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Asymptotic behavior of solutions to wave

equations with a memory condition at the

boundary ∗

Mauro de Lima Santos

Abstract

In this paper, we study the stability of solutions for wave equations
whose boundary condition includes a integral that represents the mem-
ory effect. We show that the dissipation is strong enough to produce
exponential decay of the solution, provided the relaxation function also
decays exponentially. When the relaxation function decays polynomially,
we show that the solution decays polynomially and with the same rate.

1 Introduction

The main purpose of this work is study the asymptotic behavior of solution of
the wave equation with a boundary condition of memory type. For this, we
consider the following initial boundary-value problem

utt − µ(t)uxx = 0 in (0, 1)× (0,∞), (1.1)

u(0, t) = 0, u(1, t) +
∫ t

0
g(t− s)µ(s)ux(1, s)ds = 0, ∀t > 0 (1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in (0, 1). (1.3)

The integral in (1.2) is a boundary condition which includes the memory effect.
Here, by u we denote the displacement and by g the relaxation function. By
µ = µ(t) we represent a function of W 1,∞

loc (0,∞ : R), such that µ(t) ≥ µ0 > 0
and µ′(t) ≤ 0 for all t ≥ 0. We refer to [4] for the physical motivation of this
model.

Frictional dissipative boundary condition for the wave equation was studied
by several authors, see for example [4, 5, 8, 9, 10, 11, 12, 15, 16] among others.
In these works existence of solutions and exponential stabilization were proved
for linear and for nonlinear equations. In contrast with the large literature
for frictional dissipative, for boundary condition with memory, we have only a
few works as for example [2, 3, 7, 13, 14]. Let us explain briefly each of the
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above works. In [2] Ciarletta established theorems of existence, uniqueness and
asymptotic stability for a linear model of heat conduction. In this case the
memory condition describes a boundary that can absorb heat and due to the
hereditary term, can retain part of it. In [3] Fabrizio & Morro considered a linear
electromagnetic model with boundary condition of memory type and proved
the existence, uniqueness and asymptotic stability of solutions. While in [13]
showed the existence of global smooth solution for the one dimensional nonlinear
wave equation, provided the initial data (u0, u1) is small in the H3 ×H2-norm,
moreover he showed that the solution tends to zero as time goes to infinity. In all
the above works was left open the rate of decay. Rivera & Andrade [7] consider a
nonlinear one dimensional wave equation with a viscoelastic boundary condition.
They proved the existence, uniqueness of global smooth solution, provided the
initial data (u0, u1) is small in the H2 × H1-norm and also that the solution
decays uniformly in time (exponentially and algebraically). Finally, in [14] Qin
proved a blow up result for the nonlinear one dimensional wave equation with
memory boundary condition. Our main result is to show that the solution of
system (1.1)-(1.3) decays uniformly in time, with rates depending on the rate
of decay of the relaxation function. More precisely, denoting by k the resolvent
kernel of g′ (the derivative of the relaxation function) we show that the solution
decays exponentially to zero provided k decays exponentially to zero. When
k decays polynomially, we show that the corresponding solution also decays
polynomially to zero with the same rate of decay.

The method used here is based on the construction of a suitable Lyapunov
functional L satisfying

d

dt
L(t) ≤ −c1L(t) + c2e

−γt or
d

dt
L(t) ≤ −c1L(t)1+ 1

α +
c2

(1 + t)α+1

for some positive constants c1, c2, α and γ. To study the existence of solution of
(1.1)-(1.3), we introduce the space V := {v ∈ H1(0, 1); v(0) = 0}. The notation
used in this paper is standard and can be found in Lions’s book [6]. In the sequel
by c (sometime c1, c2, . . .) we denote various positive constants independent of t
and on the initial data. The organization of this paper is as follows. In section
2 we establish a existence and regularity result. In section 3 prove the uniform
rate of exponential decay. Finally in section 4 we prove the uniform rate of
polynomial decay.

2 Existence and Regularity

In this section we shall study the existence and regularity of solutions for the
(1.1)-(1.3). We assume that the kernel g is positive and k satisfies:

0 < k(t) ≤ b0e−γ0t,

−b1k(t) ≤ k′(t) ≤ −b2k(t), (2.1)
−b3k′(t) ≤ k′′(t) ≤ −b4k′(t)
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for some positive constants bi, i = 0, 1, . . . , 4, and γ0. To facilitate our analysis,
we introduce the following binary operators:

(f2ϕ)(t) =
∫ t

0

f(t− s)|ϕ(t)− ϕ(s)|2ds,

(f ∗ ϕ)(t) =
∫ t

0

f(t− s)ϕ(s)ds,

where ∗ is the convolution product. Differentiating (1.2) we arrive to the
Volterra integral equation

µ(t)ux(1, t) +
1
g(0)

g′ ∗ µ(t)ux(1, t) = − 1
g(0)

ut(1, t).

