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Existence of solutions for quasilinear degenerate
elliptic equations *

Y. Akdim, E. Azroul, & A. Benkirane

Abstract

In this paper, we study the existence of solutions for quasilinear de-
generate elliptic equations of the form A(u) + g(z,u, Vu) = h, where A
is a Leray-Lions operator from Wol’p(Q,w) to its dual. On the nonlinear
term g(z,s,&), we assume growth conditions on £, not on s, and a sign
condition on s.

1 Introduction

Let Q be a bounded open subset of RY . p be a real number with 1 < p < oo, and
w = {w;(x)} 0 <i < N be a vector of weight functions on €; i.e. each w;(x) is
a measurable a.e. strictly positive function on 2, satisfying some integrability
conditions (see section 2). Let X = W, (Q,w) be the weighted Sobolev space
associated with the vector w. Assume:

(A0) The norm

lull|x = (i/ﬂﬁ;ﬁ?) Py () dm)l/p

is equivalent to the usual norm on X; see (2.2) below.

(A1) There exists a weight function o(x) on €2 and a parameter ¢, 1 < ¢ < oo,
such that the Hardy inequality,

(/Qu(x)|qadx)1/q < c(i/gpg_g)p’wz(x) dx)l/p

holds for every u € X with a constant ¢ > 0 independent of u. Moreover,
the imbedding X «— L9(Q, 0) is compact.
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Let A be the nonlinear operator from X into the dual X™* defined as
Au = —div(a(z,u, Vu)), (1.1)

where a(z,s,&) = {a;(7,5,6)}, 1 <i < N: QxRxRY — RY is a Carathéodory
vector-valued function.

(A2) We assume that

N
Jai(z, 5,6)| < crw} (@) [k(x) + /P [s|7 + > wi’ ()& P71,
j=1

all (s,¢) € Rx RN all i = 1,..., N, some function

€
+ % = 1) and some constant ¢; > 0. Here ¢ and ¢ are

for a.e. z € Q
k(z) € LP (Q) (
as in (Al).

3=

(A3) For a.e. z € Q, all (5,€) € R x RY and some constant ¢y > 0, we assume
that

N
a(z,5,£).£ > ey wiz)&l".

=1

Recently, Drabek, Kufner and Mustonen [5] proved that under the hypotheses
(A0-A3) and certain monotonicity conditions, the Dirichlet problem associated
with the equation Au = h, h € X* has at least one solution u in Wy (€, w).
See also [1], where A is of the form — div(a(z,u, Vu)) + ag(x, u, Vu).

The purpose in this paper, is to prove the same result for the general non-
linear elliptic equation

Au+ g(x,u,Vu) = h,h € X*

where ¢ is a nonlinear lower-order term having natural growth (of order p)
with respect to |Vu|. Regarding |u|, we do not assume any growth restrictions.
However, we assume the “sign condition”

g(x,8,8).s>0.
More precisely, we prove in theorem 3.1 an existence result for the problem

Au+ g(z,u,Vu) =h in D'(Q),

we Wy (Quw), g(z,u,Vu) € LNQ), g(z,u, Vu)u € L1(Q). (12)
It turns out that for a solution u of this system, the term g(z,u, Vu) is in L1 (Q).
However, for a general v € W, * (2, w), g(x,v, Vo) can be very singular (see for
example [3] where w = 1).

Let us point out that more work in this direction can be found in [7] where
the authors have studied the existence of bounded solutions for the degenerate
elliptic equation

Au — colulP7?u = h(x,u, Vu),
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with some more general degeneracy, under some additional assumptions on h
and a(x,s,£). When w = 1 (the non weighted case) existence results for the
problem (1.2) have been shown in [3].

The present paper is organized as follows: In section 2, we give some prelim-
inaries and we prove some technical lemmas concerning convergence in weighted
Sobolev spaces. In section 3, we state our general result which will be proved
in section 4. Section 5 is devoted to an example which illustrates our abstract
hypotheses. Note that, in the proof of our main result, many ideas have been
adapted from Bensoussan et al. [3].

2 Preliminaries

Weighted Sobolev spaces. Let  be a bounded open subset of RY (N > 1),
let 1 < p < oo, and let w = {w;(x)}, 0 <i < N be a vector of weight functions;
i.e. every component w;(z) is a measurable function which is strictly positive
a.e. in 2. Further, we suppose in all our considerations that for 0 <i < N,

1
w; € L () and w; "" € L (). (2.1)
We define the weighted space with weight v on 2 as
L9(Q7) = {u=u(@) : w7 € LP(Q)}.

