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Existence of solutions for quasilinear degenerate

elliptic equations ∗

Y. Akdim, E. Azroul, & A. Benkirane

Abstract

In this paper, we study the existence of solutions for quasilinear de-
generate elliptic equations of the form A(u) + g(x, u,∇u) = h, where A
is a Leray-Lions operator from W 1,p

0 (Ω, w) to its dual. On the nonlinear
term g(x, s, ξ), we assume growth conditions on ξ, not on s, and a sign
condition on s.

1 Introduction

Let Ω be a bounded open subset of RN , p be a real number with 1 < p <∞, and
w = {wi(x)} 0 ≤ i ≤ N be a vector of weight functions on Ω; i.e. each wi(x) is
a measurable a.e. strictly positive function on Ω, satisfying some integrability
conditions (see section 2). Let X = W 1,p

0 (Ω, w) be the weighted Sobolev space
associated with the vector w. Assume:

(A0) The norm

‖|u|‖X =
( N∑
i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx
)1/p

is equivalent to the usual norm on X; see (2.2) below.

(A1) There exists a weight function σ(x) on Ω and a parameter q, 1 < q <∞,
such that the Hardy inequality,

(∫
Ω

|u(x)|qσ dx
)1/q

≤ c
( N∑
i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx
)1/p

holds for every u ∈ X with a constant c > 0 independent of u. Moreover,
the imbedding X ↪→ Lq(Ω, σ) is compact.
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Let A be the nonlinear operator from X into the dual X∗ defined as

Au = −div(a(x, u,∇u)), (1.1)

where a(x, s, ξ) = {ai(x, s, ξ)}, 1 ≤ i ≤ N : Ω×R×RN → R
N is a Carathéodory

vector-valued function.

(A2) We assume that

|ai(x, s, ξ)| ≤ c1w1/p
i (x)[k(x) + σ1/p′ |s|

q
p′ +

N∑
j=1

w
1/p′

j (x)|ξj |p−1],

for a.e. x ∈ Ω, all (s, ξ) ∈ R × RN , all i = 1, . . . , N , some function
k(x) ∈ Lp′(Ω) ( 1

p + 1
p′ = 1) and some constant c1 > 0. Here σ and q are

as in (A1).

(A3) For a.e. x ∈ Ω, all (s, ξ) ∈ R× RN and some constant c0 > 0, we assume
that

a(x, s, ξ).ξ ≥ c0
N∑
i=1

wi(x)|ξi|p .

Recently, Drabek, Kufner and Mustonen [5] proved that under the hypotheses
(A0–A3) and certain monotonicity conditions, the Dirichlet problem associated
with the equation Au = h, h ∈ X∗ has at least one solution u in W 1,p

0 (Ω, w).
See also [1], where A is of the form −div(a(x, u,∇u)) + a0(x, u,∇u).

The purpose in this paper, is to prove the same result for the general non-
linear elliptic equation

Au+ g(x, u,∇u) = h, h ∈ X∗

where g is a nonlinear lower-order term having natural growth (of order p)
with respect to |∇u|. Regarding |u|, we do not assume any growth restrictions.
However, we assume the “sign condition”

g(x, s, ξ).s ≥ 0 .

More precisely, we prove in theorem 3.1 an existence result for the problem

Au+ g(x, u,∇u) = h in D′(Ω),

u ∈W 1,p
0 (Ω, w), g(x, u,∇u) ∈ L1(Ω), g(x, u,∇u)u ∈ L1(Ω).

(1.2)

It turns out that for a solution u of this system, the term g(x, u,∇u) is in L1(Ω).
However, for a general v ∈W 1,p

0 (Ω, w), g(x, v,∇v) can be very singular (see for
example [3] where w ≡ 1).

Let us point out that more work in this direction can be found in [7] where
the authors have studied the existence of bounded solutions for the degenerate
elliptic equation

Au− c0|u|p−2u = h(x, u,∇u),
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with some more general degeneracy, under some additional assumptions on h
and a(x, s, ξ). When w ≡ 1 (the non weighted case) existence results for the
problem (1.2) have been shown in [3].

The present paper is organized as follows: In section 2, we give some prelim-
inaries and we prove some technical lemmas concerning convergence in weighted
Sobolev spaces. In section 3, we state our general result which will be proved
in section 4. Section 5 is devoted to an example which illustrates our abstract
hypotheses. Note that, in the proof of our main result, many ideas have been
adapted from Bensoussan et al. [3].

2 Preliminaries

Weighted Sobolev spaces. Let Ω be a bounded open subset of RN (N ≥ 1),
let 1 < p <∞, and let w = {wi(x)}, 0 ≤ i ≤ N be a vector of weight functions;
i.e. every component wi(x) is a measurable function which is strictly positive
a.e. in Ω. Further, we suppose in all our considerations that for 0 ≤ i ≤ N ,

wi ∈ L1
loc(Ω) and w

− 1
p−1

i ∈ L1
loc(Ω) . (2.1)

We define the weighted space with weight γ on Ω as

Lp(Ω, γ) = {u = u(x) : uγ1/p ∈ Lp(Ω)} .

In this space, we define the norm

‖u‖p,γ =
(∫

Ω

|u(x)|pγ(x) dx
)1/p

.

We denote by W 1,p(Ω, w) the space of all real-valued functions u ∈ Lp(Ω, w0)
such that the derivatives in the sense of distributions satisfy

∂u

∂xi
∈ Lp(Ω, wi) for all i = 1, . . . , N .

