Existence of solutions for quasilinear degenerate elliptic equations *

Y. Akdim, E. Azroul, \& A. Benkirane

Abstract

In this paper, we study the existence of solutions for quasilinear degenerate elliptic equations of the form $A(u)+g(x, u, \nabla u)=h$, where A is a Leray-Lions operator from $W_{0}^{1, p}(\Omega, w)$ to its dual. On the nonlinear term $g(x, s, \xi)$, we assume growth conditions on ξ, not on s, and a sign condition on s.

1 Introduction

Let Ω be a bounded open subset of \mathbb{R}^{N}, p be a real number with $1<p<\infty$, and $w=\left\{w_{i}(x)\right\} 0 \leq i \leq N$ be a vector of weight functions on Ω; i.e. each $w_{i}(x)$ is a measurable a.e. strictly positive function on Ω, satisfying some integrability conditions (see section 2). Let $X=W_{0}^{1, p}(\Omega, w)$ be the weighted Sobolev space associated with the vector w. Assume:
(A0) The norm

$$
\||u|\|_{X}=\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{1 / p}
$$

is equivalent to the usual norm on X; see (2.2) below.
(A1) There exists a weight function $\sigma(x)$ on Ω and a parameter $q, 1<q<\infty$, such that the Hardy inequality,

$$
\left(\int_{\Omega}|u(x)|^{q} \sigma d x\right)^{1 / q} \leq c\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{1 / p}
$$

holds for every $u \in X$ with a constant $c>0$ independent of u. Moreover, the imbedding $X \hookrightarrow L^{q}(\Omega, \sigma)$ is compact.

[^0]Let A be the nonlinear operator from X into the dual X^{*} defined as

$$
\begin{equation*}
A u=-\operatorname{div}(a(x, u, \nabla u)) \tag{1.1}
\end{equation*}
$$

where $a(x, s, \xi)=\left\{a_{i}(x, s, \xi)\right\}, 1 \leq i \leq N: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Carathéodory vector-valued function.
(A2) We assume that

$$
\left|a_{i}(x, s, \xi)\right| \leq c_{1} w_{i}^{1 / p}(x)\left[k(x)+\sigma^{1 / p^{\prime}}|s|^{\frac{q}{p^{\prime}}}+\sum_{j=1}^{N} w_{j}^{1 / p^{\prime}}(x)\left|\xi_{j}\right|^{p-1}\right]
$$

for a.e. $\quad x \in \Omega$, all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$, all $i=1, \ldots, N$, some function $k(x) \in L^{p^{\prime}}(\Omega)\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$ and some constant $c_{1}>0$. Here σ and q are as in (A1).
(A3) For a.e. $x \in \Omega$, all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$ and some constant $c_{0}>0$, we assume that

$$
a(x, s, \xi) \cdot \xi \geq c_{0} \sum_{i=1}^{N} w_{i}(x)\left|\xi_{i}\right|^{p}
$$

Recently, Drabek, Kufner and Mustonen [5] proved that under the hypotheses (A0-A3) and certain monotonicity conditions, the Dirichlet problem associated with the equation $A u=h, h \in X^{*}$ has at least one solution u in $W_{0}^{1, p}(\Omega, w)$. See also [1], where A is of the form $-\operatorname{div}(a(x, u, \nabla u))+a_{0}(x, u, \nabla u)$.

The purpose in this paper, is to prove the same result for the general nonlinear elliptic equation

$$
A u+g(x, u, \nabla u)=h, h \in X^{*}
$$

where g is a nonlinear lower-order term having natural growth (of order p) with respect to $|\nabla u|$. Regarding $|u|$, we do not assume any growth restrictions. However, we assume the "sign condition"

$$
g(x, s, \xi) \cdot s \geq 0
$$

More precisely, we prove in theorem 3.1 an existence result for the problem

$$
\begin{gather*}
A u+g(x, u, \nabla u)=h \quad \text { in } \mathcal{D}^{\prime}(\Omega), \\
u \in W_{0}^{1, p}(\Omega, w), \quad g(x, u, \nabla u) \in L^{1}(\Omega), \quad g(x, u, \nabla u) u \in L^{1}(\Omega) . \tag{1.2}
\end{gather*}
$$

It turns out that for a solution u of this system, the term $g(x, u, \nabla u)$ is in $L^{1}(\Omega)$. However, for a general $v \in W_{0}^{1, p}(\Omega, w), g(x, v, \nabla v)$ can be very singular (see for example [3] where $w \equiv 1$).

Let us point out that more work in this direction can be found in [7] where the authors have studied the existence of bounded solutions for the degenerate elliptic equation

$$
A u-c_{0}|u|^{p-2} u=h(x, u, \nabla u),
$$

with some more general degeneracy, under some additional assumptions on h and $a(x, s, \xi)$. When $w \equiv 1$ (the non weighted case) existence results for the problem (1.2) have been shown in [3].

The present paper is organized as follows: In section 2, we give some preliminaries and we prove some technical lemmas concerning convergence in weighted Sobolev spaces. In section 3, we state our general result which will be proved in section 4. Section 5 is devoted to an example which illustrates our abstract hypotheses. Note that, in the proof of our main result, many ideas have been adapted from Bensoussan et al. [3].

2 Preliminaries

Weighted Sobolev spaces. Let Ω be a bounded open subset of $\mathbb{R}^{N}(N \geq 1)$, let $1<p<\infty$, and let $w=\left\{w_{i}(x)\right\}, 0 \leq i \leq N$ be a vector of weight functions; i.e. every component $w_{i}(x)$ is a measurable function which is strictly positive a.e. in Ω. Further, we suppose in all our considerations that for $0 \leq i \leq N$,

$$
\begin{equation*}
w_{i} \in L_{\mathrm{loc}}^{1}(\Omega) \quad \text { and } \quad w_{i}^{-\frac{1}{p-1}} \in L_{\mathrm{loc}}^{1}(\Omega) \tag{2.1}
\end{equation*}
$$

We define the weighted space with weight γ on Ω as

$$
L^{p}(\Omega, \gamma)=\left\{u=u(x): u \gamma^{1 / p} \in L^{p}(\Omega)\right\}
$$

In this space, we define the norm

$$
\|u\|_{p, \gamma}=\left(\int_{\Omega}|u(x)|^{p} \gamma(x) d x\right)^{1 / p}
$$

We denote by $W^{1, p}(\Omega, w)$ the space of all real-valued functions $u \in L^{p}\left(\Omega, w_{0}\right)$ such that the derivatives in the sense of distributions satisfy

$$
\frac{\partial u}{\partial x_{i}} \in L^{p}\left(\Omega, w_{i}\right) \text { for all } i=1, \ldots, N
$$

This set of functions forms a Banach space under the norm

$$
\begin{equation*}
\|u\|_{1, p, w}=\left(\int_{\Omega}|u(x)|^{p} w_{0}(x) d x+\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{1 / p} \tag{2.2}
\end{equation*}
$$

To deal with the Dirichlet problem, we use the space

$$
X=W_{0}^{1, p}(\Omega, w)
$$

defined as the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm (2.2). Note that, $C_{0}^{\infty}(\Omega)$ is dense in $W_{0}^{1, p}(\Omega, w)$ and $\left(X,\|\cdot\|_{1, p, w}\right)$ is a reflexive Banach space. We recall that the dual space of the weighted Sobolev spaces $W_{0}^{1, p}(\Omega, w)$ is equivalent to $W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$, where $w^{*}=\left\{w_{i}^{*}=w_{i}^{1-p^{\prime}}\right\} i=0, \ldots, N$, and p^{\prime} is the conjugate of p i.e. $p^{\prime}=\frac{p}{p-1}$. For more details, we refer the reader to [6].

Definition. Let X be a reflexive Banach space. An operator B from X to the dual X^{*} satisfies property (M) if for any sequence $\left(u_{n}\right) \subset X$ satisfying $u_{n} \rightharpoonup u$ in X weakly, $B\left(u_{n}\right) \rightharpoonup \chi$ in X^{*} weakly and $\lim \sup _{n \rightarrow \infty}\left\langle B u_{n}, u_{n}\right\rangle \leq\langle\chi, u\rangle$ then one has $\chi=B(u)$.

Now we state the following assumption.
(H1) The expression

$$
\begin{equation*}
\||u|\|_{X}=\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{1 / p} \tag{2.3}
\end{equation*}
$$

is a norm defined on X and is equivalent to the norm (2.2).
Note that $\left(X,\||\cdot|\|_{X}\right)$ is a uniformly convex (and thus reflexive) Banach space. There exist a weight function σ on Ω and a parameter $q, 1<q<\infty$, such that

$$
\begin{equation*}
\sigma^{1-q^{\prime}} \in L^{1}(\Omega) \tag{2.4}
\end{equation*}
$$

with $q^{\prime}=\frac{q}{q-1}$ and such that the Hardy inequality,

$$
\begin{equation*}
\left(\int_{\Omega}|u(x)|^{q} \sigma d x\right)^{1 / q} \leq c\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{1 / p} \tag{2.5}
\end{equation*}
$$

holds for every $u \in X$ with a constant $c>0$ independent of u. Moreover, the imbedding

$$
\begin{equation*}
X \hookrightarrow L^{q}(\Omega, \sigma) \tag{2.6}
\end{equation*}
$$

determined by the inequality (2.5) is compact.
Now we state and prove the following technical lemmas which are needed later.

