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EXISTENCE OF GLOBAL SOLUTIONS TO
REACTION-DIFFUSION SYSTEMS VIA

A LYAPUNOV FUNCTIONAL

SAID KOUACHI

Abstract. The purpose of this paper is to construct polynomial function-
als (according to solutions of the coupled reaction-diffusion equations) which
give Lp-bounds for solutions. When the reaction terms are sufficiently regular,

using the well known regularizing effect, we deduce the existence of global solu-
tions. These functionals are obtained independently of work done by Malham

and Xin [11].

1. Introduction

We consider the reaction-diffusion system

∂u

∂t
− a∆u = f(u, v) in R+ × Ω, (1.1)

∂v

∂t
− b∆v = g(u, v) in R+ × Ω (1.2)

with the boundary conditions

∂u

∂η
=
∂v

∂η
= 0 on R+ × ∂Ω (1.3)

and the initial data

u(0, x) = u0(x), v(0, x) = v0(x) in Ω, (1.4)

where Ω is an open bounded domain of class C1 in Rn, with boundary ∂Ω, ∂
∂η

denotes the outward normal derivative on ∂Ω and a and b are positive constants.
The initial data are assumed to be nonnegative and the functions f(r, s) and g(r, s)
are continuously differentiable on R+×R+ satisfying f(0, s) ≥ 0 and g(r, 0) ≥ 0 for
all r, s ≥ 0 which imply, via the maximum principle (see Smoller [20]), the positivity
of the solution on its interval of existence. We assume that there exists an integer
p ≥ 1 such that

K2i−1f(r, s) + g(r, s) ≤ C1(r, s) (r + s+ 1) , i = 1, . . . , p , (1.5)
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for all r, s ≥ 0 and a real m ≥ 1 such that

|f(r, s)| , |g(r, s)| ≤ C2(r, s)(r + s+ 1)m on (0,+∞)× (0,+∞) , (1.6)

where K is any positive constant satisfying

K ≥ (a+ b)
2
√
ab

,

and C1, C2 are positive and uniformly bounded functions defined on R+ × R+.
In the case where f(u, v) = −uvβ (which implies the uniform boundedness of

u) and g(u, v) = uvβ , Alikakos [1] established global existence and L∞-bounds of
positive solutions when 1 < β < (n+2)

n . Masuda [13] showed that solutions to this
system exist globally for every β > 1. Hollis, Martin, and Pierre [6] established
global existence of positive solutions for system (1.1)-(1.2) with the boundary con-
ditions

λ1u+ (1− λ1)
∂u

∂η
= β1, λ2v + (1− λ2)

∂v

∂η
= β2 on R+ × ∂Ω, (1.7)

where
0 < λ1, λ2 < 1 or λ1 = λ2 = 1, β1 ≥ 0 and β2 ≥ 0, (1.8)

or
λ1 = λ2 = β1 = β2 = 0 (1.9)

under the conditions of: uniform boundedness of u on [0, Tmax]× Ω,

f(r, s) + g(r, s) ≤ C3(r, s) (r + s+ 1) , for all r, s ≥ 0 i = 1, . . . , p , (1.10)

and (1.6) for the reaction g, Haraux and Youkana [3] simplified the demonstration
of Masuda by using techniques based on Lyapunov functionals. They could handle
non-linearities f(u, v) = − g(u, v) = −uF (v) satisfying the condition

lim
s→+∞

[
log (1 + F (s))

s

]
= 0 , (1.11)

which means that F (s) is of sub-exponential growth. Morgan [14] generalized the
results of Hollis, Martin, and Pierre [6] to the case of systems of m̃ components
(m̃ ≥ 2), the case of two equations, he imposed on f and g the conditions (1.6),
(1.10) and

f(r, s) ≤ C4(r, s) (r + s+ 1) , for all r ≥ 0 and s ≥ 0, (1.12)

which is a particular case of (1.6). Martin and Pierre [12] and Hollis [5] extended
the results, under the same conditions, to the boundary conditions (1.7) but in
(1.8) they took