This set of functions forms a Banach space under the norm

‖u‖1,p,w =
(∫

Ω

|u(x)|pw0(x) dx+
N∑
i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx
)1/p

. (2.2)

To deal with the Dirichlet problem, we use the space

X = W 1,p
0 (Ω, w)

defined as the closure of C∞0 (Ω) with respect to the norm (2.2). Note that,
C∞0 (Ω) is dense in W 1,p

0 (Ω, w) and (X, ‖.‖1,p,w) is a reflexive Banach space.
We recall that the dual space of the weighted Sobolev spaces W 1,p

0 (Ω, w) is
equivalent to W−1,p′(Ω, w∗), where w∗ = {w∗i = w1−p′

i } i = 0, . . . , N , and p′ is
the conjugate of p i.e. p′ = p

p−1 . For more details, we refer the reader to [6].
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Definition. Let X be a reflexive Banach space. An operator B from X to the
dual X∗ satisfies property (M) if for any sequence (un) ⊂ X satisfying un ⇀ u
in X weakly, B(un) ⇀ χ in X∗ weakly and lim supn→∞〈Bun, un〉 ≤ 〈χ, u〉 then
one has χ = B(u).

Now we state the following assumption.

(H1) The expression

‖|u|‖X = (
N∑
i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx)1/p (2.3)

is a norm defined on X and is equivalent to the norm (2.2).

Note that (X, ‖|.|‖X) is a uniformly convex (and thus reflexive) Banach space.
There exist a weight function σ on Ω and a parameter q, 1 < q <∞, such that

σ1−q′ ∈ L1(Ω), (2.4)

with q′ = q
q−1 and such that the Hardy inequality,

(∫
Ω

|u(x)|qσ dx
)1/q

≤ c
( N∑
i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx
)1/p

, (2.5)

holds for every u ∈ X with a constant c > 0 independent of u. Moreover, the
imbedding

X ↪→ Lq(Ω, σ), (2.6)

determined by the inequality (2.5) is compact.
Now we state and prove the following technical lemmas which are needed

later.

Lemma 2.1 Let g ∈ Lr(Ω, γ) and let gn ∈ Lr(Ω, γ), with ‖gn‖r,γ ≤ c, 1 < r <
∞. If gn(x)→ g(x) a.e. in Ω, then gn ⇀ g in Lr(Ω, γ), where ⇀ denotes weak
convergence and γ is a weight function on Ω.

Proof. Since gnγ1/r is bounded in Lr(Ω) and gn(x)γ1/r(x) → g(x)γ1/r(x),
a.e. in Ω, then by [11, Lemma 3.2], we have

gnγ
1/r ⇀ gγ1/r in Lr(Ω).

Moreover for all ϕ ∈ Lr′(Ω, γ1−r′), we have ϕγ−
1
r ∈ Lr′(Ω). Then∫

Ω

gnϕdx→
∫

Ω

gϕ dx, i.e. gn ⇀ g in Lr(Ω, γ).

Lemma 2.2 Assume that (H1) holds. Let F : R → R be uniformly Lips-
chitzian, with F (0) = 0. Let u ∈ W 1,p

0 (Ω, w). Then F (u) ∈ W 1,p
0 (Ω, w). More-

over, if the set D of discontinuity points of F ′ is finite, then

∂(F ◦ u)
∂xi

=

{
F ′(u) ∂u∂xi a.e. in {x ∈ Ω : u(x) 6∈ D}
0 a.e. in {x ∈ Ω : u(x) ∈ D}.
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Remark. The previous lemma is a generalization of the corresponding in [8,
pp. 151-152], where w ≡ 1 and F ∈ C1(R) and F ′ ∈ L∞(R), and of the
corresponding in [2], where w0 ≡ w1 ≡ · · · ≡ wN is some weight function,
F ∈ C1(R) and F ′ ∈ L∞(R). Also note that the previous lemma implies that
functions in W 1,p

0 (Ω, w) can be truncated.

Proof of Lemma 2.2 First, note that the proof of the second part of Lemma
2.2 is identical to the corresponding in non weighted case in [8]. Consider firstly
the case F ∈ C1(R) and F ′ ∈ L∞(R). Let u ∈ W 1,p

0 (Ω, w). Since C∞0 (Ω) is
dense in W 1,p

0 (Ω, w), there exists a sequence un ∈ C∞0 (Ω) such that un → u in
W 1,p

0 (Ω, w). Passing to a subsequence, we can assume that,

un → u a.e. in Ω
∇un → ∇u a.e. in Ω.

Then
F (un)→ F (u) a.e. in Ω. (2.7)

On the other hand, from the relation |F (un)|pw0 ≤ ‖F ′‖∞|un|pw0 and

|∂F (un)
∂xi

|pwi = |F ′(un)
∂un
∂xi
|pwi ≤M |

∂un
∂xi
|pwi,

we deduce that the function F (un) remains bounded in W 1,p
0 (Ω, w). Thus, going

to a further subsequence, we obtain

F (un) ⇀ v in W 1,p
0 (Ω, w). (2.8)

Thanks to (2.7),(2.8) and (2.6) we conclude that

v = F (u) ∈W 1,p
0 (Ω, w).

We now turn our attention to the general case. Taking convolutions with
mollifiers ρn in R, we have Fn = F ∗ ρn, Fn ∈ C1(R) and F ′n ∈ L∞(R). Then
by the first case we have Fn(u) ∈W 1,p

0 (Ω, w). Since Fn → F uniformly in every
compact, we have Fn(u) → F (u) a.e. in Ω. On the other hand, (Fn(u)) is
bounded in W 1,p

0 (Ω, w), then for a subsequence Fn(u) ⇀ v̄ in W 1,p
0 (Ω, w) and

a.e. in Ω (due to (2.6)), then

v̄ = F (u) ∈W 1,p
0 (Ω, w).

The following lemmas follow from the previous lemma.