Lemma 2.1 Let $g \in L^{r}(\Omega, \gamma)$ and let $g_{n} \in L^{r}(\Omega, \gamma)$, with $\left\|g_{n}\right\|_{r, \gamma} \leq c, 1<r<$ ∞. If $g_{n}(x) \rightarrow g(x)$ a.e. in Ω, then $g_{n} \rightharpoonup g$ in $L^{r}(\Omega, \gamma)$, where \rightharpoonup denotes weak convergence and γ is a weight function on Ω.

Proof. Since $g_{n} \gamma^{1 / r}$ is bounded in $L^{r}(\Omega)$ and $g_{n}(x) \gamma^{1 / r}(x) \rightarrow g(x) \gamma^{1 / r}(x)$, a.e. in Ω, then by [11, Lemma 3.2], we have

$$
g_{n} \gamma^{1 / r} \rightharpoonup g \gamma^{1 / r} \text { in } L^{r}(\Omega) .
$$

Moreover for all $\varphi \in L^{r^{\prime}}\left(\Omega, \gamma^{1-r^{\prime}}\right)$, we have $\varphi \gamma^{-\frac{1}{r}} \in L^{r^{\prime}}(\Omega)$. Then

$$
\int_{\Omega} g_{n} \varphi d x \rightarrow \int_{\Omega} g \varphi d x, \text { i.e. } g_{n} \rightharpoonup g \text { in } L^{r}(\Omega, \gamma)
$$

Lemma 2.2 Assume that (H1) holds. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly Lipschitzian, with $F(0)=0$. Let $u \in W_{0}^{1, p}(\Omega, w)$. Then $F(u) \in W_{0}^{1, p}(\Omega, w)$. Moreover, if the set D of discontinuity points of F^{\prime} is finite, then

$$
\frac{\partial(F \circ u)}{\partial x_{i}}= \begin{cases}F^{\prime}(u) \frac{\partial u}{\partial x_{i}} & \text { a.e. in }\{x \in \Omega: u(x) \notin D\} \\ 0 & \text { a.e. in }\{x \in \Omega: u(x) \in D\} .\end{cases}
$$

Remark. The previous lemma is a generalization of the corresponding in [8, pp. 151-152], where $w \equiv 1$ and $F \in C^{1}(\mathbb{R})$ and $F^{\prime} \in L^{\infty}(\mathbb{R})$, and of the corresponding in [2], where $w_{0} \equiv w_{1} \equiv \cdots \equiv w_{N}$ is some weight function, $F \in C^{1}(\mathbb{R})$ and $F^{\prime} \in L^{\infty}(\mathbb{R})$. Also note that the previous lemma implies that functions in $W_{0}^{1, p}(\Omega, w)$ can be truncated.

Proof of Lemma 2.2 First, note that the proof of the second part of Lemma 2.2 is identical to the corresponding in non weighted case in [8]. Consider firstly the case $F \in C^{1}(\mathbb{R})$ and $F^{\prime} \in L^{\infty}(\mathbb{R})$. Let $u \in W_{0}^{1, p}(\Omega, w)$. Since $C_{0}^{\infty}(\Omega)$ is dense in $W_{0}^{1, p}(\Omega, w)$, there exists a sequence $u_{n} \in C_{0}^{\infty}(\Omega)$ such that $u_{n} \rightarrow u$ in $W_{0}^{1, p}(\Omega, w)$. Passing to a subsequence, we can assume that,

$$
\begin{gathered}
u_{n} \rightarrow u \text { a.e. in } \Omega \\
\nabla u_{n} \rightarrow \nabla u \text { a.e. in } \Omega .
\end{gathered}
$$

Then

$$
\begin{equation*}
F\left(u_{n}\right) \rightarrow F(u) \quad \text { a.e. in } \Omega . \tag{2.7}
\end{equation*}
$$

On the other hand, from the relation $\left|F\left(u_{n}\right)\right|^{p} w_{0} \leq\left\|F^{\prime}\right\|_{\infty}\left|u_{n}\right|^{p} w_{0}$ and

$$
\left|\frac{\partial F\left(u_{n}\right)}{\partial x_{i}}\right|^{p} w_{i}=\left|F^{\prime}\left(u_{n}\right) \frac{\partial u_{n}}{\partial x_{i}}\right|^{p} w_{i} \leq M\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p} w_{i}
$$

we deduce that the function $F\left(u_{n}\right)$ remains bounded in $W_{0}^{1, p}(\Omega, w)$. Thus, going to a further subsequence, we obtain

$$
\begin{equation*}
F\left(u_{n}\right) \rightharpoonup v \text { in } W_{0}^{1, p}(\Omega, w) \tag{2.8}
\end{equation*}
$$

Thanks to $(2.7),(2.8)$ and (2.6) we conclude that

$$
v=F(u) \in W_{0}^{1, p}(\Omega, w)
$$

We now turn our attention to the general case. Taking convolutions with mollifiers ρ_{n} in \mathbb{R}, we have $F_{n}=F * \rho_{n}, F_{n} \in C^{1}(\mathbb{R})$ and $F_{n}^{\prime} \in L^{\infty}(\mathbb{R})$. Then by the first case we have $F_{n}(u) \in W_{0}^{1, p}(\Omega, w)$. Since $F_{n} \rightarrow F$ uniformly in every compact, we have $F_{n}(u) \rightarrow F(u)$ a.e. in Ω. On the other hand, $\left(F_{n}(u)\right)$ is bounded in $W_{0}^{1, p}(\Omega, w)$, then for a subsequence $F_{n}(u) \rightharpoonup \bar{v}$ in $W_{0}^{1, p}(\Omega, w)$ and a.e. in Ω (due to (2.6)), then

$$
\bar{v}=F(u) \in W_{0}^{1, p}(\Omega, w)
$$

The following lemmas follow from the previous lemma.
Lemma 2.3 Assume that (H1) holds. Let $u \in W_{0}^{1, p}(\Omega, w)$, and let $T_{k}(u), k \in$ \mathbb{R}^{+}, be the usual truncation then $T_{k}(u) \in W_{0}^{1, p}(\Omega, w)$. Moreover, we have

$$
T_{k}(u) \rightarrow u \text { strongly in } W_{0}^{1, p}(\Omega, w)
$$

Lemma 2.4 Assume that (H1) holds. Let $u \in W_{0}^{1, p}(\Omega, w)$, then $u^{+}=\max (u, 0)$ and $u^{-}=\max (-u, 0)$ lie in $W_{0}^{1, p}(\Omega, w)$. Moreover, we have

$$
\begin{gathered}
\frac{\partial\left(u^{+}\right)}{\partial x_{i}}= \begin{cases}\frac{\partial u}{\partial x_{i}}, & \text { if } u>0 \\
0, & \text { if } u \leq 0\end{cases} \\
\frac{\partial\left(u^{-}\right)}{\partial x_{i}}= \begin{cases}0, & \text { if } u \geq 0 \\
-\frac{\partial u}{\partial x_{i}}, & \text { if } u<0 .\end{cases}
\end{gathered}
$$

Lemma 2.5 Assume that (H1) holds. Let (u_{n}) be a sequence of $W_{0}^{1, p}(\Omega, w)$ such that $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, p}(\Omega, w)$. Then, $u_{n}^{+} \rightharpoonup u^{+}$weakly in $W_{0}^{1, p}(\Omega, w)$ and $u_{n}^{-} \rightharpoonup u^{-}$weakly in $W_{0}^{1, p}(\Omega, w)$.

Proof. Since $u_{n} \rightharpoonup u$ in $W_{0}^{1, p}(\Omega, w)$ and by (2.8) we have for a subsequence $u_{n} \rightarrow u$ in $L^{q}(\Omega, \sigma)$ and a.e. in Ω. On the other hand,

$$
\begin{aligned}
\left\|\left|u_{n}\right|\right\|_{X}^{p} & =\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p} w_{i} \geq \sum_{i=1}^{N} \int_{\left\{u_{n} \geq 0\right\}}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p} w_{i} \\
& =\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u_{n}^{+}}{\partial x_{i}}\right|^{p} w_{i}=\left\|\left|u_{n}^{+}\right|\right\|_{X}^{p} .
\end{aligned}
$$

Then $\left(u_{n}^{+}\right)$is bounded in $W_{0}^{1, p}(\Omega, w)$ hence by (2.6), $u_{n}^{+} \rightharpoonup u^{+}$in $W_{0}^{1, p}(\Omega, w)$. Similarly, we prove that $u_{n}^{-} \rightharpoonup u^{-}$in $W_{0}^{1, p}(\Omega, w)$.