Using the Volterra inverse operator, we obtain

µ(t)ux(1, t) = − 1
g(0)
{ut(1, t) + k ∗ ut(1, t)}.

With τ = 1
g(0) and using the above identity, we write

µ(t)ux(1, t) = −τ{ut(1, t) + k(0)u(1, t)− k(t)u0(1) + k′ ∗ u(1, t)}. (2.2)

The following lemma state an important property of the convolution operator.

Lemma 2.1 For f, ϕ ∈ C1([0,∞[: R) we have∫ t

0

f(t− s)ϕ(s)dsϕt = −1
2
f(t)|ϕ(t)|2 +

1
2
f ′2ϕ

−1
2
d

dt

[
f2ϕ− (

∫ t

0

f(s)ds)|ϕ|2
]
.

The proof of this lemma follows by differentiating the term f2ϕ.
We summarize the well-posedness of (1.1)-(1.3) in the following theorem.

Theorem 2.2 Let (u0, u1) ∈ V × L2(0, 1), then there exists only one solution
to the (1.1)-(1.3) satisfying

u ∈ C([0, T ] : V ) ∩ C1([0, T ] : L2(0, 1)).

Moreover, if (u0, u1) ∈ H2(0, 1) ∩ V × V satisfies the compatibility condition

µ(0)u0,x(1) = −τu1(1) , (2.3)

then u ∈ C([0, T ] : H2(0, 1) ∩ V ) ∩ C1([0, T ] : V ).

This theorem can be showed using the standard Galerkin method, for this reason
we omit it here.
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3 Exponential Decay

In this section we show that the solution of (1.1)-(1.3) decays exponentially.
Our point of departure will be to establish some inequalities for the solution of
system (1.1)-(1.3). For this end, we introduce the functional

F (t) =
1
2

∫ 1

0

|ut|2 + µ(t)|ux|2dx+
τ

2
(k(t)|u(1, t)|2 − k′(t)2u(1, t)).

Lemma 3.1 For a strong solution of the system (1.1)-(1.3),

d

dt
F (t) ≤ −τ

2
|ut(1, t)|2 +

τ

2
k2(t)|u0(1)|2 +

τ

2
k′(t)|u(1, t)|2

−τ
2
k′′(t)2u(1, t) +

1
2

∫ 1

0

µ′|ux|2dx.

Proof. Multiplying (1.1) by ut and integrating over [0, 1] we obtain

1
2
d

dt

∫ 1

0

|ut|2 + µ(t)|ux|2dx = µ(t)ux(1, t)ut(1, t) +
1
2

∫ 1

0

µ′|ux|2dx. (3.1)

Using (2.2) and Lemma 2.1 the conclusion follows. Q.E.D.
The following Lemma plays an important role in the construction of the

Lyapunov functional. Let us define the functional

ψ(t) =
∫ 1

0

xuxutdx .

Lemma 3.2 The strong solution of (1.1)-(1.3) satisfies

d

dt
ψ(t) ≤ −1

2

∫ 1

0

(|ut|2 + µ(t)|ux|2)dx+ c|ut(1, t)|2 + ck2(t)|u0(1)|2

+ck(0)k(t)|u(1, t)|2 + ck(0)|k′|2u(1, t).

Proof. From (1.1) it follows that

d

dt
ψ(t) =

∫ 1

0

xuxtutdx+
∫ 1

0

xuxuttdx

=
1
2

∫ 1

0

x
d

dx
|ut|2dx+

1
2

∫ 1

0

xµ(t)
d

dx
|ux|2dx (3.2)

= −1
2

∫ 1

0

(|ut|2 + µ(t)|ux|2)dx+
1
2
|ut(1, t)|2 +

1
2
µ(t)|ux(1, t)|2.

Note that

−k(0)u(1, t)− k′ ∗ u(1, t)
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= −
∫ t

0

k′(t− s)[u(1, s)− u(1, t)]ds− k(t)u(1, t)

≤
(∫ t

0

|k′(s)|ds
)1/2

[|k′|2u(1, t)]1/2 + k(t)|u(1, t)| (3.3)

≤ |k(t)− k(0)|1/2[|k′|2u(1, t)]1/2 + k(t)|u(1, t)|.

Using (2.2) and (3.3), it follows that

µ(t)|ux(1, t)|2 (3.4)
≤ c{|ut(1, t)|2 + k2(t)|u0(1)|2 + k(0)|k′|2u(1, t) + k(0)k(t)|u(1, t)|2}.

Substituting (3.4) into (3.2), the conclusion of the lemma follows. Q.E.D.
Let us introduce the functional

L(t) = NF (t) + ψ(t), (3.5)

with N > 0. It is not difficult to see that L(t) satisfies

q0F (t) ≤ L(t) ≤ q1F (t), (3.6)

for some positive constants q0 and q1. Finally, we shall show the main result of
this Section.