Lemma 2.3 Assume that (H1) holds. Let u ∈ W 1,p
0 (Ω, w), and let Tk(u), k ∈

R
+, be the usual truncation then Tk(u) ∈W 1,p

0 (Ω, w). Moreover, we have

Tk(u)→ u strongly in W 1,p
0 (Ω, w).
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Lemma 2.4 Assume that (H1) holds. Let u ∈W 1,p
0 (Ω, w), then u+ = max(u, 0)

and u− = max(−u, 0) lie in W 1,p
0 (Ω, w). Moreover, we have

∂(u+)
∂xi

=
{

∂u
∂xi

, if u > 0
0, if u ≤ 0

∂(u−)
∂xi

=
{

0, if u ≥ 0
− ∂u
∂xi

, if u < 0.

Lemma 2.5 Assume that (H1) holds. Let (un) be a sequence of W 1,p
0 (Ω, w)

such that un ⇀ u weakly in W 1,p
0 (Ω, w). Then, u+

n ⇀ u+ weakly in W 1,p
0 (Ω, w)

and u−n ⇀ u− weakly in W 1,p
0 (Ω, w).

Proof. Since un ⇀ u in W 1,p
0 (Ω, w) and by (2.8) we have for a subsequence

un → u in Lq(Ω, σ) and a.e. in Ω. On the other hand,

‖|un|‖pX =
N∑
i=1

∫
Ω

|∂un
∂xi
|pwi ≥

N∑
i=1

∫
{un≥0}

|∂un
∂xi
|pwi

=
N∑
i=1

∫
Ω

|∂u
+
n

∂xi
|pwi = ‖|u+

n |‖
p
X .

Then (u+
n ) is bounded in W 1,p

0 (Ω, w) hence by (2.6), u+
n ⇀ u+ in W 1,p

0 (Ω, w).
Similarly, we prove that u−n ⇀ u− in W 1,p

0 (Ω, w).

3 Main result

Let A be the nonlinear operator from W 1,p
0 (Ω, w) into the dual W−1,p′(Ω, w∗)

defined as
Au = −div(a(x, u,∇u)) ,

where a : Ω × R × RN → R
N is a Carathéodory vector-function satisfying the

following assumptions:

(H2) For i = 1, . . . , N ,

|ai(x, s, ξ)| ≤ βw1/p
i (x)[k(x) + σ1/p′ |s|

q
p′ +

N∑
j=1

w
1/p′

j (x)|ξj |p−1] , (3.1)

[a(x, s, ξ)− a(x, s, η)](ξ − η) > 0 for all ξ 6= η ∈ RN , (3.2)

a(x, s, ξ).ξ ≥ α
N∑
i=1

wi|ξi|p, (3.3)

where k(x) is a positive function in Lp
′
(Ω) and α, β are positive constants.
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(H3) g(x, s, ξ) is a Carathéodory function satisfying

g(x, s, ξ)s ≥ 0 , (3.4)

|g(x, s, ξ)| ≤ b(|s|)(
N∑
i=1

wi|ξi|p + c(x)), (3.5)

where b : R+ → R
+ is a continuous increasing function and c(x) is positive

function which in L1(Ω).

For the nonlinear Dirichlet boundary-value problem (1.2), we state our main
result as follows.

Theorem 3.1 Under assumptions (H1)-(H3) and h ∈ W−1,p′(Ω, w∗), there
exists a solution of (1.2).

Remarks. (1) Theorem 3.1, generalizes to weighted case the analogous state-
ment in [3].
(2) The assumption (2.4) appear to be necessary only for proving the bounded-
ness of g in W 1,p

0 (Ω, w). Thus, when g ≡ 0, we do not need assumption (2.4).
(3) If we assume that w0(x) ≡ 1 and that there exists ν ∈]NP ,∞[∩[ 1

P−1 ,∞[
such that w−νi ∈ L1(Ω) for all i = 1, . . . , N , (which is an integrability condition,
stronger than (2.1)), then

‖|u|‖X =
( N∑
i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx
)1/p

is a norm defined on W 1,p
0 (Ω, w) and equivalent to (2.2). Also we have that

W 1,p
0 (Ω, w) ↪→ Lq(Ω)

for 1 ≤ q < p∗1, pν < N(ν + 1), and q ≥ 1 is arbitrary for pν ≥ N(ν + 1) where
p1 = pν

ν+1 . Where p∗1 = Np1
N−p1

= Npν
N(ν+1)−pν is the Sobolev conjugate of p1 (see

[6]). Thus the hypotheses (H1) is verified (for σ ≡ 1).
For Theorem 3.1, we needed the following lemma.

Lemma 3.2 Assume that (H1) and (H2) are satisfied, and let (un) be a se-
quence in W 1,p

0 (Ω, w) such that un ⇀ u weakly in W 1,p
0 (Ω, w) and∫

Ω

[a(x, un,∇un)− a(x, un,∇u)]∇(un − u) dx→ 0. (3.6)

Then, un → u in W 1,p
0 (Ω, w).
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Proof. Let Dn = [a(x, un,∇un)− a(x, un,∇u)]∇(un− u). Then by (3.2), Dn

is a positive function and by (3.6) Dn → 0 in L1(Ω). Extracting a subsequence
still denoted by un, and using (2.6), we can write{

un → u a.e. in Ω
Dn → 0 a.e. in Ω.