3 Main result

Let A be the nonlinear operator from $W_{0}^{1, p}(\Omega, w)$ into the dual $W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$ defined as

$$
A u=-\operatorname{div}(a(x, u, \nabla u)),
$$

where $a: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Carathéodory vector-function satisfying the following assumptions:
(H2) For $i=1, \ldots, N$,

$$
\begin{gather*}
\left|a_{i}(x, s, \xi)\right| \leq \beta w_{i}^{1 / p}(x)\left[k(x)+\sigma^{1 / p^{\prime}}|s|^{\frac{q}{p^{\prime}}}+\sum_{j=1}^{N} w_{j}^{1 / p^{\prime}}(x)\left|\xi_{j}\right|^{p-1}\right], \tag{3.1}\\
{[a(x, s, \xi)-a(x, s, \eta)](\xi-\eta)>0 \quad \text { for all } \xi \neq \eta \in \mathbb{R}^{N}} \tag{3.2}\\
a(x, s, \xi) \cdot \xi \geq \alpha \sum_{i=1}^{N} w_{i}\left|\xi_{i}\right|^{p} \tag{3.3}
\end{gather*}
$$

where $k(x)$ is a positive function in $L^{p^{\prime}}(\Omega)$ and α, β are positive constants.
(H3) $g(x, s, \xi)$ is a Carathéodory function satisfying

$$
\begin{gather*}
g(x, s, \xi) s \geq 0 \tag{3.4}\\
|g(x, s, \xi)| \leq b(|s|)\left(\sum_{i=1}^{N} w_{i}\left|\xi_{i}\right|^{p}+c(x)\right) \tag{3.5}
\end{gather*}
$$

where $b: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a continuous increasing function and $c(x)$ is positive function which in $L^{1}(\Omega)$.

For the nonlinear Dirichlet boundary-value problem (1.2), we state our main result as follows.

Theorem 3.1 Under assumptions (H1)-(H3) and $h \in W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$, there exists a solution of (1.2).

Remarks. (1) Theorem 3.1, generalizes to weighted case the analogous statement in [3].
(2) The assumption (2.4) appear to be necessary only for proving the boundedness of g in $W_{0}^{1, p}(\Omega, w)$. Thus, when $g \equiv 0$, we do not need assumption (2.4).
(3) If we assume that $w_{0}(x) \equiv 1$ and that there exists $\left.\nu \in\right] \frac{N}{P}, \infty\left[\cap\left[\frac{1}{P-1}, \infty[\right.\right.$ such that $w_{i}^{-\nu} \in L^{1}(\Omega)$ for all $i=1, \ldots, N$, (which is an integrability condition, stronger than (2.1)), then

$$
\||u|\|_{X}=\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{1 / p}
$$

is a norm defined on $W_{0}^{1, p}(\Omega, w)$ and equivalent to (2.2). Also we have that

$$
W_{0}^{1, p}(\Omega, w) \hookrightarrow L^{q}(\Omega)
$$

for $1 \leq q<p_{1}^{*}, p \nu<N(\nu+1)$, and $q \geq 1$ is arbitrary for $p \nu \geq N(\nu+1)$ where $p_{1}=\frac{p \nu}{\nu+1}$. Where $p_{1}^{*}=\frac{N p_{1}}{N-p_{1}}=\frac{N p \nu}{N(\nu+1)-p \nu}$ is the Sobolev conjugate of p_{1} (see [6]). Thus the hypotheses (H1) is verified (for $\sigma \equiv 1$).

For Theorem 3.1, we needed the following lemma.

Lemma 3.2 Assume that (H1) and (H2) are satisfied, and let $\left(u_{n}\right)$ be a sequence in $W_{0}^{1, p}(\Omega, w)$ such that $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, p}(\Omega, w)$ and

$$
\begin{equation*}
\int_{\Omega}\left[a\left(x, u_{n}, \nabla u_{n}\right)-a\left(x, u_{n}, \nabla u\right)\right] \nabla\left(u_{n}-u\right) d x \rightarrow 0 . \tag{3.6}
\end{equation*}
$$

Then, $u_{n} \rightarrow u$ in $W_{0}^{1, p}(\Omega, w)$.

Proof. Let $D_{n}=\left[a\left(x, u_{n}, \nabla u_{n}\right)-a\left(x, u_{n}, \nabla u\right)\right] \nabla\left(u_{n}-u\right)$. Then by $(3.2), D_{n}$ is a positive function and by (3.6) $D_{n} \rightarrow 0$ in $L^{1}(\Omega)$. Extracting a subsequence still denoted by u_{n}, and using (2.6), we can write

$$
\begin{cases}u_{n} \rightarrow u & \text { a.e. in } \Omega \\ D_{n} \rightarrow 0 & \text { a.e. in } \Omega .\end{cases}
$$

Then, there exists a subset B of Ω, of zero measure, such that for $x \in \Omega \backslash B$, $|u(x)|<\infty,|\nabla u(x)|<\infty,|k(x)|<\infty, w_{i}(x)>0$ and $u_{n}(x) \rightarrow u(x), D_{n}(x) \rightarrow$ 0 . We set $\xi_{n}=\nabla u_{n}(x), \xi=\nabla u(x)$. Then

$$
\begin{align*}
D_{n}(x)= & {\left[a\left(x, u_{n}, \xi_{n}\right)-a\left(x, u_{n}, \xi\right)\right]\left(\xi_{n}-\xi\right) } \\
\geq & \alpha \sum_{i=1}^{N} w_{i}\left|\xi_{n}^{i}\right|^{p}+\alpha \sum_{i=1}^{N} w_{i}\left|\xi^{i}\right|^{p} \\
& -\sum_{i=1}^{N} \beta w_{i}^{1 / p}\left[k(x)+\sigma^{1 / p^{\prime}}\left|u_{n}\right|^{\frac{q}{p^{\prime}}}+\sum_{j=1}^{N} w_{j}^{1 / p^{\prime}}\left|\xi_{n}^{j}\right|^{p-1}\right]\left|\xi^{i}\right| \tag{3.7}\\
& -\sum_{i=1}^{N} \beta w_{i}^{1 / p}\left[k(x)+\sigma^{1 / p^{\prime}}\left|u_{n}\right|^{\frac{q}{p^{\prime}}}+\sum_{j=1}^{N} w_{j}^{1 / p^{\prime}}\left|\xi^{j}\right|^{p-1}\right]\left|\xi_{n}^{i}\right| \\
\geq & \alpha \sum_{i=1}^{N} w_{i}\left|\xi_{n}^{i}\right|^{p}-c_{x}\left[1+\sum_{j=1}^{N} w_{j}^{1 / p^{\prime}}\left|\xi_{n}^{j}\right|^{p-1}+\sum_{i=1}^{N} w_{i}^{1 / p}\left|\xi_{n}^{i}\right|\right]
\end{align*}
$$

where c_{x} is a constant which depends on x, but does not depend on n. Since $u_{n}(x) \rightarrow u(x)$ we have $\left|u_{n}(x)\right| \leq M_{x}$ where M_{x} is some positive constant. Then by a standard argument $\left|\xi_{n}\right|$ is bounded uniformly with respect to n; indeed (3.7) becomes,

$$
D_{n}(x) \geq \sum_{i=1}^{N}\left|\xi_{n}^{i}\right|^{p}\left(\alpha w_{i}-\frac{c_{x}}{N\left|\xi_{n}^{i}\right|^{p}}-\frac{c_{x} w_{i}^{1 / p^{\prime}}}{\left|\xi_{n}^{i}\right|}-\frac{c_{x} w_{i}^{1 / p}}{\left|\xi_{n}^{i}\right|^{p-1}}\right)
$$

If $\left|\xi_{n}\right| \rightarrow \infty$ (for a subsequence) there exists at least one i_{0} such that $\left|\xi_{n}^{i_{0}}\right| \rightarrow \infty$, which implies that $D_{n}(x) \rightarrow \infty$ which gives a contradiction.

Let now ξ^{*} be a cluster point of ξ_{n}. We have $\left|\xi^{*}\right|<\infty$ and by the continuity of a with respect to the two last variables we obtain

$$
\left(a\left(x, u(x), \xi^{*}\right)-a(x, u(x), \xi)\right)\left(\xi^{*}-\xi\right)=0
$$

In view of (3.2) we have $\xi^{*}=\xi$. The uniqueness of the cluster point implies

$$
\nabla u_{n}(x) \rightarrow \nabla u(x) \quad \text { a.e. in } \Omega .
$$

Since the sequence $a\left(x, u_{n}, \nabla u_{n}\right)$ is bounded in $\prod_{i=1}^{N} L^{p^{\prime}}\left(\Omega, w_{i}^{*}\right)$ and $a\left(x, u_{n}, \nabla u_{n}\right) \rightarrow a(x, u, \nabla u)$ a.e. in Ω, Lemma 2.1 implies

$$
a\left(x, u_{n}, \nabla u_{n}\right) \rightharpoonup a(x, u, \nabla u) \quad \text { in } \prod_{i=1}^{N} L^{p^{\prime}}\left(\Omega, w_{i}^{*}\right) \text { and a.e. in } \Omega .
$$

We set $\bar{y}_{n}=a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n}$ and $\bar{y}=a(x, u, \nabla u) \nabla u$. As in [4, Lemma 5] we can write

$$
\bar{y}_{n} \rightarrow \bar{y} \quad \text { in } L^{1}(\Omega)
$$

By (3.3) we have

$$
\alpha \sum_{i=1}^{N} w_{i}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p} \leq a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n}
$$

Let $z_{n}=\sum_{i=1}^{N} w_{i}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p}, z=\sum_{i=1}^{N} w_{i}\left|\frac{\partial u}{\partial x_{i}}\right|^{p}, y_{n}=\frac{\bar{y}_{n}}{\alpha}$ and $y=\frac{\bar{y}}{\alpha}$. Then, by Fatou's theorem we obtain

$$
\int_{\Omega} 2 y d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega} y+y_{n}-\left|z_{n}-z\right| d x
$$

i.e. $0 \leq-\lim \sup _{n \rightarrow \infty} \int_{\Omega}\left|z_{n}-z\right| d x$ then

$$
0 \leq \liminf _{n \rightarrow \infty} \int_{\Omega}\left|z_{n}-z\right| d x \leq \limsup _{n \rightarrow \infty} \int_{\Omega}\left|z_{n}-z\right| d x \leq 0
$$

this implies,

$$
\nabla u_{n} \rightarrow \nabla u \text { in } \prod_{i=1}^{N} L^{p}\left(\Omega, w_{i}\right)
$$

which with (2.3) completes the present proof.