0 ≤ λ1, λ2 ≤ 1, β1 ≥ 0 and β2 ≥ 0. (1.13)
Recently Kouachi and Youkana [10] generalized the results of Haraux and Youkana
[3]; they added −c∆u to the right-hand side of the second equation of system
(1.1)-(1.2) and require the condition

lim
s→+∞

[
log (1 + f(r, s))

s

]
< α∗, for any r ≥ 0,

with

α∗ =
2ac

n(a-c)2 ‖u0‖∞
min

{
λ

µ
,

(a− c)
b

}
,
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condition reflecting the weak exponential growth of the reaction term f . This result
is posterior to the one of Kirane [9]. Kanel and Kirane [7] and [8] obtained results
in the same sense and in the case where a < b and f + g ≡ 0 but f has at most
an exponential growth. Let us mention that other results have been obtained after
the paper of Martin and Pierre, see Schmitt [19], Pierre and Schmitt [16] and [17].

One notices that, to prove existence global solutions to (1.1)-(1.2), it was required
that one of the reaction terms satisfy (1.12). In this paper we show the global
existence without using this condition.

2. Notation and preliminary observations

It is well known that to prove global existence of solutions to (1.1)-(1.4) (see
Henry [4], pp. 35-62), it suffices to derive a uniform estimate of ‖f(u, v)‖p and
‖g(u, v)‖p on [0, Tmax[ in the space Lp(Ω) for some p > n/2. Our aim is to construct
polynomial Lyapunov functionals allowing us to obtain Lp-bounds on u and v that
lead to global existence.

The usual norms in spaces Lp(Ω), L∞(Ω) and C
(
Ω
)

are respectively denoted by

‖u‖pp =
1
|Ω|

∫
Ω

|u(x)|p dx, ‖u‖∞=max
x∈Ω
|u(x)| .

Since the nonlinear right hand side of (1.1)-(1.2) is continuously differentiable on
R

+×R+, then for any initial data in C
(
Ω
)
, it is easy to check directly its Lipschitz

continuity on bounded subsets of the domain of a fractional power of the operator(
−a∆ 0

0 −b∆

)
Under these assumptions, the following local existence result is well known (see
Friedman [2] and Pazy [15]).
Proposition 2.1. The system (1.1)-(1.4) admits a unique, classical solution (u, v)
on (0, Tmax[×Ω. If Tmax <∞ then

lim
t↗Tmax

{‖u(t, .)‖∞ + ‖v(t, .)‖∞} =∞,

where Tmax (‖u0‖∞ , ‖v0‖∞) denotes the eventual blowing-up time.

3. Statement and proof of the main theorem

The main result of the paper is the following.
Theorem 3.1. Let (u(t, .), v(t, .)) be a solution of (1.1)-(1.4) and let

L(t) =
∫

Ω

Hp (u(t, x), v(t, x)) dx, (3.1)

where

Hp(u, v) =
p∑
i=0

CipK
i2uivp−i

with p a positive integer and K is a positive constant such that

K ≥ (a+ b)
2
√
ab

.

Then the functional L is uniformly bounded on the interval [0, T ∗], T ∗ ≤ Tmax.
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Proof. Differentiating L with respect to t yields

L′(t)

=
∫

Ω

[ p∑
i=1

(
iCipK

i2ui−1vp−i
)∂u
∂t

+
p−1∑
i=0

(
(p− i)CipKi2uivp−i−1

) ∂v
∂t

]
dx

=
∫

Ω

p∑
i=1

(
iCipK

i2ui−1vp−i
)

(a∆u+ f(u, v)) dx

+
∫

Ω

p∑
i=1

(
(p− i+ 1)Ci−1

p K(i−1)2
ui−1vp−i

)
(b∆v + g(u, v)) dx

=
∫

Ω

[ p∑
i=1

aiCipK
i2ui−1vp−i∆u+ b(p− i+ 1)Ci−1

p K(i−1)2
ui−1vp−i∆v

]
dx

+
∫

Ω

[ p∑
i=1

iCipK
i2ui−1vp−if(u, v) + (p− i+ 1)Ci−1

p K(i−1)2
ui−1vp−ig(u, v)

]
dx

=I + J .

By a simple use of Green’s formula we have

I = −
∫

Ω

(
A |∇u|2 + B∇u∇v + C |∇v|2

)
dx,

where

A =
p∑
i=2

ai(i− 1)CipK
i2ui−2vp−i

B =
p−1∑
i=1

ai(p− i)CipKi2ui−1vp−i−1 +
p∑
i=2

b(i− 1)(p− i+ 1)Ci−1
p K(i−1)2

ui−2vp−i

C =
p−1∑
i=1

b(p− i)(p− i+ 1)Ci−1
p K(i−1)2

ui−1vp−i−1.