Then, there exists a subset B of Ω, of zero measure, such that for x ∈ Ω\B,
|u(x)| < ∞, |∇u(x)| < ∞, |k(x)| < ∞, wi(x) > 0 and un(x) → u(x), Dn(x) →
0. We set ξn = ∇un(x), ξ = ∇u(x). Then

Dn(x) =[a(x, un, ξn)− a(x, un, ξ)](ξn − ξ)

≥α
N∑
i=1

wi|ξin|p + α
N∑
i=1

wi|ξi|p

−
N∑
i=1

βw
1/p
i [k(x) + σ1/p′ |un|

q
p′ +

N∑
j=1

w
1/p′

j |ξjn|p−1]|ξi|

−
N∑
i=1

βw
1/p
i [k(x) + σ1/p′ |un|

q
p′ +

N∑
j=1

w
1/p′

j |ξj |p−1]|ξin|

≥α
N∑
i=1

wi|ξin|p − cx
[
1 +

N∑
j=1

w
1/p′

j |ξjn|p−1 +
N∑
i=1

w
1/p
i |ξ

i
n|
]

(3.7)

where cx is a constant which depends on x, but does not depend on n. Since
un(x)→ u(x) we have |un(x)| ≤Mx where Mx is some positive constant. Then
by a standard argument |ξn| is bounded uniformly with respect to n; indeed
(3.7) becomes,

Dn(x) ≥
N∑
i=1

|ξin|p
(
αwi −

cx
N |ξin|p

− cxw
1/p′

i

|ξin|
− cxw

1/p
i

|ξin|p−1

)
.

If |ξn| → ∞ (for a subsequence) there exists at least one i0 such that |ξi0n | → ∞,
which implies that Dn(x)→∞ which gives a contradiction.

Let now ξ∗ be a cluster point of ξn. We have |ξ∗| <∞ and by the continuity
of a with respect to the two last variables we obtain

(a(x, u(x), ξ∗)− a(x, u(x), ξ))(ξ∗ − ξ) = 0.

In view of (3.2) we have ξ∗ = ξ. The uniqueness of the cluster point implies

∇un(x)→ ∇u(x) a.e. in Ω.

Since the sequence a(x, un,∇un) is bounded in
∏N
i=1 L

p′(Ω, w∗i ) and
a(x, un,∇un)→ a(x, u,∇u) a.e. in Ω, Lemma 2.1 implies

a(x, un,∇un) ⇀ a(x, u,∇u) in
N∏
i=1

Lp
′
(Ω, w∗i ) and a.e. in Ω.
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We set ȳn = a(x, un,∇un)∇un and ȳ = a(x, u,∇u)∇u. As in [4, Lemma 5] we
can write

ȳn → ȳ in L1(Ω).

By (3.3) we have

α
N∑
i=1

wi|
∂un
∂xi
|p ≤ a(x, un,∇un)∇un .

Let zn =
∑N
i=1 wi|

∂un
∂xi
|p, z =

∑N
i=1 wi|

∂u
∂xi
|p, yn = ȳn

α and y = ȳ
α . Then, by

Fatou’s theorem we obtain∫
Ω

2y dx ≤ lim inf
n→∞

∫
Ω

y + yn − |zn − z| dx

i.e. 0 ≤ − lim supn→∞
∫

Ω
|zn − z| dx then

0 ≤ lim inf
n→∞

∫
Ω

|zn − z| dx ≤ lim sup
n→∞

∫
Ω

|zn − z| dx ≤ 0,

this implies,

∇un → ∇u in
N∏
i=1

Lp(Ω, wi),

which with (2.3) completes the present proof.

4 Proof of Theorem 3.1

Step (1) The approximate problem. Let

gε(x, s, ξ) =
g(x, s, ξ)

1 + ε|g(x, s, ξ)|

and consider the equation

A(uε) + gε(x, uε,∇uε) = h

uε ∈W 1,p
0 (Ω, w)

(4.1)

We define the operator Gε : X → X∗ by

〈Gεu, v〉 =
∫

Ω

gε(x, u,∇u)v dx.

Thanks to Hölder’s inequality, for all v ∈ X and ϕ ∈ X,

|
∫

Ω

gε(x, v,∇v)ϕdx| ≤
(∫

Ω

|gε(x, v,∇v)|q
′
σ−

q′
q dx

)1/q′(∫
Ω

|ϕ|qσ dx
)1/q

≤1
ε

(∫
Ω

σ1−q′ dx
)1/q′

‖ϕ‖q,σ ≤ cε‖|ϕ|‖

(4.2)
For the above inequality, we have used (2.4) and (2.6).
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Lemma 4.1 The operator A+Gε : X → X∗ is bounded, coercive, hemiconti-
nous ,and satisfies property (M).

In view of Lemma 4.1, Problem (4.1) has a solution by a classical result [10,
Theorem 2.1 and Remark 2.1]. Since gε verifies the sign condition and using
(3.3), we obtain

α
N∑
i=1

∫
Ω

wi|
∂uε
∂xi
|p ≤ 〈h, uε〉

i.e. α‖|uε|‖p ≤ c‖h‖X∗‖|uε|‖. Then

‖|uε|‖ ≤ β0, (4.3)

where β0 is some positive constant. Hence, we can extract a subsequence still
denoted by uε such that,

uε ⇀ u in W 1,p
0 (Ω, w) and a.e. in Ω.

Step (2) Convergence of the positive part of uε. We shall prove that

u+
ε → u+ in W 1,p

0 (Ω, w) strongly.

Let k > 0. Define u+
k = u+ ∧ k = min{u+, k}. We shall fix k, and use the

notation
zε = u+

ε − u+
k .

Assertion:

lim sup
ε→0

∫
Ω

[a(x, uε,∇u+
ε )− a(x, uε,∇u+

k )]∇(u+
ε − u+

k )+ dx ≤ Rk (4.4)

where Rk → 0 as k → +∞. Indeed, by Lemmas 2.3 and 2.4, we have zε ∈
W 1,p

0 (Ω, w) and z+
ε ∈W

1,p
0 (Ω, w). Multiplying (4.1) by z+

ε we obtain

〈Auε, z+
ε 〉+

∫
Ω

gε(x, uε,∇uε)z+
ε dx = 〈h, z+

ε 〉.

