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Nontrivial periodic solutions of asymptotically

linear Hamiltonian systems ∗

Guihua Fei

Abstract

We study the existence of periodic solutions for some asymptotically
linear Hamiltonian systems. By using the Saddle Point Theorem and
Conley index theory, we obtain new results under asymptotically linear
conditions.

1 Introduction

We consider the Hamiltonian system

ż = JH ′(t, z) (1.1)

where H ∈ C2([0, 1]×R2N ,R) is a 1-periodic function in t, and H ′(t, z) denotes
the gradient of H(t, z) with respect to the z variable. Here N is a positive

integer and J =
(

0 −IN
IN 0

)
is the standard 2N × 2N symplectic matrix. We

denote by (x, y) and |x| the usual inner product and norm in R2N respectively.
The function H satisfies the following conditions.

(H1) There exist s ∈ (1,∞) and a1, a2 > 0 such that

|H ′′(t, z)| ≤ a1|z|s + a2, ∀(t, z) ∈ R× R2N .

(H2) H ′(t, z) = B∞(t)z + o(|z|) as |z| → ∞ uniformly in t;

(H3) H ′(t, z) = B0(t)z+o(|z|) as |z| → 0 uniformly in t where B0(t) and B∞(t)
are 2N × 2N symmetric matrices, continuous and 1-periodic in t.

The system (1.1) is called asymptotically linear because of (H2). Obviously, (H3)
implies that 0 is a “trivial” solution of (1.1). We are interested in nontrivial
1-periodic solutions of (1.1).

The existence of periodic solutions of (1.1) has been studied by many authors.
If B∞(t) is non-degenerate, i.e. 1 is not a Floquet multiplier of the linear system
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ẏ = JB∞(t)y, one can see the results in [1, 2, 6, 7, 12, 13, 14]. If B∞(t) is
degenerate, some resonance conditions are needed to control the behavior of

G∞(t, z) = H(t, z)− 1
2

(B∞(t)z, z).

When |G′∞(t, z)| is bounded, under the Landesman-Lazer type condition or
strong resonance condition, (1.1) was studied by [3, 20] for the case that B∞(t)
is constant and by [4, 8] for the case that B∞(t) is continuous and 1-periodic
in t. When |G′∞(t, z)| is not bounded, [9, 18, 19] studied the case that B∞(t) is
“finitely degenerate” [9].

In this paper we shall study the case that |G′∞(t, z)| is not bounded and
B∞(t) is continuous and 1-periodic in t. We assume the following conditions for
G∞(t, z).

(H4±) There exist c1, c2 > 0 such that

±[2G∞(t, z)− (G′∞(t, z), z)] ≥ c1|z| − c2, ∀(t, z) ∈ [0, 1]× R2N ;
G∞(t, z)→ ±∞ as |z| → +∞.

(H5±) There exist 1 ≤ α < 2, 0 < β < α/2, and M1,M2, L > 0 such that

|G′∞(t, z)| ≤M1|z|β , ±G∞(t, z) ≥M2|z|α, ∀|z| ≥ L.

(H6±) There exist 1 ≤ α < 2, 0 < β < α/2, and M1,M2, L > 0 such that

|G′∞(t, z)| ≤M1|z|β , ±(G′∞(t, z), z) ≥M2|z|α, ∀|z| ≥ L.

According to [6, 13, 14], for a given continuous 1-periodic and symmetric matrix
function B(t), one can assign a pair of integers (i, n) ∈ Z × {0, · · · , 2N} to
it, which is called the Maslov-type index of B(t). We denote by (i0, n0) and
(i∞, n∞) the Maslov-type indices of B0(t) and B∞(t) respectively. Our main
result reads as follows.

Theorem 1.1 Suppose that H satisfies (H1) − (H3). Then (1.1) possesses a
nontrivial 1-periodic solution if one of the following cases occurs:

(i) (H4+) and i∞ + n∞ /∈ [i0, i0 + n0].

(ii) (H4−) and i∞ /∈ [i0, i0 + n0].

(iii) (H5+) and i∞ + n∞ /∈ [i0, i0 + n0].

(iv) (H5−) and i∞ /∈ [i0, i0 + n0].

(v) (H6+) and i∞ + n∞ /∈ [i0, i0 + n0].