4 Proof of Theorem 3.1

Step (1) The approximate problem. Let

$$
g_{\varepsilon}(x, s, \xi)=\frac{g(x, s, \xi)}{1+\varepsilon|g(x, s, \xi)|}
$$

and consider the equation

$$
\begin{gather*}
A\left(u_{\varepsilon}\right)+g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)=h \tag{4.1}\\
u_{\varepsilon} \in W_{0}^{1, p}(\Omega, w)
\end{gather*}
$$

We define the operator $G_{\varepsilon}: X \rightarrow X^{*}$ by

$$
\left\langle G_{\varepsilon} u, v\right\rangle=\int_{\Omega} g_{\varepsilon}(x, u, \nabla u) v d x
$$

Thanks to Hölder's inequality, for all $v \in X$ and $\varphi \in X$,

$$
\begin{align*}
\left|\int_{\Omega} g_{\varepsilon}(x, v, \nabla v) \varphi d x\right| & \leq\left(\int_{\Omega}\left|g_{\varepsilon}(x, v, \nabla v)\right|^{q^{\prime}} \sigma^{-\frac{q^{\prime}}{q}} d x\right)^{1 / q^{\prime}}\left(\int_{\Omega}|\varphi|^{q} \sigma d x\right)^{1 / q} \\
& \leq \frac{1}{\varepsilon}\left(\int_{\Omega} \sigma^{1-q^{\prime}} d x\right)^{1 / q^{\prime}}\|\varphi\|_{q, \sigma} \leq c_{\varepsilon}\||\varphi|\| \tag{4.2}
\end{align*}
$$

For the above inequality, we have used (2.4) and (2.6).

Lemma 4.1 The operator $A+G_{\varepsilon}: X \rightarrow X^{*}$ is bounded, coercive, hemicontinous , and satisfies property (M).

In view of Lemma 4.1, Problem (4.1) has a solution by a classical result [10, Theorem 2.1 and Remark 2.1]. Since g_{ε} verifies the sign condition and using (3.3), we obtain

$$
\alpha \sum_{i=1}^{N} \int_{\Omega} w_{i}\left|\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right|^{p} \leq\left\langle h, u_{\varepsilon}\right\rangle
$$

i.e. $\alpha\left\|\left|u_{\varepsilon}\right|\right\|^{p} \leq c\|h\|_{X^{*}}\left\|\left|u_{\varepsilon}\right|\right\|$. Then

$$
\begin{equation*}
\left\|\left|u_{\varepsilon}\right|\right\| \leq \beta_{0} \tag{4.3}
\end{equation*}
$$

where β_{0} is some positive constant. Hence, we can extract a subsequence still denoted by u_{ε} such that,

$$
u_{\varepsilon} \rightharpoonup u \text { in } W_{0}^{1, p}(\Omega, w) \text { and a.e. in } \Omega .
$$

Step (2) Convergence of the positive part of u_{ε}. We shall prove that

$$
u_{\varepsilon}^{+} \rightarrow u^{+} \text {in } W_{0}^{1, p}(\Omega, w) \quad \text { strongly. }
$$

Let $k>0$. Define $u_{k}^{+}=u^{+} \wedge k=\min \left\{u^{+}, k\right\}$. We shall fix k, and use the notation

$$
z_{\varepsilon}=u_{\varepsilon}^{+}-u_{k}^{+}
$$

Assertion:

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0} \int_{\Omega}\left[a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}^{+}\right)-a\left(x, u_{\varepsilon}, \nabla u_{k}^{+}\right)\right] \nabla\left(u_{\varepsilon}^{+}-u_{k}^{+}\right)^{+} d x \leq R_{k} \tag{4.4}
\end{equation*}
$$

where $R_{k} \rightarrow 0$ as $k \rightarrow+\infty$. Indeed, by Lemmas 2.3 and 2.4, we have $z_{\varepsilon} \in$ $W_{0}^{1, p}(\Omega, w)$ and $z_{\varepsilon}^{+} \in W_{0}^{1, p}(\Omega, w)$. Multiplying (4.1) by z_{ε}^{+}we obtain

$$
\left\langle A u_{\varepsilon}, z_{\varepsilon}^{+}\right\rangle+\int_{\Omega} g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) z_{\varepsilon}^{+} d x=\left\langle h, z_{\varepsilon}^{+}\right\rangle
$$

If $z_{\varepsilon}^{+}>0$, we have $u_{\varepsilon}>0$ and from (3.4) $g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \geq 0$, then $\left\langle A u_{\varepsilon}, z_{\varepsilon}^{+}\right\rangle \leq$ $\left\langle h, z_{\varepsilon}^{+}\right\rangle$i.e.

$$
\int_{\Omega} a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \nabla z_{\varepsilon}^{+} d x \leq\left\langle h, z_{\varepsilon}^{+}\right\rangle .
$$

Since $u_{\varepsilon}=u_{\varepsilon}^{+}$in $\left\{x \in \Omega: z_{\varepsilon}^{+}>0\right\}$ then

$$
\int_{\Omega} a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}^{+}\right) \nabla z_{\varepsilon}^{+} d x \leq\left\langle h, z_{\varepsilon}^{+}\right\rangle .
$$

Which implies

$$
\begin{align*}
& \int_{\Omega}\left[a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}^{+}\right)-a\left(x, u_{\varepsilon}, \nabla u_{k}^{+}\right)\right] \nabla\left(u_{\varepsilon}^{+}-u_{k}^{+}\right)^{+} d x \\
&\left.\leq-\int_{\Omega} a\left(x, u_{\varepsilon}, \nabla u_{k}^{+}\right)\right] \nabla\left(u_{\varepsilon}^{+}-u_{k}^{+}\right)^{+}+\left\langle h, z_{\varepsilon}^{+}\right\rangle \tag{4.5}
\end{align*}
$$

As $\varepsilon \rightarrow 0$, we have $z_{\varepsilon}^{+} \rightarrow\left(u^{+}-u_{k}^{+}\right)^{+}$a.e. in Ω. However z_{ε}^{+}is bounded in $W_{0}^{1, p}(\Omega, w)$; hence

$$
z_{\varepsilon}^{+} \rightharpoonup\left(u^{+}-u_{k}^{+}\right)^{+} \quad \text { in } W_{0}^{1, p}(\Omega, w)
$$

Since $a\left(x, u_{\varepsilon}, \nabla u_{k}^{+}\right) \rightarrow a\left(x, u, \nabla u_{k}^{+}\right)$in $\prod_{i=1}^{N} L^{p^{\prime}}\left(\Omega, w_{i}^{*}\right)$, by passing to the limit in ε in (4.5), we obtain (4.4) with

$$
\left.R_{k}=-\int_{\Omega} a\left(x, u, \nabla u_{k}^{+}\right)\right] \nabla\left(u^{+}-u_{k}^{+}\right)^{+}+\left\langle h,\left(u^{+}-u_{k}^{+}\right)^{+}\right\rangle .
$$

Because $\left(u^{+}-u_{k}^{+}\right)^{+} \rightarrow 0$ in $W_{0}^{1, p}(\Omega, w)$ as $k \rightarrow \infty$, we have $R_{k} \rightarrow 0$ as $k \rightarrow \infty$.