If z+
ε > 0, we have uε > 0 and from (3.4) gε(x, uε,∇uε) ≥ 0, then 〈Auε, z+

ε 〉 ≤
〈h, z+

ε 〉 i.e. ∫
Ω

a(x, uε,∇uε)∇z+
ε dx ≤ 〈h, z+

ε 〉.

Since uε = u+
ε in {x ∈ Ω : z+

ε > 0} then∫
Ω

a(x, uε,∇u+
ε )∇z+

ε dx ≤ 〈h, z+
ε 〉.

Which implies∫
Ω

[a(x, uε,∇u+
ε )− a(x, uε,∇u+

k )]∇(u+
ε − u+

k )+ dx

≤ −
∫

Ω

a(x, uε,∇u+
k )]∇(u+

ε − u+
k )+ + 〈h, z+

ε 〉. (4.5)
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As ε → 0, we have z+
ε → (u+ − u+

k )+ a.e. in Ω. However z+
ε is bounded in

W 1,p
0 (Ω, w); hence

z+
ε ⇀ (u+ − u+

k )+ in W 1,p
0 (Ω, w).

Since a(x, uε,∇u+
k )→ a(x, u,∇u+

k ) in
∏N
i=1 L

p′(Ω, w∗i ), by passing to the limit
in ε in (4.5), we obtain (4.4) with

Rk = −
∫

Ω

a(x, u,∇u+
k )]∇(u+ − u+

k )+ + 〈h, (u+ − u+
k )+〉.

Because (u+ − u+
k )+ → 0 in W 1,p

0 (Ω, w) as k →∞, we have Rk → 0 as k →∞.
Assertion:

− lim inf
ε→0

∫
Ω

[a(x, uε,∇u+
ε )− a(x, uε,∇u+

k )]∇(u+
ε − u+

k )− dx ≤ 0. (4.6)

Indeed, we shall use the test function vε = ϕλ(z−ε ) with ϕλ(s) = seλs
2

in (4.1).
We have 0 ≤ z−ε ≤ k, i.e. z−ε ∈ L∞(Ω) and since z−ε ∈ W

1,p
0 (Ω, w), hence by

Lemma 2.2, we have vε ∈W 1,p
0 (Ω, w). Multiplying (4.1) by vε we obtain∫

Ω

a(x, uε,∇uε)∇z−ε ϕ′λ(z−ε ) dx+
∫

Ω

gε(x, uε,∇uε)ϕλ(z−ε ) dx = 〈h, ϕλ(z−ε )〉.

Define

Eε = {x ∈ Ω : u+
ε (x) ≤ u+

k (x)} and Fε = {x ∈ Ω : 0 ≤ uε(x) ≤ u+
k (x)}.

Since ϕλ(z−ε ) = 0 in Ecε ,∫
Ω

gε(x, uε,∇uε)ϕλ(z−ε ) dx =
∫
Eε

gε(x, uε,∇uε)ϕλ(z−ε ) dx.

When uε ≤ 0, we have gε(x, uε,∇uε) ≤ 0 and since ϕλ(z−ε ) ≥ 0, we obtain∫
Eε

gε(x, uε,∇uε)ϕλ(z−ε ) dx

≤
∫
Fε

gε(x, uε,∇uε)ϕλ(z−ε ) dx

≤
∫
Fε

b(|uε|)[
N∑
i=1

wi|
∂uε
∂xi
|p + c(x)]ϕλ(z−ε ) dx

≤b(k)
∫
Fε

[
N∑
i=1

wi|
∂uε
∂xi
|p + c(x)]ϕλ(z−ε ) dx

≤b(k)
α

∫
Fε

a(x, uε,∇uε)∇uεϕλ(z−ε ) dx+ b(k)
∫
Fε

c(x)ϕλ(z−ε ).



12 Existence of solution for quasilinear . . . EJDE–2001/71

As in [3, Theorem1.1], we can show that

−1
2

∫
Ω

[a(x, uε,∇u+
ε )− a(x, uε,∇u+

k )]∇(u+
ε − u+

k )−

≤
∫

Ω

[a(x, uε,∇uε)− a(x, uε,∇u+
ε )]∇u+

k ϕ
′
λ(u+

k ) dx+ 〈−h, ϕλ(z−ε )〉

+
∫

Ω

a(x, uε,∇u+
k )∇z−ε ϕ′λ(z−ε ) dx+

b(k)
α

∫
Ω

a(x, uε,∇u+
ε )∇u+

k ϕλ(z−ε ) dx

+
b(k)
α

∫
Ω

a(x, uε,∇u+
k )∇(u+

ε − u+
k )ϕλ(z−ε ) dx+ b(k)

∫
Ω

c(x)ϕλ(z−ε ) dx,

for λ = b(k)2

4α2 . For short notation, we rewrite the above inequality as

Iεk ≤ I1
εk + I2

εk + I3
εk + I4

εk + I5
εk.