Theorem 3.3 Assume that the initial data (u0, u1) ∈ V ×L2(0, 1) and that the
resolvent k satisfies (2.1). Then there exist positive constants α1 and γ2 such
that

F (t) ≤ α1e
−γ2tF (0), ∀t ≥ 0 .

Proof. We will suppose that (u0, u1) ∈ H2(0, 1) ∩ V × V and satisfies (2.3);
our conclusion will follow by standard density arguments. Using Lemmas 3.1
and 3.2 we get

d

dt
L(t) ≤ −τ

2
N |ut(1, t)|2 +

τ

2
Nk2(t)|u0(1)|2 +

τ

2
Nk′(t)|u(1, t)|2

−τ
2
Nk′′2u(1, t)− 1

2

∫ 1

0

(|ut|2 + µ(t)|ux|2)dx+ c|ut(1, t)|2

+ck2(t)|u0(1)|2 + ck(0)k(t)|u(1, t)|2 + ck(0)|k′|2u(1, t). (3.7)

Then, choosing N large enough we obtain

d

dt
L(t) ≤ −q2F (t) + ck2(t)F (0),

where q2 > 0 is a small constant. Here we use (2.1) to conclude the following
estimates for the corresponding two terms appearing in Lemma 3.1.

− τ2k
′′2u(1, t) ≤ c1k′2u(1, t),

τ
2k
′|u(1, t)|2 ≤ −c1k|u(1, t)|2 .
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Finally, in view of (3.6) we conclude that

d

dt
L(t) ≤ −γ1L(t) + ck2(t)F (0).

Using the exponential decay of the resolvent kernel k we conclude

L(t) ≤ {L(0) + c}e−γ2t

for all t ≥ 0, where γ2 = min(γ0, γ1). From (3.6) the conclusion follows.
Q.E.D.

4 Polynomial rate of decay

The proof of the existence of global solutions for (1.1)-(1.3) with resolvent kernel
k decaying polynomially is essentially the same as in Section 2. Here our atten-
tion will be focused on the uniform rate of decay when the resolvent k decays
polynomially such as (1 + t)−p. In this case, we will show that the solution also
decays polynomially with the same rate. We shal use the following hypotheses:

0 < k(t) ≤ b0(1 + t)−p,

−b1k
p+1
p ≤ k′(t) ≤ −b2k

p+1
p , (4.1)

b3(−k′(t))
p+2
p+1 ≤ k′′(t) ≤ b4(−k′(t))

p+2
p+1

where p > 1 and bi, i = 0, 1 . . . , 4, are positive constants. Also we assume that∫ ∞
0

|k′(t)|rdt <∞ if r >
1

p+ 1
. (4.2)

The following lemmas will play an important role in the sequel.

Lemma 4.1 Let m and h be integrable functions, 0 ≤ r < 1 and q > 0. Then,
for t ≥ 0,∫ t

0

|m(t− s)h(s)|ds

≤
(∫ t

0

|m(t− s)|1+ 1−r
q |h(s)|ds

) q
q+1
(∫ t

0

|m(t− s)|r|h(s)|ds
) 1
q+1

.

Proof. Let

v(s) := |m(t− s)|1−
r
q+1 |h(s)|

q
q+1 , w(s) := |m(t− s)|

r
q+1 |h(s)|

1
q+1 .

Then using Hölder’s inequality with δ = q
q+1 for v and δ∗ = q + 1 for w, we

arrive to the conclusion. Q.E.D.
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Lemma 4.2 Let p > 1, 0 ≤ r < 1 and t ≥ 0. Then for r > 0,

(|k′|2u(1, t))
1+(1−r)(p+1)

(1−r)(p+1)

≤ 2
(∫ t

0

|k′(s)|rds||u||2L∞((0,T ),H1(0,1))

) 1
(1−r)(p+1)

(|k′|1+ 1
p+1 2u(1, t)) ,

and for r = 0,

(|k′|2u(1, t))
p+2
p+1

≤ 2
(∫ t

0

||u(., s)||2H1(0,1)dst||u(., s)||2H1(0,1)

) 1
p+1

(|k′|1+ 1
p+1 2u(1, t))

Proof. The above inequality is a immediate consequence of Lemma 4.1 with

m(s) := |k′(s)|, h(s) := |u(x, t)− u(x, s)|2, q := (1− r)(p+ 1),

and t fixed. Q.E.D.

Lemma 4.3 Let α > 0, β ≥ α + 1, and f ≥ 0 be differentiable function satis-
fying

f ′(t) ≤ −c̄1
f(0)

1
α

f(t)1+ 1
α +

c̄2
(1 + t)β

f(0)

for t ≥ 0 and some positive constants c̄1, c̄2. Then there exists a constant c̄3 > 0
such that for t ≥ 0,

f(t) ≤ c̄3
(1 + t)α

f(0).