In this space, we define the norm

Py = (/ﬂ |u(z)[Py(x) dm)l/p.

We denote by WP(Q,w) the space of all real-valued functions u € LP(Q,wy)
such that the derivatives in the sense of distributions satisfy

ou

Lq

[[u

€ LP(Qw;) foralli=1,...,N.

This set of functions forms a Banach space under the norm

e = ( [ o Puoe)ds + 3 L% ruwan) " e

To deal with the Dirichlet problem, we use the space
X = WyP(Q,w)

defined as the closure of C§°(2) with respect to the norm (2.2). Note that,
C°(Q) is dense in Wy (Q,w) and (X, ||.|1p.w) is a reflexive Banach space.
We recall that the dual space of the weighted Sobolev spaces WO1 P(Q,w) is
equivalent to W17 (Q, w*), where w* = {w} = wil_p/} 1=0,...,N, and p’ is

the conjugate of p i.e. p' = pf 7. For more details, we refer the reader to [6].
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Definition. Let X be a reflexive Banach space. An operator B from X to the
dual X* satisfies property (M) if for any sequence (u,) C X satisfying u,, — u
in X weakly, B(u,) — x in X* weakly and limsup,,_, .o (Btn, un) < (x,u) then
one has x = B(u).

Now we state the following assumption.

(H1) The expression

— S 8u(x)p . 1/p
ol = 32 [ 15, Paste) ) (23)

is a norm defined on X and is equivalent to the norm (2.2).

Note that (X, ||.]||x) is a uniformly convex (and thus reflexive) Banach space.
There exist a weight function ¢ on {2 and a parameter ¢, 1 < ¢ < 0o, such that
o'~ e L), (2.4)

with ¢/ = q% and such that the Hardy inequality,

(/Q lu(z)|90 da:) e < c<§: |6§9(cf) [Pw; (z) dm) 1/p, (2.5)

=179

holds for every v € X with a constant ¢ > 0 independent of u. Moreover, the
imbedding
X — L1(Q,0), (2.6)

determined by the inequality (2.5) is compact.
Now we state and prove the following technical lemmas which are needed
later.

Lemma 2.1 Let g € L"(Q,7) and let g, € L™(Q,7), with ||gnllry <c, 1 <7<
oo. If gn(z) — g(x) a.e. in Q, then g, — g in L"(,v), where — denotes weak
convergence and 7y is a weight function on 2.

Proof. Since g,y'/" is bounded in L"(Q) and g, (z)y"/"(x) — g(z)v"/"(z),
a.e. in Q, then by [11, Lemma 3.2], we have
gny" = gy in LT(Q).

Moreover for all ¢ € L™ (€,7*~""), we have oy~ € L (Q). Then

/gnwdxﬁ/gwdln ie. gn —gin L"(2,7).
Q Q

Lemma 2.2 Assume that (H1) holds. Let F' : R — R be uniformly Lips-
chitzian, with F(0) = 0. Let u € Wy P(Q,w). Then F(u) € Wo(Q,w). More-
over, if the set D of discontinuity points of F' is finite, then
O(Fou) F’(u)g—; a.e. in{x € N:u(zx) gD}

or; ] 0 a.e. in{x €N :u(x) e D}.
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Remark. The previous lemma is a generalization of the corresponding in [8,
pp. 151-152], where w = 1 and F € C!'(R) and F’ € L*(R), and of the
corresponding in [2], where wg = wy = -+ = wy is some weight function,
F € C'(R) and F’' € L>=(R). Also note that the previous lemma implies that
functions in Wy (Q, w) can be truncated.

Proof of Lemma 2.2 First, note that the proof of the second part of Lemma
2.2 is identical to the corresponding in non weighted case in [8]. Consider firstly
the case F € C'(R) and F’ € L®(R). Let u € WyP(Q,w). Since C§°(Q) is
dense in WP (€, w), there exists a sequence u, € C5°(Q) such that u,, — u in
WO1 P(Q,w). Passing to a subsequence, we can assume that,

Uy — U a.e. in €

Vu, — Vu a.e. in .

Then
F(up) — F(u) a.e. in Q. (2.7)

On the other hand, from the relation |F(u,)|Pwy < ||F”]| oo |tn|Pwo and

aF(u)p_ ! %P.
| o, [Pw; = |F (un)3x1| w;

< M|

|pwia

i

we deduce that the function F(u,,) remains bounded in W, *(2, w). Thus, going
to a further subsequence, we obtain

F(uy) — v in Wy P (2, w). (2.8)
Thanks to (2.7),(2.8) and (2.6) we conclude that
v=F(u) € Wy (Q,w).