Now, we extract a subsequence that satisfies the following two conditions:

a(x, uε,∇uε) ⇀ γ1 and a(x, uε,∇u+
ε ) ⇀ γ2 in

N∏
i=1

Lp
′
(Ω, w∗i ) . (4.7)

Lemma 4.2 For k fixed, as ε→ 0, the following statements hold:

(a) I1
εk → I1

k =
∫

Ω
[γ1 − γ2]∇u+

k ϕ
′
λ(u+

k ) dx+ 〈−h, ϕλ((u+ − u+
k )−)〉

(b) I2
εk → I2

k =
∫

Ω
a(x, u,∇u+

k )∇((u+ − u+
k )−)ϕ′λ((u+ − u+

k )−)

(c) I3
εk → I3

k = b(k)
α

∫
Ω
γ2∇u+

k ϕλ((u+ − u+
k )−) dx

(d) I4
εk → I4

k = b(k)
α

∫
Ω
a(x, u,∇u+

k )∇(u+ − u+
k )ϕλ((u+ − u+

k )−) dx

(e) I5
εk → I5

k = b(k)
∫

Ω
c(x)ϕλ((u+ − u+

k )−) dx

In view of Lemma 4.2, (u+ − u+
k )− = 0 and ϕλ(0) = 0, we have

lim sup
ε→0

Iεk ≤ I1
k + I2

k + I3
k + I4

k + I5
k =

∫
Ω

[γ1(x)− γ2(x)]∇u+
k ϕ
′
λ(u+

k ) dx.

Moreover, if uε < 0 we have (uε)+
k = 0, hence,

(a(x, uε,∇uε)− a(x, uε,∇u+
ε ))(uε)+

k = 0 a.e.

which implies (γ1(x) − γ2(x))u+
k = 0, and so lim supε→0 Iεk ≤ 0; thus, (4.6)

follows.
Assertion:

u+
ε → u+ in W 1,p

0 (Ω, w) strongly. (4.8)
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As in [3, theorem 1.1], from (4.4)and (4.6), we have

lim sup
ε→0

∫
Ω

[a(x, uε,∇u+
ε )− a(x, uε,∇u+)]∇(u+

ε − u+)

≤ Rk +
∫

Ω

[γ2(x)− a(x, u,∇u+
k )]∇(u+

k − u
+).

Letting k →∞ and using lemma 3.2 we obtain (4.8).
Step (3) Convergence of the negative part of uε. As in the preceding step, we
shall prove that

u−ε → u− in W 1,p
0 (Ω, w) strongly. (4.9)

Assertion:

lim sup
ε→0

∫
Ω

−[a(x, uε,−∇u−ε )− a(x, uε,−∇u−k )]∇(u−ε − u−k )+ dx ≤ R̃k, (4.10)

where R̃k → 0 as k → +∞. Indeed, when we define u−k = u−∧k, yε = u−ε −u−k ,
and multiply (4.1) by y+

ε , we obtain∫
Ω

a(x, uε,∇uε)∇y+
ε dx+

∫
Ω

gε(x, uε,∇uε)y+
ε dx = 〈h, y+

ε 〉.

Since y+
ε > 0 implies uε < 0, from (3.4) we have gε(x, uε,∇uε) ≤ 0. Hence

gε(x, uε,∇uε)y+
ε ≤ 0 a.e. in Ω. Then∫

Ω

a(x, uε,∇uε)∇y+
ε dx ≥ 〈h, y+

ε 〉.

Since uε = −u−ε on the set {x ∈ Ω : y+
ε > 0}, we can write∫

Ω

a(x, uε,−∇u−ε )∇y+
ε dx ≥ 〈h, y+

ε 〉,

which implies

−
∫

Ω

[a(x, uε,−∇u−ε )− a(x, uε,−∇u−k )]∇(u−ε − u−k )+ dx

≤
∫

Ω

a(x, uε,−∇u−k )∇(u−ε − u−k )+ − 〈h, y+
ε 〉.

As ε → 0 we have y+
ε → (u− − u−k )+ a.e. in Ω. Since y+

ε is bounded in
W 1,p

0 (Ω, w), y+
ε ⇀ (u− − u−k )+ in W 1,p

0 (Ω, w) (for k fixed). Passing to the limit
in ε we obtain (4.10) with

R̃k =
∫

Ω

a(x, u,−∇u−k )∇(u− − u−k )+ − 〈h, (u− − u−k )+〉.

Because (u− − u−k )+ → 0 in W 1,p
0 (Ω, w) as k → ∞ we obtain that R̃k → 0 as

k →∞.
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Assertion:

lim sup
ε→0

∫
Ω

[a(x, uε,−∇u−ε )− a(x, uε,−∇u−k )]∇(u−ε − u−k )− dx ≤ 0 . (4.11)

This can be done as in (4.6) by considering a test function vε = ϕλ(y−ε ). Finally
combining (4.10) and (4.11), we deduce as in (4.8) the assertion (4.9).
Step (4) Convergence of uε. From (4.8) and (4.9), we deduce that for a subse-
quence,

uε → u in W 1,p
0 (Ω, w) and a.e. in Ω (4.12)

∇uε → ∇u a.e. in Ω, (4.13)

which implies

gε(x, uε,∇uε)→ g(x, u,∇u) a.e. in Ω
gε(x, uε,∇uε)uε → g(x, u,∇u)u a.e. in Ω.

(4.14)

On the other hand, multiplying (4.1) by uε and using (3.3), (3.4), (4.2), (4.3)
we obtain

0 ≤
∫

Ω

gε(x, uε,∇uε)uε dx ≤ β̃, (4.15)

where β̃ is some positive constant. For any measurable subset E of Ω and any
m > 0, we have∫
E

|gε(x, uε,∇uε)| dx =
∫
E∩Xεm

|gε(x, uε,∇uε)| dx+
∫
E∩Y εm

|gε(x, uε,∇uε)| dx

where

Xε
m = {x ∈ Ω : |uε(x)| ≤ m}, Y εm = {x ∈ Ω : |uε(x)| > m} (4.16)

From this and (3.5),(4.15),(4.16), we have∫
E

|gε(x, uε,∇uε)| dx ≤
∫
E∩Xεm

|gε(x, uε,∇uε)| dx+
1
m

∫
Ω

gε(x, uε,∇uε)uε dx

≤b(m)
∫
E

(
N∑
i=1

wi|
∂uε
∂xi
|p + c(x)) + β̃

1
m
.