Using the fact that

iCip = pCi−1
p−1, for all i = 1, . . . , p , (3.2)

we get A =
∑p
i=2 ap(p− 1)Ci−2

p−2K
i2ui−2vp−i,

B =
p−1∑
i=1

ap(p− 1)Ci−1
p−2K

i2ui−1vp−i−1 +
p∑
i=2

bp(p− 1)Ci−2
p−2K

(i−1)2
ui−2vp−i

=B1 + B2 ,

and

C =
p−1∑
i=1

bp(p− 1)Ci−1
p−2K

(i−1)2
ui−1vp−i−1.
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Putting j = i− 2, we have

A =
p−2∑
j=0

ap(p− 1)Cjp−2K
(j+2)2

ujvp−j−2

B2 =
p−2∑
j=0

bp(p− 1)Cjp−2K
(j+1)2

ujvp−j−2

and putting j = i− 1, we get

B1 =
p−2∑
j=0

ap(p− 1)Cjp−2K
(j+1)2

ujvp−j−2

C =
p−2∑
j=0

bp(p− 1)Cjp−2K
j2ujvp−j−2.

Then

I =− p(p− 1)
p−2∑
j=0

Cjp−2

∫
Ω

ujvp−j−2

×
(
aK(j+2)2

|∇u|2 + (a+ b)K(j+1)2
∇u∇v + bKj2 |∇v|2

)
dx.

The quadratic forms (with respect to ∇u and ∇v) are positive since(
(a+ b)K(j+1)2

)2

− 4abKj2K(j+2)2
≤ 0, j = 0, 1, . . . , p− 2.

Then I ≤ 0. Using the relation (3.2), in the second integral, yields

J =
∫

Ω

[
p

p∑
i=1

(
Ki2f(u, v) +K(i−1)2

g(u, v)
)
Ci−1
p−1u

i−1vp−i
]
dx.

Using conditions (1.5), we deduce

J ≤ C5

∫
Ω

[ p∑
i=1

(u+ v + 1)Ci−1
p−1u

i−1vp−i
]
dx.

To prove that the functional L is uniformly bounded on the interval [0, T ∗], first
we write

p∑
i=1

(u+ v + 1)Ci−1
p−1u

i−1vp−i = Rp(u, v) + Sp−1(u, v),

where Rp(u, v) and Sp−1(u, v) are two homogeneous polynomials of degrees p and
p − 1, respectively. First, since the polynomials Hp(u, v) and Rp(u, v) are all two
of degree p, there exists a positive constant C6 such that∫

Ω

Rp(u, v)dx ≤ C6

∫
Ω

Hp(u, v)dx,

then applying Hölder’s inequality to the integral
∫

Ω
Sp−1(u, v)dx, one gets∫

Ω

Sp−1(u, v)dx ≤ (meas Ω)1/p
(∫

Ω

(Sp−1(u, v))p/(p−1)
dx
)(p−1)/p

.
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Since for all u ≥ 0 and v > 0,

(Sp−1(u, v))p/(p−1)

Hp(u, v)
=

(Sp−1(x, 1))p/(p−1)

Hp(x, 1)
,

where x = u
v , and

lim
x→+∞

(Sp−1(x, 1))p/(p−1)

Hp(x, 1)
< +∞,

one asserts that there exists a positive constant C7 such that

(Sp−1(u, v))p/(p−1)

Hp(u, v)
≤ C7, for all u ≥ 0, v ≥ 0.

Hence, the functional L satisfies the differential inequality

L′(t) ≤ C6L(t) + C8L
(p−1)/p(t),

which for Z = L1/p can be written as

pZ ′ ≤ C6Z + C8.

A simple integration gives the uniform bound of the functional L on the interval
[0, T ∗]. this completes the present proof. �

Corollary 3.2. Suppose that f(r, s) and g(r, s) are continuously differentiable on
(0,+∞)× (0,+∞) and satisfy (1.5) for some p ≥ 1. Then all solutions of ( 1.1)-
(1.4) with positive initial data in L∞(Ω) are in L∞(0, T ∗;Lp(Ω)).