We now turn our attention to the general case. Taking convolutions with
mollifiers p, in R, we have F,, = F * p,,, F,, € C}(R) and F/, € L>°(R). Then
by the first case we have F, (u) € Wy ?(Q,w). Since F,, — F uniformly in every
compact, we have F,(u) — F(u) a.e. in Q. On the other hand, (F,(u)) is
bounded in WyP(€, w), then for a subsequence F,(u) — o in Wy ?(Q,w) and
a.e. in Q (due to (2.6)), then

o= F(u) € Wy (Q,w).

The following lemmas follow from the previous lemma.

Lemma 2.3 Assume that (H1) holds. Let u € Wy P (%, w), and let Ty(u), k €
R*, be the usual truncation then Ty(u) € Wy P (Q,w). Moreover, we have

T (u) — u strongly in W, P (2, w).
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Lemma 2.4 Assume that (H1) holds. Letu € Wy P (Q,w), then ut = max(u, 0)

and u~ = max(—u,0) lie in WyP(Q,w). Moreover, we have
o(ut) gz_, if u>0
or; | 0, if u <0

du=) [0, ifu>0
ox; —g—;i, if u < 0.

Lemma 2.5 Assume that (H1) holds. Let (u,) be a sequence of Wy (Q,w)
such that u, — u weakly in Wy *(Q,w). Then, u}; — ut weakly in Wy* (2, w)
and u;, — u~ weakly in Wy (Q,w).

Proof. Since u, — u in Wy?(Q,w) and by (2.8) we have for a subsequence
up, — u in LI(Q, o) and a.e. in . On the other hand,

et 115 —i/ Iau"\”w- >§N:/ \a“”V’w-
X — o 8%‘1 zfi:1 { 6.131 7

up >0}
N
out
=5~ [ 15 P = e 1
i Jo 0T

Then (u;") is bounded in W, ?(Q,w) hence by (2.6), u;f — ut in WyP(Q,w).

n
Similarly, we prove that u;, — u~ in W, *(Q, w).

3 Main result

Let A be the nonlinear operator from Wy (Q,w) into the dual W1 (€, w*)
defined as

Au = —div(a(x,u, Vu)),

where a : Q x R x RV — RY is a Carathéodory vector-function satisfying the
following assumptions:

(H2) Fori=1,...,N,

N
jai(x, 5,6)| < Bul’? (@) k(@) + 7 |s|7 + 3w (@)e; P, (3.1)

j=1
la(z,s,€) —a(z, s, —n) >0 forallé£neRY,  (3.2)
N
a(z,s5,€).6 > ay wl&l?, (3.3)
=1

where k(z) is a positive function in L”,(Q) and «, B are positive constants.
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(H3) g(z,s,£) is a Carathéodory function satisfying

9(z,5,8)s 20, (3.4)

N
l9(z, 5,6 < b(Is) (D wilésl” + e(a)), (3.5)

i=1

where b : RT — RT is a continuous increasing function and ¢(z) is positive
function which in L(Q).

For the nonlinear Dirichlet boundary-value problem (1.2), we state our main
result as follows.

Theorem 3.1 Under assumptions (H1)-(H3) and h € W1 (Q,w*), there
exists a solution of (1.2).

Remarks. (1) Theorem 3.1, generalizes to weighted case the analogous state-
ment in [3].

(2) The assumption (2.4) appear to be necessary only for proving the bounded-
ness of g in Wol’p(ﬂ, w). Thus, when g = 0, we do not need assumption (2.4).
(3) If we assume that wo(z) = 1 and that there exists v €)%, co[N[+Ly, 00|
such that w;” € L'(Q) for all i = 1,..., N, (which is an integrability condition,
stronger than (2.1)), then

is a norm defined on W, ?(Q,w) and equivalent to (2.2). Also we have that
Wy (Q,w) — LI(Q)

for 1 <g<pi,pr < N(v+1), and ¢ > 1 is arbitrary for pv > N(v + 1) where
p1 = 25. Where pj = I\vafgl = N(Vji’f;’fpu is the Sobolev conjugate of p; (see
[6]). Thus the hypotheses (H1) is verified (for o = 1).

For Theorem 3.1, we needed the following lemma.