(vi) (H6−) and i∞ /∈ [i0, i0 + n0].
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Remark 1.2 (1) If

H(t, z) =
7|z|2

2 ln(e+ |z|2)
, (1.2)

by Theorem 1.1(i) the system (1.1) possesses a nontrivial 1-periodic solution. If

H(t, z) =
1
2
|z|2 − |z|2

ln(e+ |z|2)
, (1.3)

by Theorem 1.1(ii) the system (1.1) possesses a nontrivial 1-periodic solution.
These examples can not be solved by earlier results, for example those contained
in references. More examples are given in Section 3.
(2) Our result should be compared with those in [9, 18, 19]. First, we do
not require that B∞(t) be constant or “finitely degenerate”. Secondly, the
conditions (H6±) with β = α − 1 are required in [9, 18, 19]. This means that
the results in [9, 18, 19] can not be applied to some cases such as (1.2), (1.3), or
G∞(t, z) ∼ |z|α ln(1 + |z|2) at infinity. But these cases are covered by Theorem
1.1 . Notice that β = α− 1 < α/2. Therefore Theorem 1.1(v)&(vi) generalizes
[9, Theorem 1.1], [18, Theorem 1.2], and [19, Theorem 1.2].
(3) The condition (H5±) is rather close to a condition in the paper [21] by
Szulkin and Zou. The author thanks the referee for pointing out this.

The proof of our results is given in Section 2. By using the the Galerkin
approximation method [8, 12], Saddle point theorem [5, 15, 16], and Morse
index estimates [10, 11, 17], we shall prove Theorem 1.1(i)-(iv). For Theorem
1.1(v)-(vi), we follow the idea in [9] and use Conley index theory [6] to get our
conclusions.

2 Periodic solutions of Hamiltonian systems

Let S1 = R/(2πZ), E = W 1/2,2(S1,R2N ). Recall that E is a Hilbert space with
norm ‖ · ‖ and inner product 〈·, ·〉, and E consists of those z(t) in L2(S1,R2N )
whose Fourier series

z(t) = a0 +
∞∑
n=1

(an cos(2πnt) + bn sin(2πnt))

satisfies

‖z‖2 = |a0|2 +
1
2

∞∑
n=1

n(|an|2 + |bn|2) <∞,

where aj , bj ∈ R2N . For a given continuous 1-periodic and symmetric matrix
function B(t), we define two selfadjoint operators A,B ∈ L(E) by extending
the bilinear forms

〈Ax, y〉 =
∫ 1

0

(−Jẋ, y) dt, 〈Bx, y〉 =
∫ 1

0

(B(t)x, y) dt (2.1)
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on E. Then B is compact [13]. We define

f(z) =
1
2
〈Az, z〉 −

∫ 1

0

H(t, z) dt (2.2)

on E. It is well know that f ∈ C2(E,R) whenever H satisfies (H1). Looking for
the solutions of (1.1) is equivalent to looking for the critical points of f [3, 7].

For B(t), by [6, 13, 14] we can define its Maslov-type index as a pair of
integers (i(B), n(B)) ∈ Z× {0, · · · , 2N}. Using the Floquet theory, we have

n(B) = dim ker(A−B). (2.3)

Let B∞(t) be the matrix function in (H2) with the Maslov-type index (i∞, n∞),
and B∞ be the operator, defined by (2.1), corresponding to B∞(t). Then by
(2.3) we have

n∞ = dim ker(A−B∞).

Let · · · ≤ λ′2 ≤ λ′1 < 0 < λ1 ≤ λ2 ≤ · · · be the eigenvalues of A− B∞, and Let
{e′j} and {ej} be the eigenvectors of A − B∞ corresponding to {λ′j} and {λj}
respectively. For m ≥ 0, set

E0 = ker(A−B∞),

Em = E0 ⊕ span{e1, · · · , em} ⊕ span{e′1, · · · , e′m}

and let Pm be the orthogonal projection from E to Em. Then {Pm} is an
approximation scheme with respect to the operator A−B∞, i.e.

(A−B∞)Pm = Pm(A−B∞),
Pmx→ x as m→∞, ∀x ∈ E.