Since the sequence (∇uε) converges strongly in
∏N
i=1 L

p(Ω, wi), then above in-
equality implies the equi-integrability of gε(x, uε,∇uε). Thanks to (4.14) and
Vitali’s theorem,

gε(x, uε,∇uε)→ g(x, u,∇u) strongly in L1(Ω). (4.17)

From (4.12) and (4.17) we can pass to the limit in

〈Auε, v〉+
∫

Ω

gε(x, uε,∇uε)v = 〈h, v〉
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and we obtain

〈Au, v〉+
∫

Ω

g(x, u,∇u)v = 〈h, v〉 ∀v ∈W 1,p
0 (Ω, w) ∩ L∞(Ω). (4.18)

Moreover, since gε(x, uε,∇uε)uε ≥ 0 a.e. in Ω, by (4.14), (4.15) and Fatou’s
lemma, we have g(x, u,∇u)u ∈ L1(Ω). It remains to show that,

〈Au, u〉+
∫

Ω

g(x, u,∇u)u = 〈h, u〉.

Put v = uk in (4.18) where uk is the truncation of u. Then

〈Au− h, uk〉 → 〈Au− h, u〉

and
g(x, u,∇u)uk → g(x, u,∇u)u in L1(Ω) .

Using Lebesgue’s dominated convergence theorem, since

|g(x, u,∇u)uk| ≤ |g(x, u,∇u)||u| ∈ L1(Ω)

we conclude that g(x, u,∇u)uk → g(x, u,∇u)u a.e. in Ω.

Proof of Lemma 4.1 We set Bε = A+Gε. Using (3.1) and Hölder’s inequal-
ity we can show that A is bounded [5]. Thanks to (4.2) we have Bε bounded.
The coercivity follows from (3.3) and (3.4). To show that Bε is hemicontinous,
let t→ t0 and prove that

〈Bε(u+ tv), w̃〉 → 〈Bε(u+ t0v), w̃〉 as t→ t0 for all u, v, w̃ ∈ X.

Since for a.e. x ∈ Ω, ai(x, u + tv,∇(u + tv)) → ai(x, u + t0v,∇(u + t0v)) as
t→ t0, thanks to the growth condition (3.1), Lemma 2.1 implies

ai(x, u+tv,∇(u+tv)) ⇀ ai(x, u+t0v,∇(u+t0v)) in Lp
′
(Ω, w1−p′

i ) as t→ t0 .

Finally for all w̃ ∈ X,

〈A(u+ tv), w̃〉 → 〈A(u+ t0v), w̃〉 as t→ t0.

On the other hand, gε(x, u+ tv,∇(u+ tv))→ gε(x, u+ t0v,∇(u+ t0v)) as t→ t0
for a.e. x ∈ Ω. Also (gε(x, u + tv + ∇(u + tv)))t is bounded in Lq

′
(Ω, σ1−q′)

because ∫
Ω

|gε(x, u+ tv,∇(u+ tv))|q
′
σ1−q′ ≤ (

1
ε

)q
′
∫

Ω

σ1−q′ ≤ cε,

then Lemma 2.1 gives

gε(x, u+ tv,∇(u+ tv)) ⇀ gε(x, u+ t0v,∇(u+ t0v)) in Lq
′
(Ω, σ1−q′) as t→ t0.
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Since w̃ ∈ Lq(Ω, σ) for all w̃ ∈ X,

〈Gε(u+ tv), w̃〉 → 〈Gε(u+ t0v), w̃〉 as t→ t0.

Next we show that Bε satisfies property (M); i.e. for a sequence uj in X satisfy-
ing: (i) ui ⇀ u in X, (ii) Bεuj ⇀ χ in X∗, and (iii) lim supj→∞〈Bεuj , uj−u〉 ≤
0, we have χ = Bεu. Indeed, by Hölder’s inequality and (2.6),∫

Ω

gε(x, uj ,∇uj)(uj − u)

≤
(∫

Ω

|gε(x, uj ,∇uj)|q
′
σ−q

′/q dx
)1/q′(∫

Ω

|uj − u|qσ dx
)1/q

≤1
ε

(∫
Ω

σ
−q′
q dx

)1/q′‖uj − u‖q,σ → 0 as j →∞,

i.e., 〈Gεuj , uj − u〉 → 0 as j → ∞. Combining the last convergence with (iii),
we obtain

lim sup
j→∞

〈Auj , uj − u〉 ≤ 0.

And by the pseudo-monotonicity of A [5, Prop. 1], we have Auj ⇀ Au in X∗

and limj→∞〈Auj , uj − u〉 = 0. On the other hand,

0 = lim
j→∞

∫
Ω

a(x, uj ,∇uj)∇(uj − u) dx

= lim
j→∞

∫
Ω

(a(x, uj ,∇uj)− a(x, uj ,∇u))∇(uj − u) dx

+
∫

Ω

a(x, uj ,∇u)∇(uj − u) dx .

The last integral in the right hand tends to zero since a(x, uj ,∇u)→ a(x, u,∇u)
in
∏N
i=1 L

p′(Ω, w1−p′
i ) as j →∞; hence, by Lemma 3.2 we have ∇uj → ∇u a. e.

in Ω. Then

gε(x, uj ,∇uj)→ gε(x, u,∇u) a.e. in Ω as j →∞.