Lemma 3.2 Assume that (H1) and (H2) are satisfied, and let (u,) be a se-
quence in Wy'P(Q,w) such that u, — u weakly in Wy P (Q, w) and

/Q[a(x,un, V) — a(z, un, Vu)]V (uy, —u) de — 0. (3.6)

Then, u, — u in Wy (Q,w).
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Proof. Let D,, = [a(z, un, Vuy,) — a(z, tn, Vu)]V(u, —u). Then by (3.2), D,
is a positive function and by (3.6) D,, — 0 in L!(Q). Extracting a subsequence
still denoted by u,,, and using (2.6), we can write

U, — U a.e. in§
D, —0 a.. in .

Then, there exists a subset B of 1, of zero measure, such that for z € Q\B,
[u(z)] < oo, |Vu(x)] < oo, |k(z)] < 0o, wi(x) > 0 and u,(x) — u(z), Dy(z) —
0. We set &, = Vu,(z), £ = Vu(x). Then

Dn(.’ﬂ) :[G(I,un,fn) - a(x, unag)](gn - g)
N N
>0 S wlel oY wilel?
i=1 =1

N N
’ 9 / . _ 2
=5 Bwl k() + M |+ S wl P |||
i=1 j=1 (3.7)

N N
=" Bw!Plk(x) + o Jun [+ S wi P eI P €L
=1

Jj=1

N N N
>a Y wilehlr — e [L+ 3wt + 3wl
=1

j=1 i=1

where ¢, is a constant which depends on x, but does not depend on n. Since
up () — u(z) we have |u, ()| < M, where M, is some positive constant. Then
by a standard argument |&,| is bounded uniformly with respect to n; indeed
(3.7) becomes,

i ; c o cpwt?
Da(w) > S [P (ow — 2 - S ),
< NgP TGl TEr

If |¢,| — oo (for a subsequence) there exists at least one ig such that |£0] — oo,
which implies that D,,(z) — oo which gives a contradiction.

Let now &£* be a cluster point of £,. We have |£*| < oo and by the continuity
of a with respect to the two last variables we obtain

(a(z,u(x),£") — alz, u(x),£))(E" - §) = 0.
In view of (3.2) we have £&* = £. The uniqueness of the cluster point implies
Vu,(z) = Vu(z) a.e. in Q.
Since the sequence a(z, Uy, Vuy,) is bounded in Hfil LY (Q,w}) and
a(x, up, Vi) — a(z,u, Vu) a.e. in Q, Lemma 2.1 implies

N
a(x, Up, Vuy) = a(z,u, Vu) in HLPI(Q,w;“) and a.e. in Q.
i=1
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We set g, = a(z, up, Vu,)Vu, and § = a(z,u, Vu)Vu. Asin [4, Lemma 5] we
can write

Un — 7 in LY(Q).
By (3.3) we have

N
ou
a;wﬂa—xﬁ\p < a(x, tun, Vup)Vu, .

Let z, = Zf;l wi|%’;ﬁ Pz = Zivzl wi\%\p, Yn = 2 and y = £. Then, by
Fatou’s theorem we obtain /
/ 2ydx < liminf/ Y+ Yn — |2n — 2| dx
Q n—oo Q
ie. 0 < —limsup, .. []2n — 2| dz then
0< liminf/ |2n, — 2| dz < limsup/ |z, — 2| dz <0,
n—oo Jo n—00 Q
this implies,
N
Vu, — Vu in l_IL”(Q,wi)7
i=1
which with (2.3) completes the present proof.
4 Proof of Theorem 3.1
Step (1) The approximate problem. Let
9(z,5,¢)
l‘? 87 = T .
A ]
and consider the equation
A(us) +ge($7u57vus) =h (41)

ue € WyP (€, w)
We define the operator G, : X — X* by

(G.u,v) :/ge(x,u,Vu)vdx.
Q

Thanks to Holder’s inequality, for all v € X and ¢ € X,

;o d 1/4 1/
| [ 9etev Voredal <( [ lgetoo. Vo)l o da) " ( [ felroar) "
Q Q Q
1 ’ 1/q,
<= 1—q
([ o) e

For the above inequality, we have used (2.4) and (2.6).

g0 < celllell
(4.2)



10 Existence of solution for quasilinear . .. EJDE-2001/71

Lemma 4.1 The operator A+ G. : X — X* is bounded, coercive, hemiconti-
nous ,and satisfies property (M).

In view of Lemma 4.1, Problem (4.1) has a solution by a classical result [10,
Theorem 2.1 and Remark 2.1]. Since g. verifies the sign condition and using

(3.3), we obtain
QZNJ/'MI&“EI”< (h )
im1 Q 81‘2 - ’
te|||. Then
[[luelll < Bo, (4.3)

where (g is some positive constant. Hence, we can extract a subsequence still
denoted by u. such that,

Le. afl|uclllP” < [l x-

ue — u in WyP(Q,w) and a.e. in Q.
Step (2) Convergence of the positive part of u.. We shall prove that
ut — ut in Wy P (Q,w)  strongly.
Let k > 0. Define uf = u* Ak = min{u™, k}. We shall fix k, and use the

notation

Ze :ujfu;.