In the following we denote T# = (TImT )−1, and we also denote by M+(·),
M−(·) and M0(·) the positive definite, negative definite and null subspaces of
the selfadjoint linear operator defining it, respectively. The following result was
proved in [8]

Theorem 2.1 ([8]) For any continuous 1-periodic and symmetric matrix func-
tion B(t) with the Maslov-type index (i0, n0), there exists an m∗ > 0 such that
for m ≥ m∗ we have

dimM+
d (Pm(A−B)Pm) = m+ i∞ − i0 + n∞ − n0

dimM−d (Pm(A−B)Pm) = m− i∞ + i0 (2.7)

dimM0
d (Pm(A−B)Pm) = n0

where d = 1
4‖(A − B)#‖−1, M+

d (·), M−d (·) and M0
d (·) denote the eigenspaces

corresponding to the eigenvalue λ belonging to [d,+∞), (−∞,−d] and (−d, d)
respectively.
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To prove Theorem 1.1 we need the following definition and saddle point
theorem which were given in [10].

Definition 2.2 ([10]) Let E be a C2-Riemannian manifold, D be a closed
subset of E. A family F(α) is said to be a homological family of dimension q
with boundary D if, for some nontrivial class α ∈ Hq(E,D), the family F(α) is
defined by

F(α) = {G ⊂ E : α is in the image of i∗ : Hq(G,D)→ Hq(E,D)},

where i∗ is the homomorphism induced by the immersion i : G→ E.

Theorem 2.3 ([10]) As in Definition 2.2, for given E, D and α, let F(α) be a
homological family of dimension q with boundary D. Suppose that f ∈ C2(E,R)
satisfies (PS) condition. Set

c ≡ c(f,F(α)) = inf
G∈F(α)

sup
w∈G

f(w)

If supw∈D f(w) < c and f ′ is Fredholm on

Kc = {x ∈ E : f ′(x) = 0, f(x) = c},

then there exists x ∈ Kc such that the Morse indices m−(x) and m0(x) of the
functional f at x satisfy

q −m0(x) ≤ m−(x) ≤ q.

Let f be defined as (2.2) and fm be the restriction of f to the space Em.
We say that f satisfies the (PS)∗c condition for c ∈ R, if any sequence {xm}
such that xm ∈ Em, f ′m(xm) → 0 and fm(xm) → c possesses a subsequence
convergent in E [12].

Lemma 2.4 Under the conditions of Theorem 1.1, f satisfies the (PS)∗c con-
dition for any c ∈ R.

Proof. For any given c ∈ R, let {zm} be the (PS)∗c sequence, i.e., for zm ∈ Em,

f ′(zm)→ 0, fm(zm)→ c. (2.8)

We want to show that {zm} is bounded in E. Then by standard arguments [12],
{zm} possesses a subsequence convergent in E.

Suppose {zm} is not bounded and ‖zm‖ → +∞ as m→ +∞. Define

g(z) =
∫ 1

0

G∞(t, z)dt, ∀z ∈ E.

Then f(z) = 1
2 〈(A−B∞)z, z〉 − g(z), for all z ∈ E. By (H2) we know that

|G′∞(t, z)|
|z|

→ 0 as |z| → ∞.
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This means that, for any ε > 0, there exist M > 0 such that

|G′∞(t, z)|2 ≤ ε|z|2 +M.

Therefore,

|〈g′(zm), y〉| =|
∫ 1

0

(G′∞(t, zm), y)dt|

≤
∫ 1

0

|G′∞(t, zm)||y|dt ≤ (
∫ 1

0

|G′∞(t, zm)|2)1/2‖y‖L2

≤ (ε‖zm‖2L2 +M)1/2‖y‖L2 ≤ (ε‖zm‖2 +M)1/2‖y‖.

This implies

lim
m→∞

‖g′(zm)‖
‖zm‖

≤ ε, for any ε > 0,

i.e.
‖g′(zm)‖
‖zm‖

→ 0 as m→ +∞. (2.9)

Write

zm = z+
m + z−m + z0

m

∈M+(Pm(A−B∞)Pm)⊕M−(Pm(A−B∞)Pm)⊕M0
m(A−B∞)Pm).

Then

〈f ′m(zm), z+
m〉 =

1
2
〈(A−B∞)z+

m, z
+
m〉 − 〈g′(zm), z+

m〉

≥ C1‖z+
m‖2 − ‖g′(zm)‖‖z+

m‖.

By (2.8) and (2.9), we have

‖z+
m‖
‖zm‖

→ 0 as m→∞. (2.10)

Similarly, we have
‖zm‖
‖zm‖

→ 0 as m→∞. (2.11)

Case(i): (H4+) holds.