Proof. Let t ≥ 0 and

F (t) = f(t) +
2c̄2
α

(1 + t)−αf(0).

Then

F ′ = f ′ − 2c̄2(1 + t)−(α+1)f(0)

≤ −c̄1
f(0)

1
α

f1+ 1
α − c̄2(1 + t)−(α+1)f(0),

where we used β ≥ α+ 1. Hence

F ′ ≤ −c
f(0)

1
α

(f1+ 1
α + (1 + t)−(α+1)f(0)1+ 1

α ) ≤ −c
F (0)

1
α

F 1+ 1
α .

Integration yields

F (t) ≤ F (0)
(1 + ct)α

≤ c

(1 + t)α
f(0) hence f(t) ≤ c̄3

(1 + t)α
f(0)

for some c̄3, which proves Lemma 4.3. Q.E.D.
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Theorem 4.4 Assume that (u0, u1) ∈ V × L2(0, 1) and that the resolvent k
satisfies (4.1). Then there exists a positive constant c for which

F (t) ≤ c

(1 + t)p+1
F (0).

Proof. We will suppose that (u0, u1) ∈ H2(0, 1)∩V ×V and satisfies (2.3); our
conclusion will follow by standard density arguments. We define the functional
L as (3.5) and we have the equivalence to the energy term F as given in (3.6)
again. The negative term

−ck(t)|u(1, t)|2

can be obtained from Lemma 3.2 and estimate

k(t)|u(1, t)|2 ≤ c
∫ 1

0

µ(t)|ux|2dx.

From Lemmas 3.1 and 3.2, using the properties of k′′ from the assumption (4.1)
for the term

−τ
2
k′′2u(1, t),

we obtain

d

dt
L(t) ≤ −c1

(∫ 1

0

|ut|2 + µ(t)|ux|2dx+ k(t)|u(1, t)|2

+N(−k′)1+ 1
p+1 2u(1, t)

)
+ c2k

2(t)F (0). (4.3)

Applying Lemma 4.2 with r > 0 we obtain

(−k′)1+ 1
p+1 2u(1, t)

≥ c

(
∫ t

0
|k′|rds)

1
(1−r)(p+1)F (0)

1
(1−r)(p+1)

((−k′)2u(1, t))1+ 1
(1−r)(p+1)

(with c = c(r)). On the other hand, we have

(k(t)|u(1, t)|2 +
∫ 1

0

|ut|2 + µ(t)|ux|2dx)1+ 1
(1−r)(p+1)

≤ cF (0)
1

(1−r)(p+1)

(
k(t)|u(1, t)|2 +

∫ 1

0

|ut|2 + µ(t)|ux|2dx
)
.

From (4.2) and (4.3) and using the last two inequalities, we conclude that

d

dt
L(t)

≤ − c

F (0)
1

(1−r)(p+1)
[(k(t)|u(1, t)|2 +

∫ 1

0

|ut|2 + µ(t)|ux|2dx)1+ 1
(1−r)(p+1)

+((−k′)2u(1, t))1+ 1
(1−r)(p+1) ] + ck2(t)F (0).
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Using (3.6) and the above inequality can be written as

d

dt
L(t) ≤ − c

L(0)
1

(1−r)(p+1)
L(t)1+ 1

(1−r)(p+1) + ck2(t)F (0). (4.4)

Applying the Lemma 4.3 with f = L, α = (1− r)(p+ 1) and β = 2p we have

L(t) ≤ c

(1 + t)α
L(0). (4.5)

Choosing r such that
1

p+ 1
< r <

p

p+ 1
,

and taking into account the inequality (4.5), we obtain∫∞
0
F (s)ds ≤ c

∫∞
0
L(s)ds ≤ cL(0), (4.6)

t||u(., t)||2H1(0,1) ≤ ctL(t) ≤ cL(0), (4.7)∫ t
0
||u(., s)||2H1(0,1) ≤ c

∫∞
0
L(t)dt ≤ cL(0). (4.8)

Estimates (4.6)-(4.8) together with Lemma 4.2 (case r = 0) imply that

(−k′)1+ 1
p+1 2u(1, t) ≥ c

F (0)
1
p+1

((−k′)2u(1, t))1+ 1
p+1 .

Using the same arguments as in the derivation of (4.4), we have

d

dt
L(t) ≤ − c

L(0)
1
p+1
L(t)1+ 1

p+1 + ck2(t)F (0).

Applying Lemma 4.3, we obtain

L(t) ≤ c

(1 + t)p+1
L(0).

Then from (3.6), we conclude

F (t) ≤ c

(1 + t)p+1
F (0),

which completes the present proof. Q.E.D.
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