Assertion:

lim sup/ la(z, ue, Vul) — a(x, ue, Vi )|V (ul —uf )T de < Ry, (4.4)
Q

e—0

where Ry — 0 as k — 4o00. Indeed, by Lemmas 2.3 and 2.4, we have z. €
WoP(Q,w) and 2 € W, P(Q,w). Multiplying (4.1) by 2t we obtain

(Au&z:) —|—/ gs(m,uE,VuE)zj dr = (h,zj)
Q

If 2+ > 0, we have u. > 0 and from (3.4) g.(z,ue, Vue) > 0, then (Aug,27) <
(h,zt) ie.

/Qa(x,ug,VuE)sz dx < (h,z7).
Since ue = u} in {z € Q: 27 > 0} then
/Qa(z:,uE,Vuj)sz dx < (h,z7).
Which implies
/Q[a(m,us, Vul) — a(m,uE,Vuz)]V(uj — uz>+ dx

< —/ a(z, ue, Vul)V(uf —uf)T + (h,zF).  (4.5)
Q
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As e — 0, we have z& — (ut —u))T ae. in Q. However zI is bounded in
W, P (€2, w); hence

2F = (wt —uh)t i WP (Q,w).

Since a(x, ue, Vul) — a(z,u, Vu}) in Hivzl L' (Q,w}), by passing to the limit
in € in (4.5), we obtain (4.4) with

Ry, = —/Qa(a:,u,Vu,j)]V(ujL —u) T+ (b (ut —uf)T).

Because (u™ —u )t — 0 in WyP(Q,w) as k — oo, we have Ry — 0 as k — oo.
Assertion:

—lim i(I)lf [a(z,ue, Vul) — a(z, ue, Vul )]V (uf —u) )™ dz <0. (4.6)
e— o)

Indeed, we shall use the test function v, = ¢y (22 ) with cpA( ) = ser” in (4.1).
We have 0 < z- < k, ie. 2= € L(Q) and since 22 € W, ’p(Q,w), hence by
Lemma 2.2, we have v, € W;'P(Q, w). Multiplying (4.1) by v. we obtain

/a(aj uE,VuE)Vz QO/\( )d$+/ ge(, UE,V’U,E)SO,\( )dr = <ha§0>\(za_)>'
Q Q

Define
E.={zeQ:ul(z) <uf(z)} and F.={re€Q:0<u(z)<uf(v)}

Since pa(27) = 0in E,

/ga(ac Ue, Vue ) (22 )dm—/ 9e (@, ue, Vue)or(20) dx.
Q E

€

When u, < 0, we have g.(x, u., Vu:) < 0 and since (2 ) > 0, we obtain

/ 9e (T, ue, Vue)or (27 ) dx
E.

IN

/ 9e (T, ue, Vue)or (27 ) de
F

€

/F b(|uel) Zwl

€

i [ 13

€ 3=1

S%/F a(x,ua,Vus)Vugw(zQ)dx+b(k)/ c(@)palz).

€ Fe

+c(@)]paz) da

+ c(@)]ea(z2) da
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As in [3, Theoreml1.1], we can show that

_% / [a(z, ue, Vul) — a(:v,ug,Vu;)]V(u;r — uZ)_
Q
< | fate.ue, Vue) = ae. e, Vd NV (0 do + (<hoipa(a2)
Q

b(k)

T/a(m,uE,Vuj)VuggoA(z;)da:
o

—|—/ a(z,ue, Vu )Vl i (20) do +
Q
b(k)

" /a(:v,us,Vuz)V(u;r —u;)cpA(z;)dm—i-b(k)/ c(x)or(z;) dx,
Q Q

2
for A = bﬂ?z . For short notation, we rewrite the above inequality as

Ly S I+ 13, + 13, + 12, + 12,
Now, we extract a subsequence that satisfies the following two conditions:
N
a(z,ue, Vue) =1 and  a(z,ue, Vul) = v in HLP'(Q,w;‘). (4.7)
i=1
Lemma 4.2 For k fixed, as € — 0, the following statements hold:
(a) I} = Ii = folm = 2] Vul @i () do + (=h, ox((u? = uf)7))
(b) 12, — 12 = [y ala,u, Vul)V((u* —uf) )b ((ut —uf)")

