(un) + 〈Φ′(un), un〉

= (
θ

p
− 1)‖un‖p −

∫
|un|≥M

[θF (x, un)− f(x, un)un]

−
∫
|un|≤M

[θF (x, un)− f(x, un)un]

≥ (
θ

p
− 1)‖un‖p −

∫
|un|≤M

[θF (x, un)− f(x, un)un]

≥ (
θ

p
− 1)‖un‖p −D, for some D ∈ R.
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Thus (un) is bounded in E. Up to a subsequence, we may assume that un ⇀ u
in E. Now because of condition (F1), a standard argument shows that un → u
in E and the proof is complete. ♦

Let V = spanφ1 be the one-dimensional eigenspace associated to λ1, where
φ1 > 0 in Ω and ‖φ1‖ = 1. Taking a subspace W ⊂ E complementing V , that
is E = V ⊕W . Obviously the genus of W\0 satisfies γ(W\0) ≥ 2. Therefore,
by the variational characterization of λ2, for ∀u ∈W ,∫

|∇u|p ≥ λ2

∫
|u|p.

Lemma 2.2 Under Assumption (F2), the functional Φ has a local linking at
the origin with respect to E = V ⊕W . That is, there exists ρ > 0, such that

Φ(u) ≤ 0, u ∈ V, ‖u‖ ≤ ρ,
Φ(u) > 0, u ∈W, 0 < ‖u‖ ≤ ρ.

The proof of this lemma can be found in [7, Lemma 3.3].

For a C1-functional Φ : E → R and u an isolate critical point of Φ, Φ(u) = c,
we define the critical group of Φ at u as

Cq(Φ, u) := Hq(Φc,Φc\{u}).

Where Hq(X,Y ) is the q-th homology group of the topological pair (X,Y ) over
the ring Z.

Since dimV = 1 < +∞, from Lemma 2.2 and Theorem 2.1 in [6], we have

Lemma 2.3 Under assumption (F2), 0 is a critical point of Φ and C1(Φ, 0) 6=
0.

To find a nontrivial critical point of Φ, we investigate the behavior of Φ near
infinity.

Lemma 2.4 Under Assumption (F3), there exists a constant A > 0 such that

Φa ' S∞, for a < −A,

where S∞ is the unit sphere in E.

Proof Integrating on the inequality of (F2), we obtain a constant C1 > 0 such
that

F (x, t) ≥ C1|t|θ, for |t| ≥M.

Thus, for u ∈ S∞, we have Φ(tu)→ −∞, as t→ +∞. Set

A :=
(

1 +
1
p

)
M |Ω| max

Ω̄×[−M,M ]
|f(x, u)|+ 1 .
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Using (F3) we obtain∫
F (x, v)− 1

p

∫
vf (x, v)

=
∫
|v|≥M

F (x, v) +
∫
|v|≤M

F (x, v)− 1
p

∫
|v|≥M

vf (x, v)− 1
p

∫
|v|≤M

vf (x, v)

≤
(

1
θ
− 1
p

)∫
|v|≥M

vf (x, v) +
∫
|v|≤M

F (x, v)− 1
p

∫
|v|≤M

vf (x, v)

≤
(

1
θ
− 1
p

)∫
|v|≥M

vf (x, v) +
(

1 +
1
p

)
M |Ω| max

Ω̄×[−M,M ]
|f (x, u)|

≤
(

1
θ
− 1
p

)∫
|v|≥M

vf (x, v) +A− 1.

For a < −A and

Φ(tu) =
|t|p

p
−
∫
F (x, tu) ≤ a, (u ∈ S∞),

we have

d

dt
Φ(tu) = 〈Φ′(tu), u〉 = |t|p−2t−

∫
uf(x, tu)

≤ p

t

{∫
F (x, tu)− 1

p

∫
tuf(x, tu) + a

}
≤ p

t

{
(
1
θ
− 1
p

)
∫
|tu|≥M

tuf(x, tu) +A− 1 + a
}

≤ p

t

{
(
1
θ
− 1
p

)
∫
|tu|≥M

tuf(x, tu)− 1
}

≤ p

t

{
(
1
θ
− 1
p

)C1θ

∫
|tu|≥M

|tu|θ − 1
}
< 0.

By the Implicit Function Theorem, there is a unique T ∈ C(S∞,R) such that

Φ(T (u)u) = a, ∀u ∈ S∞.

For u 6= 0, set T̃ (u) = 1
‖u‖T ( u

‖u‖ ). Then T̃ ∈ C(E\0,R) and for all u ∈ E\0,

Φ(T̃ (u)u) = a. Moreover, if Φ(u) = a, then T̃ (u) = 1.
We define a function T̂ : E\0→ R as

T̂ (u) :=

{
T̃ (u), if Φ(u) ≥ a,
1, if Φ(u) ≤ a.

Since Φ(u) = a implies T̃ (u) = 1, we conclude that T̂ ∈ C(E\{0},R).
Finally we set η : [0, 1]× (E\0)→ E\0 as

η(s, u) = (1− s)u+ sT̂ (u)u.
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It is easy to see that η is a strong deformation retract from E\0 to Φa. Thus
Φa ' E\0 ' S∞ and present proof is complete. ♦

We also use the following topological result,which was proved by Perera [8].

Lemma 2.5 Let Y ⊂ B ⊂ A ⊂ X be topological spaces and q ∈ Z. If

Hq(A,B) 6= 0 and Hq(X,Y ) = 0

then
Hq+1(X,A) 6= 0 or Hq−1(B, Y ) 6= 0 .

Now we can prove the main theorem.

Proof of Theorem 1.1 By Lemma 2.1, Φ satisfies the Palais-Smale condition.
Note that Φ(0) = 0, from [3] Chapter I, Theorem 4.2, there is a ε > 0, such that

H1(Φε,Φ−ε) = C1(Φ, 0) 6= 0.

By Lemma 2.4, for a < −A (A is as in the lemma) we have Φa ' S∞. Since
dimE = +∞,

H1(E,Φa) = H1(E,S∞) = 0.

So that Lemma 2.5 yields

H2(E,Φε) 6= 0 or H0(Φ−ε,Φa) 6= 0.

It follows that Φ has a critical point u for which

Φ(u) > ε or − ε > Φ(u) > a .

Therefore, u is a nonzero critical point of Φ, and (1.1) has a nontrivial solution.

Remark Result similar to Lemma 2.4 has been proved (for p = 2) in [9] and
[3], under the additional conditions

f ∈ C1(Ω× R,R), f(x, 0) =
∂f(x, t)
∂t

∣∣∣
t=0

= 0 .

From these two references, we have obtained the motivation for this paper.
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