Assertion:

$$
\begin{equation*}
-\liminf _{\varepsilon \rightarrow 0} \int_{\Omega}\left[a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}^{+}\right)-a\left(x, u_{\varepsilon}, \nabla u_{k}^{+}\right)\right] \nabla\left(u_{\varepsilon}^{+}-u_{k}^{+}\right)^{-} d x \leq 0 \tag{4.6}
\end{equation*}
$$

Indeed, we shall use the test function $v_{\varepsilon}=\varphi_{\lambda}\left(z_{\varepsilon}^{-}\right)$with $\varphi_{\lambda}(s)=s e^{\lambda s^{2}}$ in (4.1). We have $0 \leq z_{\varepsilon}^{-} \leq k$, i.e. $z_{\varepsilon}^{-} \in L^{\infty}(\Omega)$ and since $z_{\varepsilon}^{-} \in W_{0}^{1, p}(\Omega, w)$, hence by Lemma 2.2, we have $v_{\varepsilon} \in W_{0}^{1, p}(\Omega, w)$. Multiplying (4.1) by v_{ε} we obtain

$$
\int_{\Omega} a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \nabla z_{\varepsilon}^{-} \varphi_{\lambda}^{\prime}\left(z_{\varepsilon}^{-}\right) d x+\int_{\Omega} g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \varphi_{\lambda}\left(z_{\varepsilon}^{-}\right) d x=\left\langle h, \varphi_{\lambda}\left(z_{\varepsilon}^{-}\right)\right\rangle
$$

Define

$$
E_{\varepsilon}=\left\{x \in \Omega: u_{\varepsilon}^{+}(x) \leq u_{k}^{+}(x)\right\} \quad \text { and } \quad F_{\varepsilon}=\left\{x \in \Omega: 0 \leq u_{\varepsilon}(x) \leq u_{k}^{+}(x)\right\}
$$

Since $\varphi_{\lambda}\left(z_{\varepsilon}^{-}\right)=0$ in E_{ε}^{c},

$$
\int_{\Omega} g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \varphi_{\lambda}\left(z_{\varepsilon}^{-}\right) d x=\int_{E_{\varepsilon}} g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \varphi_{\lambda}\left(z_{\varepsilon}^{-}\right) d x
$$

When $u_{\varepsilon} \leq 0$, we have $g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \leq 0$ and since $\varphi_{\lambda}\left(z_{\varepsilon}^{-}\right) \geq 0$, we obtain

$$
\begin{aligned}
& \int_{E_{\varepsilon}} g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \varphi_{\lambda}\left(z_{\varepsilon}^{-}\right) d x \\
& \quad \leq \int_{F_{\varepsilon}} g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \varphi_{\lambda}\left(z_{\varepsilon}^{-}\right) d x \\
& \leq \int_{F_{\varepsilon}} b\left(\left|u_{\varepsilon}\right|\right)\left[\sum_{i=1}^{N} w_{i}\left|\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right|^{p}+c(x)\right] \varphi_{\lambda}\left(z_{\varepsilon}^{-}\right) d x \\
& \quad \leq b(k) \int_{F_{\varepsilon}}\left[\sum_{i=1}^{N} w_{i}\left|\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right|^{p}+c(x)\right] \varphi_{\lambda}\left(z_{\varepsilon}^{-}\right) d x \\
& \quad \leq \frac{b(k)}{\alpha} \int_{F_{\varepsilon}} a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \nabla u_{\varepsilon} \varphi_{\lambda}\left(z_{\varepsilon}^{-}\right) d x+b(k) \int_{F_{\varepsilon}} c(x) \varphi_{\lambda}\left(z_{\varepsilon}^{-}\right)
\end{aligned}
$$

As in $[3$, Theorem1.1], we can show that

$$
\begin{aligned}
- & \frac{1}{2} \int_{\Omega}\left[a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}^{+}\right)-a\left(x, u_{\varepsilon}, \nabla u_{k}^{+}\right)\right] \nabla\left(u_{\varepsilon}^{+}-u_{k}^{+}\right)^{-} \\
\leq & \int_{\Omega}\left[a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)-a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}^{+}\right)\right] \nabla u_{k}^{+} \varphi_{\lambda}^{\prime}\left(u_{k}^{+}\right) d x+\left\langle-h, \varphi_{\lambda}\left(z_{\varepsilon}^{-}\right)\right\rangle \\
& +\int_{\Omega} a\left(x, u_{\varepsilon}, \nabla u_{k}^{+}\right) \nabla z_{\varepsilon}^{-} \varphi_{\lambda}^{\prime}\left(z_{\varepsilon}^{-}\right) d x+\frac{b(k)}{\alpha} \int_{\Omega} a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}^{+}\right) \nabla u_{k}^{+} \varphi_{\lambda}\left(z_{\varepsilon}^{-}\right) d x \\
& +\frac{b(k)}{\alpha} \int_{\Omega} a\left(x, u_{\varepsilon}, \nabla u_{k}^{+}\right) \nabla\left(u_{\varepsilon}^{+}-u_{k}^{+}\right) \varphi_{\lambda}\left(z_{\varepsilon}^{-}\right) d x+b(k) \int_{\Omega} c(x) \varphi_{\lambda}\left(z_{\varepsilon}^{-}\right) d x
\end{aligned}
$$

for $\lambda=\frac{b(k)^{2}}{4 \alpha^{2}}$. For short notation, we rewrite the above inequality as

$$
I_{\varepsilon k} \leq I_{\varepsilon k}^{1}+I_{\varepsilon k}^{2}+I_{\varepsilon k}^{3}+I_{\varepsilon k}^{4}+I_{\varepsilon k}^{5}
$$

Now, we extract a subsequence that satisfies the following two conditions:

$$
\begin{equation*}
a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \rightharpoonup \gamma_{1} \quad \text { and } \quad a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}^{+}\right) \rightharpoonup \gamma_{2} \quad \text { in } \prod_{i=1}^{N} L^{p^{\prime}}\left(\Omega, w_{i}^{*}\right) . \tag{4.7}
\end{equation*}
$$

Lemma 4.2 For k fixed, as $\varepsilon \rightarrow 0$, the following statements hold:
(a) $I_{\varepsilon k}^{1} \rightarrow I_{k}^{1}=\int_{\Omega}\left[\gamma_{1}-\gamma_{2}\right] \nabla u_{k}^{+} \varphi_{\lambda}^{\prime}\left(u_{k}^{+}\right) d x+\left\langle-h, \varphi_{\lambda}\left(\left(u^{+}-u_{k}^{+}\right)^{-}\right)\right\rangle$
(b) $I_{\varepsilon k}^{2} \rightarrow I_{k}^{2}=\int_{\Omega} a\left(x, u, \nabla u_{k}^{+}\right) \nabla\left(\left(u^{+}-u_{k}^{+}\right)^{-}\right) \varphi_{\lambda}^{\prime}\left(\left(u^{+}-u_{k}^{+}\right)^{-}\right)$
(c) $I_{\varepsilon k}^{3} \rightarrow I_{k}^{3}=\frac{b(k)}{\alpha} \int_{\Omega} \gamma_{2} \nabla u_{k}^{+} \varphi_{\lambda}\left(\left(u^{+}-u_{k}^{+}\right)^{-}\right) d x$
(d) $I_{\varepsilon k}^{4} \rightarrow I_{k}^{4}=\frac{b(k)}{\alpha} \int_{\Omega} a\left(x, u, \nabla u_{k}^{+}\right) \nabla\left(u^{+}-u_{k}^{+}\right) \varphi_{\lambda}\left(\left(u^{+}-u_{k}^{+}\right)^{-}\right) d x$
(e) $I_{\varepsilon k}^{5} \rightarrow I_{k}^{5}=b(k) \int_{\Omega} c(x) \varphi_{\lambda}\left(\left(u^{+}-u_{k}^{+}\right)^{-}\right) d x$

In view of Lemma 4.2, $\left(u^{+}-u_{k}^{+}\right)^{-}=0$ and $\varphi_{\lambda}(0)=0$, we have

$$
\limsup _{\varepsilon \rightarrow 0} I_{\varepsilon k} \leq I_{k}^{1}+I_{k}^{2}+I_{k}^{3}+I_{k}^{4}+I_{k}^{5}=\int_{\Omega}\left[\gamma_{1}(x)-\gamma_{2}(x)\right] \nabla u_{k}^{+} \varphi_{\lambda}^{\prime}\left(u_{k}^{+}\right) d x
$$

Moreover, if $u_{\varepsilon}<0$ we have $\left(u_{\varepsilon}\right)_{k}^{+}=0$, hence,

$$
\left(a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)-a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}^{+}\right)\right)\left(u_{\varepsilon}\right)_{k}^{+}=0 \quad \text { a.e. }
$$

which implies $\left(\gamma_{1}(x)-\gamma_{2}(x)\right) u_{k}^{+}=0$, and so $\lim \sup _{\varepsilon \rightarrow 0} I_{\varepsilon k} \leq 0$; thus, (4.6) follows.
Assertion:

$$
\begin{equation*}
u_{\varepsilon}^{+} \rightarrow u^{+} \quad \text { in } W_{0}^{1, p}(\Omega, w) \quad \text { strongly. } \tag{4.8}
\end{equation*}
$$

As in [3, theorem 1.1], from (4.4) and (4.6), we have

$$
\begin{aligned}
& \limsup _{\varepsilon \rightarrow 0} \int_{\Omega}\left[a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}^{+}\right)-a\left(x, u_{\varepsilon}, \nabla u^{+}\right)\right] \nabla\left(u_{\varepsilon}^{+}-u^{+}\right) \\
& \leq R_{k}+\int_{\Omega}\left[\gamma_{2}(x)-a\left(x, u, \nabla u_{k}^{+}\right)\right] \nabla\left(u_{k}^{+}-u^{+}\right)
\end{aligned}
$$

Letting $k \rightarrow \infty$ and using lemma 3.2 we obtain (4.8).
Step (3) Convergence of the negative part of u_{ε}. As in the preceding step, we shall prove that

$$
\begin{equation*}
u_{\varepsilon}^{-} \rightarrow u^{-} \quad \text { in } W_{0}^{1, p}(\Omega, w) \quad \text { strongly. } \tag{4.9}
\end{equation*}
$$

Assertion:

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0} \int_{\Omega}-\left[a\left(x, u_{\varepsilon},-\nabla u_{\varepsilon}^{-}\right)-a\left(x, u_{\varepsilon},-\nabla u_{k}^{-}\right)\right] \nabla\left(u_{\varepsilon}^{-}-u_{k}^{-}\right)^{+} d x \leq \tilde{R}_{k} \tag{4.10}
\end{equation*}
$$

where $\tilde{R}_{k} \rightarrow 0$ as $k \rightarrow+\infty$. Indeed, when we define $u_{k}^{-}=u^{-} \wedge k, y_{\varepsilon}=u_{\varepsilon}^{-}-u_{k}^{-}$, and multiply (4.1) by y_{ε}^{+}, we obtain

$$
\int_{\Omega} a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \nabla y_{\varepsilon}^{+} d x+\int_{\Omega} g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) y_{\varepsilon}^{+} d x=\left\langle h, y_{\varepsilon}^{+}\right\rangle .
$$

Since $y_{\varepsilon}^{+}>0$ implies $u_{\varepsilon}<0$, from (3.4) we have $g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \leq 0$. Hence $g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) y_{\varepsilon}^{+} \leq 0$ a.e. in Ω. Then

$$
\int_{\Omega} a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \nabla y_{\varepsilon}^{+} d x \geq\left\langle h, y_{\varepsilon}^{+}\right\rangle
$$

Since $u_{\varepsilon}=-u_{\varepsilon}^{-}$on the set $\left\{x \in \Omega: y_{\varepsilon}^{+}>0\right\}$, we can write

$$
\int_{\Omega} a\left(x, u_{\varepsilon},-\nabla u_{\varepsilon}^{-}\right) \nabla y_{\varepsilon}^{+} d x \geq\left\langle h, y_{\varepsilon}^{+}\right\rangle
$$

which implies

$$
\begin{aligned}
-\int_{\Omega}\left[a\left(x, u_{\varepsilon},-\nabla u_{\varepsilon}^{-}\right)-a\left(x, u_{\varepsilon}\right.\right. & \left.\left.,-\nabla u_{k}^{-}\right)\right] \nabla\left(u_{\varepsilon}^{-}-u_{k}^{-}\right)^{+} d x \\
& \leq \int_{\Omega} a\left(x, u_{\varepsilon},-\nabla u_{k}^{-}\right) \nabla\left(u_{\varepsilon}^{-}-u_{k}^{-}\right)^{+}-\left\langle h, y_{\varepsilon}^{+}\right\rangle
\end{aligned}
$$

As $\varepsilon \rightarrow 0$ we have $y_{\varepsilon}^{+} \rightarrow\left(u^{-}-u_{k}^{-}\right)^{+}$a.e. in Ω. Since y_{ε}^{+}is bounded in $W_{0}^{1, p}(\Omega, w), y_{\varepsilon}^{+} \rightharpoonup\left(u^{-}-u_{k}^{-}\right)^{+}$in $W_{0}^{1, p}(\Omega, w)$ (for k fixed). Passing to the limit in ε we obtain (4.10) with

$$
\tilde{R}_{k}=\int_{\Omega} a\left(x, u,-\nabla u_{k}^{-}\right) \nabla\left(u^{-}-u_{k}^{-}\right)^{+}-\left\langle h,\left(u^{-}-u_{k}^{-}\right)^{+}\right\rangle .
$$

Because $\left(u^{-}-u_{k}^{-}\right)^{+} \rightarrow 0$ in $W_{0}^{1, p}(\Omega, w)$ as $k \rightarrow \infty$ we obtain that $\tilde{R}_{k} \rightarrow 0$ as $k \rightarrow \infty$.

Assertion:

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0} \int_{\Omega}\left[a\left(x, u_{\varepsilon},-\nabla u_{\varepsilon}^{-}\right)-a\left(x, u_{\varepsilon},-\nabla u_{k}^{-}\right)\right] \nabla\left(u_{\varepsilon}^{-}-u_{k}^{-}\right)^{-} d x \leq 0 \tag{4.11}
\end{equation*}
$$

This can be done as in (4.6) by considering a test function $v_{\varepsilon}=\varphi_{\lambda}\left(y_{\varepsilon}^{-}\right)$. Finally combining (4.10) and (4.11), we deduce as in (4.8) the assertion (4.9).
Step (4) Convergence of u_{ε}. From (4.8) and (4.9), we deduce that for a subsequence,

$$
\begin{gather*}
u_{\varepsilon} \rightarrow u \quad \text { in } W_{0}^{1, p}(\Omega, w) \quad \text { and a.e. in } \Omega \tag{4.12}\\
\nabla u_{\varepsilon} \rightarrow \nabla u \quad \text { a.e. in } \Omega, \tag{4.13}
\end{gather*}
$$

which implies

$$
\begin{align*}
g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) & \rightarrow g(x, u, \nabla u) \quad \text { a.e. in } \Omega \\
g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) u_{\varepsilon} & \rightarrow g(x, u, \nabla u) u \quad \text { a.e. in } \Omega . \tag{4.14}
\end{align*}
$$

On the other hand, multiplying (4.1) by u_{ε} and using (3.3), (3.4), (4.2), (4.3) we obtain

$$
\begin{equation*}
0 \leq \int_{\Omega} g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) u_{\varepsilon} d x \leq \tilde{\beta} \tag{4.15}
\end{equation*}
$$

where $\tilde{\beta}$ is some positive constant. For any measurable subset E of Ω and any $m>0$, we have

$$
\int_{E}\left|g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)\right| d x=\int_{E \cap X_{m}^{\varepsilon}}\left|g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)\right| d x+\int_{E \cap Y_{m}^{\varepsilon}}\left|g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)\right| d x
$$

where

$$
\begin{equation*}
X_{m}^{\varepsilon}=\left\{x \in \Omega:\left|u_{\varepsilon}(x)\right| \leq m\right\}, \quad Y_{m}^{\varepsilon}=\left\{x \in \Omega:\left|u_{\varepsilon}(x)\right|>m\right\} \tag{4.16}
\end{equation*}
$$

From this and (3.5),(4.15),(4.16), we have

$$
\begin{aligned}
\int_{E}\left|g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)\right| d x & \leq \int_{E \cap X_{m}^{\varepsilon}}\left|g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)\right| d x+\frac{1}{m} \int_{\Omega} g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) u_{\varepsilon} d x \\
& \leq b(m) \int_{E}\left(\sum_{i=1}^{N} w_{i}\left|\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right|^{p}+c(x)\right)+\tilde{\beta} \frac{1}{m} .
\end{aligned}
$$

Since the sequence (∇u_{ε}) converges strongly in $\prod_{i=1}^{N} L^{p}\left(\Omega, w_{i}\right)$, then above inequality implies the equi-integrability of $g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)$. Thanks to (4.14) and Vitali's theorem,

$$
\begin{equation*}
g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \rightarrow g(x, u, \nabla u) \quad \text { strongly in } L^{1}(\Omega) \tag{4.17}
\end{equation*}
$$

From (4.12) and (4.17) we can pass to the limit in

$$
\left\langle A u_{\varepsilon}, v\right\rangle+\int_{\Omega} g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) v=\langle h, v\rangle
$$

and we obtain

$$
\begin{equation*}
\langle A u, v\rangle+\int_{\Omega} g(x, u, \nabla u) v=\langle h, v\rangle \quad \forall v \in W_{0}^{1, p}(\Omega, w) \cap L^{\infty}(\Omega) \tag{4.18}
\end{equation*}
$$

Moreover, since $g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) u_{\varepsilon} \geq 0$ a.e. in Ω, by (4.14), (4.15) and Fatou's lemma, we have $g(x, u, \nabla u) u \in L^{1}(\Omega)$. It remains to show that,

$$
\langle A u, u\rangle+\int_{\Omega} g(x, u, \nabla u) u=\langle h, u\rangle .
$$

Put $v=u_{k}$ in (4.18) where u_{k} is the truncation of u. Then

$$
\left\langle A u-h, u_{k}\right\rangle \rightarrow\langle A u-h, u\rangle
$$

and

$$
g(x, u, \nabla u) u_{k} \rightarrow g(x, u, \nabla u) u \text { in } L^{1}(\Omega)
$$

Using Lebesgue's dominated convergence theorem, since

$$
\left|g(x, u, \nabla u) u_{k}\right| \leq|g(x, u, \nabla u)||u| \in L^{1}(\Omega)
$$

we conclude that $g(x, u, \nabla u) u_{k} \rightarrow g(x, u, \nabla u) u$ a.e. in Ω.
Proof of Lemma 4.1 We set $B_{\varepsilon}=A+G_{\varepsilon}$. Using (3.1) and Hölder's inequality we can show that A is bounded [5]. Thanks to (4.2) we have B_{ε} bounded. The coercivity follows from (3.3) and (3.4). To show that B_{ε} is hemicontinous, let $t \rightarrow t_{0}$ and prove that

$$
\left\langle B_{\varepsilon}(u+t v), \tilde{w}\right\rangle \rightarrow\left\langle B_{\varepsilon}\left(u+t_{0} v\right), \tilde{w}\right\rangle \text { as } t \rightarrow t_{0} \quad \text { for all } u, v, \tilde{w} \in X
$$