(c) I3 — 1} = "B [ oVufor((ut —uf)™)de

[e3

(d) 1%, — It = b(a—k) Jo a(z,u, Vu )V (ut —ul)pr((ut —uf) ") dx
(e) IE, — I} = b(k) [q c(x)or((ut —wl)™) da

In view of Lemma 4.2, (u* — w7 )~ = 0 and ¢,(0) = 0, we have

limsup I, <L+ 4+ 4+ I+ 17 = / [v1(z) — Y2 (@) VU @5 (u))) da.
Q

e—0
Moreover, if u. < 0 we have (u:); = 0, hence,

(a(z, ue, Vue) — a(z, ue, Vul)) (us)f =0 ace.
which implies (v1(z) — 72(z))u;; = 0, and so limsup,_,4 Lo < 0; thus, (4.6)
follows.

Assertion:

+

uf —ut in Wy P(Q,w) strongly. (4.8)
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As in [3, theorem 1.1], from (4.4)and (4.6), we have

lim sup/ [a(z,ue, Vul) — a(z,ue, Vu)]V(ul —ut)
Q

e—0

< Ry + / [V2(2) — a(z, u, Vui)]V (uf —uh).
Q
Letting k£ — oo and using lemma 3.2 we obtain (4.8).
Step (3) Convergence of the negative part of u.. As in the preceding step, we

shall prove that
ul —u” in Wy P(Q,w) strongly. (4.9)

€

Assertion:

limsup/ —la(z,ue, —Vur) — a(z,ue, —Vuy)|V(uz —uy )t de < Ry, (4.10)
Q

e—0

where R, — 0 as k — +oo. Indeed, when we define u, =u- Ak, ye =u; —uy,
and multiply (4.1) by yF, we obtain

/ a(z, ue, VuE)Vy;r dz —l—/ ge(z, ue, Vug)y;r dr = (h,yj>
Q Q

Since y+ > 0 implies u. < 0, from (3.4) we have g.(z,u., Vu.) < 0. Hence
ge(z,us, Vue)yd <0 ae. in Q. Then

/Qa(;zc,ug,VuE)Vy;Ir dx > (h,yr).
Since u. = —u_ on the set {x € Q: yF > 0}, we can write
/Qa(w,ua,—WZ)Vy? dz > (h,yt),

which implies

| e, ~Vu2) — o, = 7 = ) o

< [ alo e =V Vs = u0) = ().

As € — 0 we have y& — (u= —uy )t ae. in Q. Since yI is bounded in
Wy P(Q,w), y= — (u™ —uy; )" in Wy P(Q,w) (for k fixed). Passing to the limit
in € we obtain (4.10) with

R, = /Qa(x,u, —Vu )V(u~ —up)t = (h, (u™ —uy)™).

Because (u~ — uy; )" — 0 in Wy ?(Q,w) as k — oo we obtain that Ry, — 0 as
k — oo.
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Assertion:
limsup/ la(z,us, —Vu_ ) — a(z,ue, —Vu, )|[V(u; —uy )" de <0. (4.11)
e—0 Q

This can be done as in (4.6) by considering a test function v. = ¢ (y; ). Finally
combining (4.10) and (4.11), we deduce as in (4.8) the assertion (4.9).
Step (4) Convergence of u.. From (4.8) and (4.9), we deduce that for a subse-
quence,
ue —u in WyP(Q,w) and ae. in Q (4.12)
Vu. — Vu a.e. in Q, (4.13)

which implies

9= (z,ue, Vue) — g(z,u, Vu)  a.e. in Q (4.14)
ge (T, ue, Vu)ue — g(z,u, Vu)u a.e. in . '

On the other hand, multiplying (4.1) by u. and using (3.3), (3.4), (4.2), (4.3)
we obtain

0< / g (e, Vo yue do <, (4.15)
Q

where B is some positive constant. For any measurable subset F of Q and any
m > 0, we have

/|gg<x,ug,we>\dx= / 106 (2 e, Vug) | dt + / 106 (@, e, Vaur) | d
E ENXe

m EmY"fL
where
Xo, ={xeQ:|u(x)] <m}, Y ={xeQ:|ul(x)>m} (4.16)

From this and (3.5),(4.15),(4.16), we have

1
/ |ge (2, ue, Vue)| dzx §/ \gs(m,uE,Vu€)|dx+—/gg(x,ug,Vua)usdx
E ENXE, mJa

Sb(m)/E(Z;wigzj P+ efa) + B

Since the sequence (Vu.) converges strongly in Hivzl LP(Q,w;), then above in-
equality implies the equi-integrability of g.(z,u., Vuc). Thanks to (4.14) and
Vitali’s theorem,

ge (2, ue, Vue) — g(w,u, Vu) strongly in L'(Q). (4.17)