The proof of this corollary is an immediate consequence of Theorem 3.1 and the
inequality ∫

Ω

(u(t, x) + v(t, x))p dx ≤ L(t) on [0, T ∗[ .

Proposition 3.3. Suppose that conditions (1.5) and (1.6) are satisfied and that
p > mn

2 , then all solutions of (1.1)-(1.4) with positive initial data in L∞(Ω) are
global.
Proof. From Corollary 3.2, there exists a positive constant C8 such that∫

Ω

(u(t, x) + v(t, x) + 1)p dx ≤ C8 on [0, Tmax[ .

From (1.6) we have

|f(u, v)|p/m , |g(u, v)|p/m ≤ C2(u, v)(u+ v + 1)p on [0, Tmax[×Ω.

Since u and v are in L∞(0, T ∗;Lp(Ω)) and p/m > n/2, then from the preliminary
observations the solution is global.

4. Applications

In this section we apply Proposition 3.3 to some particular biochemical and
chemical reaction models. Throughout this section we will assume that all reactions
take place in a bounded domain Ω with smooth boundary ∂Ω.

Let us begin with the general two-components reaction

lA+ qB
h

�
k
rA+ sB
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that leads to the reaction diffusion system

∂u

∂t
− a∆u = hulvq − kurvs in R+ × Ω, (4.1)

∂v

∂t
− b∆v = −hulvq + kurvs in R+ × Ω, (4.2)

with boundary conditions (1.3) and initial data (1.4), where h, k, l, q, r and s are
positive constants. The initial data are assumed to be nonnegative.

We remark that (1.6) for this system, is satisfied for all positive constants h, k,
l, q, r and s whenever

m = max {l + q, r + s} .
Also, condition (1.5) is trivial in the case l + q ≤ 1 for all integer p ≥ 1 by and
applying of the Young inequality to the term ulvq in the right hand side of the first
equation of system (4.1)-(4.2). However, uniqueness is not ensured. On the other
hand if l + q > 1 the condition (1.6) becomes difficult to verify. However we have
the following statement.

Proposition 4.1. Suppose that one of the following three conditions is satisfied

l + q ≤ 1 or r + s ≤ 1 , (4.3)

r + s > l + q > 1 and l − r < sl − qr < s− q , (4.4)

l + q > r + s > 1 and s− q < sl − qr < l − r . (4.5)

Then, solutions of (4.1)-(4.2) with boundary conditions (1.3) and positive initial
data (1.4) exist for all t > 0.

Proof. The case r+ s ≤ 1 is also a trivial application of Young’s inequality to the
term urvs in the right hand side of the second equation of system (4.1)-(4.2).

Assuming (4.4), put

ν1 =
r + s− 1
l + q − 1

and ν2 =
ν1

ν1 − 1
=

r + s− 1
(r + s)− (l + q)

.

Then

ν1 > 1, ν2 > 1 and
1
ν1

+
1
ν2

= 1 .

Then we can write l = l1 + l2 and q = q1 + q2, where

l1 =
r

ν1
=
l + q − 1
r + s− 1

r, l2 =
(sl − qr)− (l − r)

r + s− 1
,

q1 =
s

ν1
=
l + q − 1
r + s− 1

s and q2 =
(s− q)− (sl − qr)

r + s− 1
.

Applying Young’s inequality, one gets

ulvq ≤ k

h

(
ul1vq1

)ν1 + C9

(
ul2vq2

)ν2
, (4.6)

where C9 is a positive constant,
(
ul1vq1

)ν1 = urvs and ν2(l2 + q2) = 1.
Finally, applying Young’s inequality one more time to the second term of the

right hand side of inequality (4.6), one deduces that

K2i−1f(r, s) + g(r, s) ≤ C10(u+ v + 1), i = 1, 2, . . . (4.7)
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where C10 is a positive constant. From this last inequality, Proposition 3.3 is
applicable and then it follows the conclusion of Proposition 4.1 under hypothesis
(4.4). For the other case, we take

ν1 =
l + q − 1
r + s− 1

and ν2 =
ν1

ν1 − 1
=

l + q − 1
(l + q)− (r + s)

.