〈f ′m(zm), zm〉 − 2fm(zm) =
∫ 1

0

[2G∞(t, zm)− (G′∞(t, zm), zm)]dt

≥ C1

∫ 1

0

|zm|dt− C2

≥ C1

∫ 1

0

|z0
m|dt−

∫ 1

0

C1(|z+
m|+ |z−m|)dt− C2

≥ C3‖z0
m‖ − C4(‖z+

m‖+ ‖z−m‖+ 1).
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Here we used the fact that M0(Pm(A − B∞)Pm) = ker(A − B∞) is finite di-
mensional. By (2.8), (2.10) and (2.11), we have

‖z0
m‖
‖zm‖

→ 0 as m→∞. (2.12)

But this implies the following contradiction,

1 =
‖zm‖
‖zm‖

≤ ‖z
0
m‖+ ‖z−m‖+ ‖z+

m‖
‖zm‖

→ 0 as m→ +∞. (2.13)

Therefore {zm} must be bounded, and f satisfies (PS)∗c condition under (H4+).

Case (ii): (H4−) holds. Similar to case (i), we have

2fm(zm)− 〈f ′m(zm), zm〉 =
∫ 1

0

[G′∞(t, zm), zm)− 2G∞(t, zm)]dt

≥ C1

∫ 1

0

|zm| − C2 ≥ C3‖z0
m‖ − C4‖z+

m‖+ ‖z−m‖+ 1).

This implies (2.12) and (2.13). Thus {zm} must be bounded, and f satisfies
(PS)∗c condition under (H4−).

Notice that we assume ‖zm‖ → +∞ as m → +∞. Then by (2.10) and
(2.11), there exist m0 > 0 such that for m ≥ m0

‖z0
m‖ ≥ ‖z+

m + z−m‖. (2.14)

Moreover, if |G′∞(t, zm)| ≤ M1|z|β for |z| ≥ L, we will show that for m large
enough

‖z+
m + z−m‖ ≤ ε0‖z0

m‖β , (2.15)

where ε0 > 0 is a constant independent of m. In fact, we have

|G′∞(t, z)|2 ≤M2
1 |z|2β +M2;

|〈g′(zm), y〉| ≤
∫ 1

0

|G′∞(t, zm)||y|dt ≤ (
∫ 1

0

|G′∞(t, zm)|2dt)1/2‖y‖L2

≤ (M2
1 ‖zm‖

2β
L2β +M2)1/2‖y‖L2 ≤ (M2

1 ‖zm‖2β +M2)1/2‖y‖.

This implies that for m large enough

‖g′(zm)‖
‖(zm)‖β

≤M3. (2.16)

By (2.8), (2.14) and (2.16), for m large enough, we have

0← ‖f ′m(zm)‖ = ‖〈A−B∞)zm − Pmg′(zm)‖
≥ ε1‖z+

m + z−m‖ −M3‖zm‖β

≥ ε1‖z+
m + z−m‖ −M32β‖z0

m‖β .

This implies that, for m large enough, (2.15) holds.
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Case (iii): (H5+) holds. By (2.2) and (2.15), for m large enough,

g(zm) =
1
2
〈(A−B∞)(z+

m + z−m), z+
m + z−m〉 − f(zm)

≤ C1‖z+
m + z−m‖2 + C0 ≤ C2‖z0

m‖2β + C0.
(2.17)

On the other hand, by (H5+),

g(zm) =
∫ 1

0

G∞(t, zm)dt ≥
∫ 1

0

M2|zm|αdt−M3 ≥M4‖z0
m‖α −M3. (2.18)

Notice that α > 2β, we get a contradiction from (2.17) and (2.18). Therefore
{zm} is bounded, and f satisfies (PS)∗c condition under (H5+). Here in (2.18)
we used the following claim.
Claim: For m large enough, there exists ε2 > 0 such that∫ 1

0

|zm|αdt ≥ ε2‖z0
m‖α. (2.19)

In fact, for α > 1, by (2.15) and the fact β < 1, we have∫ 1

0

(zm, z0
m)dt ≤

(∫ 1

0

|zm|αdt
)1/α(∫ 1

0

|z0
m|

α
α−1 dt

)α−1
α

≤ Cα
(∫ 1

0

|zm|αdt
)1/α

‖z0
m‖;