Since for a.e. $x \in \Omega, a_{i}(x, u+t v, \nabla(u+t v)) \rightarrow a_{i}\left(x, u+t_{0} v, \nabla\left(u+t_{0} v\right)\right)$ as $t \rightarrow t_{0}$, thanks to the growth condition (3.1), Lemma 2.1 implies
$a_{i}(x, u+t v, \nabla(u+t v)) \rightharpoonup a_{i}\left(x, u+t_{0} v, \nabla\left(u+t_{0} v\right)\right) \quad$ in $L^{p^{\prime}}\left(\Omega, w_{i}^{1-p^{\prime}}\right) \quad$ as $t \rightarrow t_{0}$.
Finally for all $\tilde{w} \in X$,

$$
\langle A(u+t v), \tilde{w}\rangle \rightarrow\left\langle A\left(u+t_{0} v\right), \tilde{w}\right\rangle \quad \text { as } t \rightarrow t_{0} .
$$

On the other hand, $g_{\varepsilon}(x, u+t v, \nabla(u+t v)) \rightarrow g_{\varepsilon}\left(x, u+t_{0} v, \nabla\left(u+t_{0} v\right)\right)$ as $t \rightarrow t_{0}$ for a.e. $x \in \Omega$. Also $\left(g_{\varepsilon}(x, u+t v+\nabla(u+t v))\right)_{t}$ is bounded in $L^{q^{\prime}}\left(\Omega, \sigma^{1-q^{\prime}}\right)$ because

$$
\int_{\Omega}\left|g_{\varepsilon}(x, u+t v, \nabla(u+t v))\right|^{q^{\prime}} \sigma^{1-q^{\prime}} \leq\left(\frac{1}{\varepsilon}\right)^{q^{\prime}} \int_{\Omega} \sigma^{1-q^{\prime}} \leq c_{\varepsilon}
$$

then Lemma 2.1 gives
$g_{\varepsilon}(x, u+t v, \nabla(u+t v)) \rightharpoonup g_{\varepsilon}\left(x, u+t_{0} v, \nabla\left(u+t_{0} v\right)\right)$ in $L^{q^{\prime}}\left(\Omega, \sigma^{1-q^{\prime}}\right)$ as $t \rightarrow t_{0}$.

Since $\tilde{w} \in L^{q}(\Omega, \sigma)$ for all $\tilde{w} \in X$,

$$
\left\langle G_{\varepsilon}(u+t v), \tilde{w}\right\rangle \rightarrow\left\langle G_{\varepsilon}\left(u+t_{0} v\right), \tilde{w}\right\rangle \quad \text { as } t \rightarrow t_{0}
$$

Next we show that B_{ε} satisfies property (M); i.e. for a sequence u_{j} in X satisfying: (i) $u_{i} \rightharpoonup u$ in X, (ii) $B_{\varepsilon} u_{j} \rightharpoonup \chi$ in X^{*}, and (iii) $\lim \sup _{j \rightarrow \infty}\left\langle B_{\varepsilon} u_{j}, u_{j}-u\right\rangle \leq$ 0 , we have $\chi=B_{\varepsilon} u$. Indeed, by Hölder's inequality and (2.6),

$$
\begin{aligned}
\int_{\Omega} g_{\varepsilon}(x, & \left.u_{j}, \nabla u_{j}\right)\left(u_{j}-u\right) \\
& \leq\left(\int_{\Omega}\left|g_{\varepsilon}\left(x, u_{j}, \nabla u_{j}\right)\right|^{q^{\prime}} \sigma^{-q^{\prime} / q} d x\right)^{1 / q^{\prime}}\left(\int_{\Omega}\left|u_{j}-u\right|^{q} \sigma d x\right)^{1 / q} \\
& \leq \frac{1}{\varepsilon}\left(\int_{\Omega} \sigma^{\frac{-q^{\prime}}{q}} d x\right)^{1 / q^{\prime}}\left\|u_{j}-u\right\|_{q, \sigma} \rightarrow 0 \quad \text { as } j \rightarrow \infty,
\end{aligned}
$$

i.e., $\left\langle G_{\varepsilon} u_{j}, u_{j}-u\right\rangle \rightarrow 0$ as $j \rightarrow \infty$. Combining the last convergence with (iii), we obtain

$$
\limsup _{j \rightarrow \infty}\left\langle A u_{j}, u_{j}-u\right\rangle \leq 0
$$

And by the pseudo-monotonicity of A [5, Prop. 1], we have $A u_{j} \rightharpoonup A u$ in X^{*} and $\lim _{j \rightarrow \infty}\left\langle A u_{j}, u_{j}-u\right\rangle=0$. On the other hand,

$$
\begin{aligned}
0= & \lim _{j \rightarrow \infty} \int_{\Omega} a\left(x, u_{j}, \nabla u_{j}\right) \nabla\left(u_{j}-u\right) d x \\
= & \lim _{j \rightarrow \infty} \int_{\Omega}\left(a\left(x, u_{j}, \nabla u_{j}\right)-a\left(x, u_{j}, \nabla u\right)\right) \nabla\left(u_{j}-u\right) d x \\
& +\int_{\Omega} a\left(x, u_{j}, \nabla u\right) \nabla\left(u_{j}-u\right) d x
\end{aligned}
$$

The last integral in the right hand tends to zero since $a\left(x, u_{j}, \nabla u\right) \rightarrow a(x, u, \nabla u)$ in $\prod_{i=1}^{N} L^{p^{\prime}}\left(\Omega, w_{i}^{1-p^{\prime}}\right)$ as $j \rightarrow \infty$; hence, by Lemma 3.2 we have $\nabla u_{j} \rightarrow \nabla u$ a. e. in Ω. Then

$$
g_{\varepsilon}\left(x, u_{j}, \nabla u_{j}\right) \rightarrow g_{\varepsilon}(x, u, \nabla u) \quad \text { a.e. in } \Omega \quad \text { as } j \rightarrow \infty .
$$

And since

$$
\left|g_{\varepsilon}\left(x, u_{j}, \nabla u_{j}\right) \sigma^{\frac{1-q^{\prime}}{q^{\prime}}}\right| \leq \frac{1}{\varepsilon} \sigma^{\frac{1-q^{\prime}}{q^{\prime}}} \in L^{q^{\prime}}(\Omega) \quad \text { (due to }(2.4)
$$

by Lebesgue's dominated convergence theorem, we obtain

$$
g_{\varepsilon}\left(x, u_{j}, \nabla u_{j}\right) \rightarrow g_{\varepsilon}(x, u, \nabla u) \quad \text { in } L^{q^{\prime}}\left(\Omega, \sigma^{1-q^{\prime}}\right) \quad \text { as } j \rightarrow \infty
$$

which with (2.6) imply

$$
\int_{\Omega} g_{\varepsilon}\left(x, u_{j}, \nabla u_{j}\right) v d x \rightarrow \int_{\Omega} g_{\varepsilon}(x, u, \nabla u) v d x \quad \text { as } j \rightarrow \infty, \quad \text { for all } v \in X
$$

i.e., $G_{\varepsilon} u_{j} \rightharpoonup G_{\varepsilon} u$ in X^{*}. Finally,

$$
B_{\varepsilon} u_{j}=A u_{j}+G_{\varepsilon} u_{j} \rightharpoonup A u+G_{\varepsilon} u=B_{\varepsilon} u=\chi \text { in } X^{*}
$$

Proof of Lemma 4.2 Part (a) follows from $\nabla \varphi_{\lambda}\left(u_{k}^{+}\right) \in \prod_{i=1}^{N} L^{p}\left(\Omega, w_{i}\right)$ and (4.7). Using Lemma 2.1, $\nabla\left(\varphi_{\lambda}\left(z_{\varepsilon}^{-}\right)\right) \rightharpoonup \nabla\left(\varphi_{\lambda}\left(u^{+}-u_{k}^{+}\right)^{-}\right)$in $\prod_{i=1}^{N} L^{p}\left(\Omega, w_{i}\right)$; then part (b) follows since $a\left(x, u_{\varepsilon}, \nabla u_{k}^{+}\right) \rightarrow a\left(x, u, \nabla u_{k}^{+}\right)$in $\prod_{i=1}^{N} L^{p^{\prime}}\left(\Omega, w_{i}^{*}\right)$.

To prove part (c), we have

$$
\frac{\partial u_{k}^{+}}{\partial x_{i}} \varphi_{\lambda}\left(z_{\varepsilon}^{-}\right) w_{i}^{1 / p} \rightarrow \frac{\partial u_{k}^{+}}{\partial x_{i}} \varphi_{\lambda}\left(\left(u^{+}-u_{k}^{+}\right)^{-}\right) w_{i}^{1 / p} \quad \text { a.e. in } \Omega
$$

and

$$
\left|\frac{\partial u_{k}^{+}}{\partial x_{i}} \varphi_{\lambda}\left(z_{\varepsilon}^{-}\right) w_{i}^{1 / p}\right|^{p} \leq \tilde{\beta}\left|\frac{\partial u_{k}^{+}}{\partial x_{i}} w_{i}^{1 / p}\right|^{p} \in L^{1}(\Omega)
$$

where $\tilde{\beta}$ is a positive constants. Then, by Lebesgue's dominated convergence theorem we have

$$
\frac{\partial u_{k}^{+}}{\partial x_{i}} \varphi_{\lambda}\left(z_{\varepsilon}^{-}\right) \rightarrow \frac{\partial u_{k}^{+}}{\partial x_{i}} \varphi_{\lambda}\left(\left(u^{+}-u_{k}^{+}\right)^{-}\right) \quad \text { in } L^{p}\left(\Omega, w_{i}\right)
$$

i.e. $\nabla u_{k}^{+} \varphi_{\lambda}\left(z_{\varepsilon}^{-}\right) \rightarrow \nabla u_{k}^{+} \varphi_{\lambda}\left(\left(u^{+}-u_{k}^{+}\right)^{-}\right)$in $\prod_{i=1}^{N} L^{p}\left(\Omega, w_{i}\right)$. Then by (4.7) we obtain part (c).