From (4.12) and (4.17) we can pass to the limit in

(Aue,v) +/ ge (T, ue, Vue)v = (h,v)
Q
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and we obtain
(Au,v) —|—/ g(z,u, Vu)v = (h,v) Yo € WP (Q,w) N L=(Q). (4.18)
Q

Moreover, since g.(z,ue, Vue)ue > 0 a.e. in Q, by (4.14), (4.15) and Fatou’s
lemma, we have g(z,u, Vu)u € L'(Q2). It remains to show that,

(Au,uy + /Qg(x,u, Vu)u = (h,u).

Put v = uy, in (4.18) where uy, is the truncation of u. Then
(Au — hyug) — (Au — h,u)

and
g(x, u, Vu)uy, — g(2,u, Vu)u in L*(Q).

Using Lebesgue’s dominated convergence theorem, since
l9(z, u, Vu)ur| < |g(z,u, Vu)|lu| € L(2)

we conclude that g(z, u, Vu)ur, — g(z,u, Vu)u a.e. in .

Proof of Lemma 4.1 Weset B. = A+G.. Using (3.1) and Hoélder’s inequal-
ity we can show that A is bounded [5]. Thanks to (4.2) we have B. bounded.
The coercivity follows from (3.3) and (3.4). To show that B. is hemicontinous,
let t — to and prove that

(Be(u 4 tv), W) — (Be(u + tov), w) as t — to  for all u,v,w € X.

Since for a.e. x € Q, a;(x,u + tv,V(u + tv)) — a;(z,u + tov, V(u + tov)) as
t — tg, thanks to the growth condition (3.1), Lemma 2.1 implies

a;(z, u+tv, V(u+tv)) = a;(z, u+tov, V(uttov)) in L (€, wil*p/) ast—to.
Finally for all w € X,

(A(u+tv), w) — (A(u+tov), @) ast — to.
On the other hand, g.(z, u+tv, V(u+tv)) — ge(z, u+tov, V(u—i—tov)) ast —toy

for a.e. o € Q. Also (g-(x,u + tv 4+ V(u + tv))); is bounded in L9 (Q, ')
because

’ ’ 1 ’ ’
[ loeteut 0.9kl ot < () [ o0 <
Q Q

then Lemma 2.1 gives

ge(z, u+tv, V(u+tv)) = go(@,u+tov, V(u+tov)) in LY (Q,0'77) ast — to.
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Since w € L1(Q,0) for all w € X,
(Ge(u+1tv), W) — (Ge(u+tov), W) ast — to.
Next we show that B, satisfies property (M); i.e. for a sequence u; in X satisfy-

ing: (i) w; = win X, (ii) Beu; — x in X, and (iii) imsup,_, o (Beu;, u; —u) <
0, we have x = B.u. Indeed, by Holder’s inequality and (2.6),

/Qgs(:c,uj,Vuj)(uj —u)

’ ’ 1/‘1/ 1/q
<( [ tostous V)l ot ) ([ st de)
Q Q

1 —q’ !
S—(/ oa dx)l/q llu; —ullge — 0 asj— oo,
eNJa
ie., (Geuj,u; —u) — 0 as j — oo. Combining the last convergence with (iii),
we obtain

lim sup(Au;,u; —u) <O0.

j—o0

And by the pseudo-monotonicity of A [5, Prop. 1], we have Au; — Au in X*
and lim;_, o (Au;, u; — w) = 0. On the other hand,

0=lim [ a(z,uj, Vu;)V(u; —u)de

J—00 Q

= lim [ (a(z,uj, Vu;) —a(z,u;, Vu))V(u; —u)de

+/ a(z,uj, Vu)V(u; —u)de.
Q

The last integral in the right hand tends to zero since a(z, u;, Vu) — a(z, u, Vu)
in Hf\;l LP/(Q, wil_p ) as j — oo; hence, by Lemma 3.2 we have Vu; — Vu a. e.
in . Then

ge(z,uj, Vuj) — g-(x,u,Vu) ae inQ asj— oco.