∫ 1

0

(zm, z0
m)dt =

∫ 1

0

(z0
m, z

0
m)dt+

∫ 1

0

(z+
m + z−m, z

0
m)dt

≥
∫ 1

0

(z0
m)2dt− ε3‖z+

m + z−m‖‖z0
m‖

≥ ε4‖z0
m‖2 − ε5‖z0

m‖1+β ≥ ε6‖z0
m‖2,

for m large enough. This implies (2.19) for α > 1.
For α = 1, since z0

m ∈ ker(A − B∞), we know that z0
m satisfies the linear

system
ż = JB∞(t)z.

This implies that z0
m(t) 6= 0, ∀t ∈ [0, 1]. Therefore

c1‖z0
m‖ ≤ |z0

m(t)| ≤ c2‖z0
m‖, ∀t ∈ [0, 1],

where c1, c2 > 0 are constants independent of m [4]. Now we have∫ 1

0

(zm, z0
m)dt ≤

∫ 1

0

|zm||z0
m|dt ≤ (

∫ 1

0

|zm|dt)‖z0
m(t)‖∞

≤ c2‖z0
m‖(

∫ 1

0

|zm|dt).
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Combining this with the proved fact∫ 1

0

(zm, z0
m)dt ≥ ε6‖z0

m‖2,

we get (2.19) for α = 1.

Case(iv): (H5−) holds. Similar to case(iii), we have

−
∫ 1

0

G∞(t, zm)dt ≤ |fm(zm)|+ |1
2
〈(A−B∞)zm, zm〉| ≤ C2‖z0

m‖2β + C0;

−
∫ 1

0

G∞(t, zm)dt ≥
∫ 1

0

(M2|zm|α −M3)dt ≥M4‖z0
m‖α −M3.

We get a contradiction because of α > 2β. Thus {zm} is bounded, and f satisfies
(PS)∗c condition under (H5−).

Case(v): (H6+) holds. For m large enough, by (2.15) and the claim in Case
(iii), we have∫ 1

0

(G′∞(t, zm), zm)dt

≤ | − 〈f ′m(zm), zm〉+ 〈(A−B∞)(z+
m + z−m), (z+

m + z−m)〉|
≤ ‖zm‖+ ε6‖z+

m + z−m‖2 ≤ ‖z0
m‖+ ε0‖z0

m‖β + ε7‖z0
m‖2β ;

(2.20)

∫ 1

0

(G′∞(t, zm), zm)dt ≥M2

∫ 1

0

|zm|αdt−M3 ≥M4‖z0
m‖α −M3. (2.21)

We get a contradiction from α > 2β, (2.20) and (2.21). Thus {zm} is bounded,
and f satisfies (PS)∗c condition under (H6+).

Case(vi): (H6−) holds. Similar to case(v), we have

−
∫ 1

0

(G′∞(t, zm), zm)dt ≤ ‖z0
m‖+ ε0‖z0

m‖β + ε7‖z0
m‖2β ;

−
∫ 1

0

(G′∞(t, zm), zm)dt ≥M4‖z0
m‖α −M3.

Then α > 2β implies that {zm} must be bounded, and f satisfies (PS)∗c condi-
tion under (H6−). �

Proof of Theorem 1.1 Case(i) & (iii): By a direct computation, (H4+)
and (H5+) imply that

G∞(t, z)→ +∞ as |z| → ∞. (2.22)
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By (H2), for any ε > 0, there exists M > 0 such that

|G∞(t, z)| ≤ ε|z|2 +M. (2.23)

For m > 0, by using the same arguments as in the proof of Lemma 2.4, we know
that fm satisfies (PS) condition. Let

Xm = M−(Pm(A−B∞)Pm)⊕M0(Pm(A−B∞)Pm),

Ym = M+(Pm(A−B∞)Pm).

By (2.23), for all z+ ∈ Ym, we have

fm(z+) =
1
2
〈(A−B∞)z+, z+〉 −

∫ 1

0

G∞(t, z+)dt ≥ C1‖z+‖2 − ε‖z+‖2 −M.