To prove part (d), we have

$$
a_{i}\left(x, u_{\varepsilon}, \nabla u_{k}^{+}\right) \varphi_{\lambda}\left(\left(u_{\varepsilon}^{+}-u_{k}^{+}\right)^{-}\right) w_{i}^{\frac{1-p^{\prime}}{p^{\prime}}} \rightarrow a_{i}\left(x, u, \nabla u_{k}^{+}\right) \varphi_{\lambda}\left(\left(u^{+}-u_{k}^{+}\right)^{-}\right) w_{i}^{\frac{1-p^{\prime}}{p^{\prime}}}
$$

a.e. in Ω, and

$$
\left|a_{i}\left(x, u_{\varepsilon}, \nabla u_{k}^{+}\right) \varphi_{\lambda}\left(\left(u_{\varepsilon}^{+}-u_{k}^{+}\right)^{-}\right) w_{i}^{\frac{1-p^{\prime}}{p^{\prime}}}\right|^{p^{\prime}} \leq M\left|a_{i}\left(x, u_{\varepsilon}, \nabla u_{k}^{+}\right)\right|^{p^{\prime}} w_{i}^{1-p^{\prime}}
$$

Then the generalized Lebesgue's dominated convergence theorem implies
$a_{i}\left(x, u_{\varepsilon}, \nabla u_{k}^{+}\right) \varphi_{\lambda}\left(\left(u_{\varepsilon}^{+}-u_{k}^{+}\right)^{-}\right) \rightarrow a_{i}\left(x, u, \nabla u_{k}^{+}\right) \varphi_{\lambda}\left(\left(u^{+}-u_{k}^{+}\right)^{-}\right) \quad$ in $L^{p^{\prime}}\left(\Omega, w_{i}^{*}\right)$.
Since $\nabla\left(u_{\varepsilon}^{+}-u_{k}^{+}\right) \rightharpoonup \nabla\left(u^{+}-u_{k}^{+}\right)$in $L^{p}\left(\Omega, w_{i}\right)$ we conclude part (d). Part (e) follows from $\left|c(x) \varphi_{\lambda}\left(\left(u^{+}-u_{k}^{+}\right)^{-}\right)\right| \in L^{1}(\Omega)$ and Lebesgue's dominated convergence theorem.

5 Example

Some ideas of this example come from [5]. Let Ω be a bounded domain of $\mathbb{R}^{N}(N \geq 1)$, satisfying the cone condition. Let us consider the Carathéodory functions:

$$
\begin{gathered}
a_{i}(x, s, \xi)=w_{i}\left|\xi_{i}\right|^{p-1} \operatorname{sgn}\left(\xi_{i}\right) \quad \text { for } i=1, \ldots, N \\
g(x, s, \xi)=\operatorname{sgn}(s) \sum_{i=1}^{N} w_{i}\left|\xi_{i}\right|^{p}
\end{gathered}
$$

where $w_{i}(x)$ are a given weight functions strictly positive almost everywhere in Ω. We shall assume that the weight functions satisfy,

$$
w_{i}(x)=w(x), \quad x \in \Omega, \quad \text { for all } i=0, \ldots, N
$$

Then, we consider the Hardy inequality (2.5) in the form,

$$
\left(\int_{\Omega}|u(x)|^{q} \sigma(x) d x\right)^{1 / q} \leq c\left(\int_{\Omega}|\nabla u(x)|^{p} w\right)^{1 / p} .
$$

It is easy to show that the $a_{i}(x, s, \xi)$ are Carathéodory functions satisfying the growth condition (3.1) and the coercivity (3.3). Also the Carathéodory function $g(x, s, \xi)$ satisfies the conditions (3.4) and (3.5). On the other hand, the monotonicity condition is verified. In fact,

$$
\begin{aligned}
& \sum_{i=1}^{N}\left(a_{i}(x, s, \xi)-a_{i}(x, s, \hat{\xi})\right)\left(\xi_{i}-\hat{\xi}_{i}\right) \\
& \quad=w(x) \sum_{i=1}^{N}\left(\left|\xi_{i}\right|^{p-1} \operatorname{sgn} \xi_{i}-\left|\hat{\xi}_{i}\right|^{p-1} \operatorname{sgn} \hat{\xi}_{i}\right)\left(\xi_{i}-\hat{\xi}_{i}\right)>0
\end{aligned}
$$

for almost all $x \in \Omega$ and for all $\xi, \hat{\xi} \in \mathbb{R}^{N}$ with $\xi \neq \hat{\xi}$, since $w>0$ a.e. in Ω. In particular, let us use the special weight functions w and σ expressed in terms of the distance to the boundary $\partial \Omega$. Denote $d(x)=\operatorname{dist}(x, \partial \Omega)$ and set

$$
w(x)=d^{\lambda}(x), \quad \sigma(x)=d^{\mu}(x)
$$

In this case, the Hardy inequality reads

$$
\left(\int_{\Omega}|u(x)|^{q} d^{\mu}(x) d x\right)^{1 / q} \leq c\left(\int_{\Omega}|\nabla u(x)|^{p} d^{\lambda}(x) d x\right)^{1 / p}
$$

The corresponding imbedding is compact if: (i) For, $1<p \leq q<\infty$,

$$
\begin{equation*}
\lambda<p-1, \quad \frac{N}{q}-\frac{N}{p}+1 \geq 0, \quad \frac{\mu}{q}-\frac{\lambda}{p}+\frac{N}{q}-\frac{N}{p}+1>0 \tag{5.1}
\end{equation*}
$$

(ii) For $1 \leq q<p<\infty$,

$$
\begin{equation*}
\lambda<p-1, \quad \frac{\mu}{q}-\frac{\lambda}{p}+\frac{1}{q}-\frac{1}{p}+1>0 \tag{5.2}
\end{equation*}
$$

(iii) For $q>1$,

$$
\begin{equation*}
\mu\left(q^{\prime}-1\right)<1 \tag{5.3}
\end{equation*}
$$

Remarks.

1. Condition (5.1) or (5.2) are sufficient for the compact imbedding (2.6) to hold; see for example [5, Example 1], [6, Example 1.5], and [12, Theorems 19.17, 19.22].
2. Condition (5.3) is sufficient for (2.4) to hold [9, pp. 40-41].

Finally, the hypotheses of Theorem 3.1 are satisfied. Therefore, (1.2) has at least one solution.

References

[1] Y. Akdim, E. Azroul and A. Benkirane, Pseudo-monotonicity and degenerate elliptic operators of second order, (submitted).
[2] O.T. Bengt, Nonlinear Potential Theory and Weighted Sobolev Spaces, Spinger-Verlag Berlin Heidelberg (2000).
[3] A. Bensoussan, L. Boccardo and F. Murat, On a non linear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. Henri Poincaré 5 No. 4 (1988), 347-364.
[4] L. Boccardo, F. Murat and J.P. Puel, Existence of bounded solutions for non linear elliptic unilateral problems, Ann. Mat. Pura Appl. 152 (1988), 183-196.
[5] P. Drabek, A. Kufner and V. Mustonen, Pseudo-monotonicity and degenerate or singular elliptic operators, Bull. Austral. Math. Soc. Vol. 58 (1998), 213-221.
[6] P. Drabek, A. Kufner and F. Nicolosi, Non linear elliptic equations, singular and degenerate cases, University of West Bohemia, (1996).
[7] P. Drabek and F. Nicolosi, Existence of bounded solutions for some degenerate quasilinear elliptic equations, Annali di Mathematica pura ed applicata (IV), Vol. CLXV (1993), pp. 217-238.
[8] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1977.
[9] A. Kufner, Weighted Sobolev Spaces, John Wiley and Sons, (1985).
[10] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969).
[11] J. Leray and J. L. Lions, Quelques résultats de Vis̃ik sur des problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bul. Soc. Math. France 93 (1965), 97-107.
[12] B. Opic and A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics Series 219(Longman Scientific and Technical, Harlow, 1990).
Y. Akdim (e-mail: y.akdim1@caramail.com)
E. Azroul (e-mail: elazroul@caramail.com)
A. Benkirane (e-mail: abdelmoujib@iam.net.ma)

Département de Mathématiques et Informatique, Faculté des Sciences DharMahraz, B.P. 1796 Atlas, Fès, Maroc.

[^0]: *Mathematics Subject Classifications: 35J15, 35J20, 35J70.
 Key words: Weighted Sobolev spaces, Hardy inequality,
 Quasilinear degenerate elliptic operators.
 © 2001 Southwest Texas State University.
 Submitted October 16, 2001. Published November 26, 2001.