Then we prove that there exists a positive constant C11 such that

urvs ≤ h

k
(ur1vs1)ν1 + C11 (ur2vs2)ν2 ,

where r1 = l
ν1

, r2 = r − r1, s1 = q
ν1

and s2 = s− s1. From this setting, we have

(ur1vs1)ν1 = ulvq and ν2(r2 + s2) = 1.

Finally we deduce an analogous inequality to (4.7),

K2i−1f(r, s) + g(r, s) ≤ C12(u+ v + 1), i = 1, 2, . . . ,

where C12 is a positive constant. This completes completes the present proof. �

We next consider the three-component reaction

lU + qV
h
�
k
rW,

that leads to the reaction diffusion system

∂u

∂t
− a∆u = −hulvq + kwr in R+ × Ω, (4.8)

∂v

∂t
− b∆v = −hulvq + kwr in R+ × Ω, (4.9)

∂w

∂t
− c∆w = hulvq − kwr in R+ × Ω, (4.10)

with homogeneous Neumann boundary conditions and positive initial data in L∞(Ω),
where h, k, l, q and r are positive constants such that r ≤ 1 or l + q ≤ 1. The
special case l = q = r = 1 has been studied by Rothe [18] under the same boundary
condition (1.2) where he showed that Tmax = ∞ if n ≤ 5. Morgan[14] generalized
the results of Rothe for every integer n ≥ 1 and when all the components satisfy the
same boundary conditions (Neumann or Dirichlet). Hollis [5] completed the works
of Morgan and established global existence in the case when some components of
the system (4.8)-(4.10) satisfy Neumann boundary conditions while others satisfy
nonhomogeneous Dirichlet boundary conditions.

Conditions (1.5) and (1.6) are trivial for the two coupled systems (4.8)-(4.10)
and (4.9)-(4.10) when r ≤ 1. For the case l + q ≤ 1, they are also satisfied for
the two coupled systems (4.8)-(4.10) and (4.10)-(4.9), while applying the Young
inequality to ulvq. Then Corollary 3.2 implies that all components of the solution
are in L∞(0, T ∗;Lp(Ω)) for all p ≥ 1. Since the reactions terms are of polynomial
growth, then Tmax =∞.

Proposition 4.2. Solutions of (4.8)-(4.10) with nonnegative uniformly bounded
initial data are positive and exist globally for every positive constants l, q and r
such that r ≤ 1 or l + q ≤ 1.
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As another example, we have the system
∂u

∂t
− a∆u = vl − uq in R+ × Ω, (4.11)

∂v

∂t
− b∆v = Auq −Bvl in R+ × Ω, (4.12)

where l > 1, q > 1, A and B are positive constants such that B > A. It is
clear that condition (1.12) is not satisfied, nevertheless the method of invariant
regions (see Smoller[20]) gives the global existence of positive solutions under the
above conditions on l, q, A,B. However, our technique is applicable and we have
the following statement.
Proposition 4.3. Suppose that A ≤ K and let p the smallest integer such that
K2p−1 ≤ B. Then if

p >
n

2
max {l, q}

all solutions of (4.11)-(4.12) with the boundary conditions (1.3) and positive initial
data in L∞(Ω) are global and positive.
Proof. The positivity of solutions is a trivial consequence of the method of invariant
regions (see Smoller[20]). Condition (1.6) is satisfied if we take m = max {l, q}.
Since

K2i−1f(u, v) + g(u, v) =
(
A−K2i−1

)
uq +

(
K2i−1 −B

)
vl, i = 1, . . . , p ,

then condition (1.5) is also satisfied with C1 ≡ 0. Proposition 3.3 is then applied
to obtain global existence.

5. Remarks and comments

Remark 5.1. Since the reaction terms are continuously differentiable on R2, then
all solutions of problem (4.11)-(4.12) with the boundary conditions (1.3) and initial
data in L∞(Ω)× L∞(Ω) are unique.
Remark 5.2. If conditions (1.10) and (1.12) are satisfied, then (1.5) is satisfied
for all integer p ≥ 1, but the reciprocal is false.
Remark 5.3. If f and f + g are non-positive on R+ × R+, then the functional
defined by (3.1) is decreasing on [0, T ∗[ and so all positive solutions of (1.1)-(1.4)
with initial data in L∞(Ω) are in L∞(0, T ∗;Lp(Ω)) for all p ≥ 1.
Acknowledgment. The author would like to thank the anonymous referee for
his/her valuable suggestions.
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