We can choose 0 < ε ≤ C1/2. Then there is a δ > 0 such that

fm(z+) ≥ −δ > −∞, ∀z+ ∈ Ym. (2.24)

By (2.22), there exist M0 > 0, such that G∞(t, z) ≥ −M0, for all z ∈ R2N . This
implies that, for all z− ⊕ z0 ∈ Xm,

fm(z− ⊕ z0) =
1
2
〈(A−B∞)z−, z−〉 −

∫ 1

0

G∞(t, z− + z0)dt

≤ −C1‖z−‖2 +M0 ≤ −2δ,

if ‖z−‖ ≥ L =
√

2δ+M0
C1

.

Since M0(Pm(A−B∞)Pm) = M0(A−B∞) is a finite dimensional space, by
(2.22) we have that∫ 1

0

G∞(t, z− + z0)dt→ +∞ as ‖z0‖ → +∞ uniformly for ‖z−‖ ≤ L .

Thus there exists L1 > 0 such that for ‖z0‖ ≥ L1 and ‖z−‖ ≤ L

fm(z− + z0) ≤ −
∫ 1

0

G∞(t, z− + z0)dt ≤ −2δ.

Let Qm = {z− ⊕ z0 ∈ Xm : ‖z− + z0‖ ≤ L+ L1}. Then we have

fm(z) ≤ −2δ, ∀z ∈ ∂Qm. (2.25)

Let S = Ym. Then ∂Qm and S homologically link [5]. Let D = ∂Qm and
α = [Qm] ∈ Hk(Em, D) with k = dim(Xm). Then α is nontrivial and F(α)
defined by Definition 2.2 is a homological family of dimension k with boundary
D [5, p. 84]. By Theorem 2.3, (2.24) and (2.25), there exists a critical point xm
of fm such that the Morse indices m−(xm) and m0(xm) of fm at xm satisfies

dimXm −m0(xm) ≤ m−(xm) ≤ dimXm; (2.26)
−δ ≤ fm(xm) = cm = c(fm,F(α)). (2.27)
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Since Qm ∈ F(α), by (2.23) we have

−δ ≤ cm ≤ sup
z−+z0∈Qm

fm(z− + z0)

≤ 1
2
‖(A−B∞)‖(L+ L1)2 + ε(L+ L1)2 +M = M2,

where δ andM2 are constants independent ofm. Hence passing to a subsequence
we have

cm → c, −δ ≤ c ≤M2.

Since f satisfies (PS)∗c condition, passing to a subsequence, there exist x∗ ∈ E
such that

xm → x∗, f(x∗) = c, f ′(x∗) = 0 . (2.28)

By standard arguments, x∗ is a classical solution of (1.1).
Let B∗(t) = H ′′(t, x∗(t)) and B∗ be the operator, defined by (2.1), corre-

sponding to B∗(t). Let (i∗, n∗) be the Maslov-type index of B∗(t). It is easy to
show that

‖f ′′(z)− (A−B∗)‖ → 0 as ‖z − x∗‖ → 0.

Let d = 1
4‖(A−B

∗)#‖−1. Then there exists r0 > 0 such that

‖f ′′(z)− (A−B∗)‖ < 1
2
d, ∀z ∈ Vr0 = {z ∈ E : ‖z − x∗‖ ≤ r0}.

This implies that

dimM±(f ′′m(z)) ≥ dimM±d (Pm(A−B∗)Pm), ∀z ∈ Vr0 ∩ Em. (2.29)

By (2.26), (2.28), (2.29) and Theorem 2.1, there exist m1 > m∗ such that for
m ≥ m1,

m+ n∞ = dim(Xm) ≥ m−(xm) ≥ dimM−d (Pm(A−B∗)Pm) = m− i∞ + i∗;

m+ n∞ = dim(Xm) ≤ m−(xm) +m0(xm)

≤ dim[M−d (Pm(A−B∗)Pm)⊕M0
d (Pm(A−B∗)Pm)]

= m− i∞ + i∗ + n∗.

This implies that i∞ + n∞ ∈ [i∗, i∗ + n∗], which means that x∗ 6= 0, i.e., x∗ is a
nontrivial 1-periodic solution of the system (1.1).

Case(ii)&(iv): By (H4−) and (H5−) we have

G∞(t, z)→ −∞ as |z| → ∞.