And since

1—4q’

1-d’ 1 /
|g€(x7uj,Vuj)Ulq’ | < g 7 € L7 (Q) (due to (2.4),

by Lebesgue’s dominated convergence theorem, we obtain
9e(w,uj, Vuj) — g-(x,u, Vu) in LY(Q,0'"7) asj— oo,
which with (2.6) imply
/ ge(z,uj, Vuj)vde — / ge(z,u, Vu)vder asj— oo, forallveX,
Q Q
ie., Gou; — Gou in X*. Finally,
B.uj = Auj + Geuj — Au+ Gou = Beu = x in X™.
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Proof of Lemma 4.2 Part (a) follows from Vi, (u]) € Hf\[:l LP(Q,w;) and

(4.7). Using Lemma 2.1, V(px(25)) — V(pa(ut —uf)7) in Hfil LP(Q, w;);

then part (b) follows since a(z, ue, Vui) — a(z,u, Vuy) in vazl LY (Q, wr).
To prove part (c), we have

3u+ _ 8u+ _ .
8; (22 )U/il/p — 8_;90)\((U+ — uﬁ) )wil/p a.e. in
and N
ou _
eyl 7 < Ol € 1),

where (3 is a positive constants. Then, by Lebesgue’s dominated convergence
theorem we have

ou _ ouf
oz, ea(z) — oz,

(( - UE:)_) in LP(Q’wi)7

ie. Vuioa(zZ) — Vulfoa((ut —uf)”) in Hl L LP(Q, w;). Then by (4.7) we
obtain part (c).
To prove part (d), we have

’

1—p 1—p
ai(z, ue, Vuid Joa ((uf —wf) 7w, ™ — ag(@,u, Vg Joa (™ —wf) w; *
a.e. in 2, and
1— ! ,
Jai (@, ue, VD)o (ud — wd) 7w, ™ [P < Mai(@, ue, V)P wt ™

Then the generalized Lebesgue’s dominated convergence theorem implies

ay(, ue, Vul Joa((ud —uf)7) = ai(@,u, Val Joa(wh —uf)™) in L (Qw)).
Since V(ud —uf) — V(ut —u;) in LP(Q, w;) we conclude part (d). Part (e) fol-
lows from |c(z)px((ut —ui)7)| € L1(2) and Lebesgue’s dominated convergence
theorem.

5 Example

Some ideas of this example come from [5]. Let ©Q be a bounded domain of
RN (N > 1), satisfying the cone condition. Let us consider the Carathéodory
functions:

ai(z,s,&) = wi|&P P sgn(&) fori=1,...,N

N
g(w,5,€) = sgn(s me7
=1



18 Existence of solution for quasilinear . .. EJDE-2001/71

where w;(z) are a given weight functions strictly positive almost everywhere in
Q). We shall assume that the weight functions satisfy,

wi(z) =w(x), z€Q, foralli=0,...,N.
Then, we consider the Hardy inequality (2.5) in the form,

w(z)|o(z) dz)t/? < ¢ w(z)|Pw)/P.
</Q|<>| () dx) s</9|v<>| )

It is easy to show that the a;(x,s,£) are Carathéodory functions satisfying
the growth condition (3.1) and the coercivity (3.3). Also the Carathéodory
function g(z, s, &) satisfies the conditions (3.4) and (3.5). On the other hand,
the monotonicity condition is verified. In fact,

N
Z(ai(f‘c’ 876) - (Li(JC, Své))(gz - éz)
1=1 N A A A
= w(w) Z(\fﬂp_l sgné; — [G[P sgn ) (& — &) > 0
i=1

for almost all x € Q2 and for all 6,5 € RN with ¢ # é, since w > 0 a.e. in €. In
particular, let us use the special weight functions w and o expressed in terms
of the distance to the boundary 9. Denote d(z) = dist(z, ) and set

w(z) =dMz), o(z)=d"(z).
In this case, the Hardy inequality reads

(/Q|u(x)|q d“(x)da:)l/q < c(/Q|Vu(x)|p (@) dm)l/p.

The corresponding imbedding is compact if: (i) For, 1 < p < ¢ < oo,

N N A N N
A<p—1, ——Tau1s0, B2 T 150, (51)
q p ¢ p q p
(ii) For 1 < ¢ < p < o0,
A1 1
A<p-1, P24 i1s, (5.2)
¢ p q p
(iii) For ¢ > 1,
ul@d —1)<1. (5.3)

Remarks.

1. Condition (5.1) or (5.2) are sufficient for the compact imbedding (2.6) to
hold; see for example [5, Example 1], [6, Example 1.5], and [12, Theorems
19.17, 19.22].

2. Condition (5.3) is sufficient for (2.4) to hold [9, pp. 40-41].

Finally, the hypotheses of Theorem 3.1 are satisfied. Therefore, (1.2) has at
least one solution.
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