And since

|gε(x, uj ,∇uj)σ
1−q′
q′ | ≤ 1

ε
σ

1−q′
q′ ∈ Lq

′
(Ω) (due to (2.4),

by Lebesgue’s dominated convergence theorem, we obtain

gε(x, uj ,∇uj)→ gε(x, u,∇u) in Lq
′
(Ω, σ1−q′) as j →∞,

which with (2.6) imply∫
Ω

gε(x, uj ,∇uj)v dx→
∫

Ω

gε(x, u,∇u)v dx as j →∞, for all v ∈ X,

i.e., Gεuj ⇀ Gεu in X∗. Finally,

Bεuj = Auj +Gεuj ⇀ Au+Gεu = Bεu = χ in X∗.
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Proof of Lemma 4.2 Part (a) follows from ∇ϕλ(u+
k ) ∈

∏N
i=1 L

p(Ω, wi) and
(4.7). Using Lemma 2.1, ∇(ϕλ(z−ε )) ⇀ ∇(ϕλ(u+ − u+

k )−) in
∏N
i=1 L

p(Ω, wi);
then part (b) follows since a(x, uε,∇u+

k )→ a(x, u,∇u+
k ) in

∏N
i=1 L

p′(Ω, w∗i ).
To prove part (c), we have

∂u+
k

∂xi
ϕλ(z−ε )w1/p

i →
∂u+

k

∂xi
ϕλ((u+ − u+

k )−)w1/p
i a.e. in Ω

and

|
∂u+

k

∂xi
ϕλ(z−ε )w1/p

i |
p ≤ β̃|

∂u+
k

∂xi
w

1/p
i |

p ∈ L1(Ω),

where β̃ is a positive constants. Then, by Lebesgue’s dominated convergence
theorem we have

∂u+
k

∂xi
ϕλ(z−ε )→

∂u+
k

∂xi
ϕλ((u+ − u+

k )−) in Lp(Ω, wi),

i.e. ∇u+
k ϕλ(z−ε ) → ∇u+

k ϕλ((u+ − u+
k )−) in

∏N
i=1 L

p(Ω, wi). Then by (4.7) we
obtain part (c).

To prove part (d), we have

ai(x, uε,∇u+
k )ϕλ((u+

ε − u+
k )−)w

1−p′
p′

i → ai(x, u,∇u+
k )ϕλ((u+ − u+

k )−)w
1−p′
p′

i

a.e. in Ω, and

|ai(x, uε,∇u+
k )ϕλ((u+

ε − u+
k )−)w

1−p′
p′

i |p
′
≤M |ai(x, uε,∇u+

k )|p
′
w1−p′
i .

Then the generalized Lebesgue’s dominated convergence theorem implies

ai(x, uε,∇u+
k )ϕλ((u+

ε −u+
k )−)→ ai(x, u,∇u+

k )ϕλ((u+−u+
k )−) in Lp

′
(Ω, w∗i ) .

Since ∇(u+
ε −u+

k ) ⇀ ∇(u+−u+
k ) in Lp(Ω, wi) we conclude part (d). Part (e) fol-

lows from |c(x)ϕλ((u+−u+
k )−)| ∈ L1(Ω) and Lebesgue’s dominated convergence

theorem.

5 Example

Some ideas of this example come from [5]. Let Ω be a bounded domain of
R
N (N ≥ 1), satisfying the cone condition. Let us consider the Carathéodory

functions:

ai(x, s, ξ) = wi|ξi|p−1 sgn(ξi) for i = 1, . . . , N

g(x, s, ξ) = sgn(s)
N∑
i=1

wi|ξi|p ,
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where wi(x) are a given weight functions strictly positive almost everywhere in
Ω. We shall assume that the weight functions satisfy,

wi(x) = w(x), x ∈ Ω, for all i = 0, . . . , N.

Then, we consider the Hardy inequality (2.5) in the form,

(
∫

Ω

|u(x)|qσ(x) dx)1/q ≤ c(
∫

Ω

|∇u(x)|pw)1/p.

It is easy to show that the ai(x, s, ξ) are Carathéodory functions satisfying
the growth condition (3.1) and the coercivity (3.3). Also the Carathéodory
function g(x, s, ξ) satisfies the conditions (3.4) and (3.5). On the other hand,
the monotonicity condition is verified. In fact,

N∑
i=1

(ai(x, s, ξ)− ai(x, s, ξ̂))(ξi − ξ̂i)

= w(x)
N∑
i=1

(|ξi|p−1 sgn ξi − |ξ̂i|p−1 sgn ξ̂i)(ξi − ξ̂i) > 0

for almost all x ∈ Ω and for all ξ, ξ̂ ∈ RN with ξ 6= ξ̂, since w > 0 a.e. in Ω. In
particular, let us use the special weight functions w and σ expressed in terms
of the distance to the boundary ∂Ω. Denote d(x) = dist(x, ∂Ω) and set

w(x) = dλ(x), σ(x) = dµ(x).

In this case, the Hardy inequality reads(∫
Ω

|u(x)|q dµ(x) dx
)1/q

≤ c
(∫

Ω

|∇u(x)|p dλ(x) dx
)1/p

.

The corresponding imbedding is compact if: (i) For, 1 < p ≤ q <∞,

λ < p− 1,
N

q
− N

p
+ 1 ≥ 0,

µ

q
− λ

p
+
N

q
− N

p
+ 1 > 0, (5.1)

(ii) For 1 ≤ q < p <∞,

λ < p− 1,
µ

q
− λ

p
+

1
q
− 1
p

+ 1 > 0, (5.2)

(iii) For q > 1,
µ(q′ − 1) < 1 . (5.3)

Remarks.

1. Condition (5.1) or (5.2) are sufficient for the compact imbedding (2.6) to
hold; see for example [5, Example 1], [6, Example 1.5], and [12, Theorems
19.17, 19.22].

2. Condition (5.3) is sufficient for (2.4) to hold [9, pp. 40-41].

Finally, the hypotheses of Theorem 3.1 are satisfied. Therefore, (1.2) has at
least one solution.
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