Let Xm = M−(Pm(A−B∞)Pm) and Ym = M+(Pm(A−B∞)Pm)⊕M0(Pm(A−
B∞)Pm). By using similar arguments as in the proof of (2.24) and (2.25) we
have

fm(z+ + z0) ≥ −δ1 > −∞, ∀z+ + z0 ∈ Ym;
fm(z) ≤ −2δ1, ∀z ∈ ∂Qm,
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where Qm = {z− ∈ Xm : ‖z−‖ ≤ L2}. Here δ1 > 0 and L2 > 0 are constants
independent of m. By using the same arguments, one can prove that (2.26)-
(2.29) still hold. By Theorem 2.1 there exist m2 > m∗ such that for m ≥ m2

m = dim(X) ≥ m−(xm) ≥ dimM−d (Pm(A−B∗)Pm) = m− i∞ + i∗;

m = dim(X) ≤ m−(xm) +m0(xm) ≤ m− i∞ + i∗ + n∗.

Therefore, we have i∞ ∈ [i∗, i∗+n∗], which implies x∗ 6= 0, i.e., x∗ is a nontrivial
1-periodic solution of the system (1.1).

Case(v): (H6+) holds. We shall use the same idea as in the proof of [9,
Theorem 1.1]. Let X = ker(A − B∞), Y = Im(A − B∞), and P : E → X,
Q : E → Y be the orthogonal projections. By the special construction of the
Galerkin approximation scheme {Pm}, we have

Em = X ⊕ PmY, ker(Pm(A−B∞)Pm) = X, Im(Pm(A−B∞)Pm) = PmY.

For given m > 0, since dimEm < +∞, we have∫ 1

0

|z|αdt ≥ cm‖z‖α, ∀z ∈ Em, (2.30)

where cm > 0 is a constant which depends on m. Let π be the flow of fm in
Em, generated by

ẏ = −(A−B∞)y +QPmg
′(x+ y),

ẋ = P (Pmg′(x+ y)), for (x, y) ∈ X ⊕ PmY = Em.

Let

V ± = {y± ∈M±(Pm(A−B∞)Pm) : ‖y±‖ ≤ rY }, W = {x ∈ X : ‖x‖ ≤ rX}.

We shall show that there are rY > 0 and rX > 0 such that D = (V −×V +)×W
is an isolating block of π.

By using the some arguments as in the proof of (2.16), (H6+) implies that

‖g′(z)‖ ≤M3‖z‖β , ∀z ∈ E, ‖z‖ ≥ L. (2.31)

On the other hand, (2.30) and (H6+) also imply that

〈g′(zm), zm〉 ≥M2cm‖zm‖α −M4, ∀zm ∈ Em. (2.32)

For any x ∈ ∂W , y ∈ V − × V +, by (2.30)-(2.32) we have

d

dt
(
1
2
‖x‖2)|t=0 = 〈x, ẋ〉|t=0 = 〈x, g′(x+ y)〉|t=0

= 〈x+ y, g′(x+ y)〉|t=0 − 〈y, g′(x+ y)〉|t=0

≥M2cm‖x+ y‖α −M4 −M3‖x+ y‖β‖y‖
≥ ‖x+ y‖β [M2cm‖x+ y‖α−β −M3‖y‖]−M4

≥ rβX [M2cmr
α−β
X −M3rY ]−M4

≥ rβXrY −M4 ≥ 1 > 0,
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provided

rα−βX = (
M3 + 1
M2cm

)rY = c′rY , and rX ≥ [c′(M4 + 1)]1/2 + 1. (2.33)

For any y− ∈ ∂V −, y+ ∈ V +, x ∈ W , and y = y+ + y−, by (2.30)-(2.33) we
have

d

dt
(
1
2
‖y−‖2)|t=0 = 〈ẏ−, y−〉|t=0

= [−〈(A−B∞)y−, y−〉+ 〈QPmg′(x+ y), y−〉]|t=0

≥ ρr2
Y −M3‖x+ y‖β‖y−‖ ≥ ρr2

Y −M3(rX + 2rY )βrY

≥ ρr2
Y −M3[(c′rY )

1
α−β + 2rY ]βrY ,

(2.34)
where

ρ = inf
‖y−‖=1

|〈y−, (A−B∞)y−〉|, and y− ∈M−(A−B∞).

If α− β ≥ 1 and rY ≥ 1, by (2.34) we have

d

dt
(
1
2
‖y−‖2)|t=0 ≥ ρr2

Y −M3[c′
1

α−β + 2]βrβ+1
Y > 0,

provided

rY ≥ (
M3[c′

1
α−β + 2]β + 1

ρ
)

1
1−β + 1. (2.35)

If α− β < 1 and rY ≥ 1, we have

d

dt
(
1
2
‖y−‖2)|t=0 ≥ ρr2

Y −M3[c′
1

α−β + 2]β · r
α

α−β
Y > 0,

provided

rY ≥ (
M3[c′

1
α−β + 2]β + 1

ρ
)
α−β
α−2β + 1. (2.36)

Now we can choose rX > 0 and rY > 0 such that (2.33)-(2.36) hold. Similarly,
for any y+ ∈ ∂V +, y− ∈ V −, x ∈W , we have

d

dt
(
1
2
‖y+‖2)|t=0 < 0.

Therefore D is an isolating block of π and

D− = (∂V − × V +)×W ∪ (V − × V +)× ∂W.

Follow the same arguments as in the proof of Theorem 1.1 in [9], by Conley
index theory, f has a critical point x∗ 6= 0, i.e., x∗ is a nontrivial 1-periodic
solution of the system (1.1).
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Case(vi): (H6−) holds. Using the same arguments as in the proof of Case(v),
(H6−) implies that

d

dt
(
1
2
‖x‖2)|t=0 < 0.

Therefore D is an isolating block of π and D− = (∂V − × V +)×W . By Conley
index theory [9, Theorem 3.3], f has a critical point x∗ 6= 0, i.e., x∗ is a nontrivial
1-periodic solution of the system (1.1). We omit the details.

3 Examples

In this section, we give some examples which can not be solved directly by the
results in the references.

Example 3.1: Consider the function given by (1.2), i.e.,

H(t, z) =
7|z|2

2 ln(e+ |z|2)
, ∀t ∈ [0, 1], ∀z ∈ R2N .

Then B0(t) = 7I2N , B∞(t) = 0. By a direct computation,

(i0, n0) = (3N, 0), (i∞, n∞) = (−N, 2N),
i∞ + n∞ = N /∈ [3N, 3N ] = [i0, i0 + n0].

Moreover, G∞(t, z) = H(t, z) satisfies (H4+). By Theorem 1.1(i), the system
(1.1) possesses a nontrivial 1-periodic solution.

Example 3.2: Consider the function given by (1.3), i.e.,

H(t, z) =
1
2
|z|2 − |z|2

ln(e+ |z|2)
, ∀t ∈ [0, 1], ∀z ∈ R2N .

Then B0(t) = −I2N , B∞(t) = I2N . By a direct computation

(i0, n0) = (−N, 0), (i∞, n∞) = (N, 0), and G∞(t, z) = − |z|2

ln(e+ |z|2)
.

One can show that (H4−) holds. Theorem 1.1(ii) implies that the system (1.1)
has a nontrivial 1-periodic solution.

Example 3.3: Let H(t, z) ∈ C2([0, 1]× R2N ,R) such that

H(t, z) =
7
2
|z|2 for |z| ≤ 1;

H(t, z) = |z| ln(1 + |z|2) for |z| ≥ 100.

Then B0(t) = 7I2N , B∞(t) = 0, and G∞(t, z) = H(t, z) satisfies (H5+) with
α = 1, β = 1

4 and L being large enough. By Theorem 1.1(iii), the system (1.1)
has a nontrivial 1-periodic solution.
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Example 3.4: Let H(t, z) ∈ C2([0, 1]× R2N ,R) such that

H(t, z) =
7
2
|z|2 for |z| ≤ 1;

H(t, z) = |z| 43 ln(1 + |z|2) for |z| ≥ 100.

By a direct computation, G∞(t, z) = H(t, z) satisfies (H6+). Thus the system
(1.1) has a nontrivial 1-periodic solution by Theorem 1.1(v).

Example 3.5: Let H(t, z) ∈ C2([0, 1]× R2N ,R) such that

H(t, z) =
7
2
|z|2 for |z| ≤ 1;

H(t, z) = −|z| 43 ln(1 + |z|2) for |z| ≥ 100.

Then (H6−) holds. By Theorem 1.1(vi), the system (1.1) possesses a nontrivial
1-periodic solution.

Acknowledgments: The author wishes to express his sincere thanks to the
referee for useful suggestions.
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