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Sufficient conditions for functions to form Riesz

bases in L2 and applications to nonlinear

boundary-value problems ∗

Peter E. Zhidkov

Abstract

We find sufficient conditions for systems of functions to be Riesz bases
in L2(0, 1). Then we improve a theorem presented in [13] by showing that
a “standard” system of solutions of a nonlinear boundary-value problem,
normalized to 1, is a Riesz basis in L2(0, 1). The proofs in this article use
Bari’s theorem.

1 Introduction

Early results in the study of basis properties of eigenfunctions of nonlinear ordi-
nary differential operators can be found in the monograph by Makhmudov [5].
Because of its difficulty and the small number of publications on this question,
basis properties has been established only for very simple nonlinear ordinary
differential equations. Among the results in this direction, we have the follow-
ing.

In [7, 8], Zhidkov presents an analysis of the equation

−u′′ + f(u2)u = λu, u = u(x), x ∈ (0, 1),

u(0) = u(1) = 0,
∫ 1

0
u2(x) dx = 1 ,

where λ is a spectral parameter, f(s) is a smooth nondecreasing function for
s ≥ 0, and all quantities are real. In these two publications, it is proved that the
eigenfunctions {un} (n = 0, 1, 2, . . .) of this problem have precisely n zeros in
(0, 1). Furthermore, each eigenfunction is unique up to the coefficient ±1. The
main result states that the sequence of eigenfunctions {un} (n = 0, 1, 2, . . .) is
a Bari basis in L2 = L2(0, 1), i.e., it is a basis and there exists an orthonormal
basis {en} (n = 0, 1, 2, . . .) in L2 for which

∑∞
n=0 ‖un − en‖2L2

<∞. Note that
in [7] there are some errors which have been corrected in [9].

In [10, 11], a modified version of the above nonlinear eigenvalue problem is
studied and similar basis properties for their eigenfunctions are obtained. In
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[12], an analog to the Fourier transform associated with an eigenvalue problem
for a nonlinear ordinary differential operator on a half-line is considered.

The aim in the present publication is to improve the result in [13], where
the following nonlinear problem is considered:

u′′ = f(u2)u , u = u(x) , x ∈ (0, 1) , (1.1)
u(0) = u(1) = 0 . (1.2)

Here there is no spectral parameter, and all variables are real. For the rest of
this article, we will assume that

(F) The function f(u2)u is a continuously differentiable for u ∈ R, f(0) ≥ 0,
and f(+∞) = −∞.

It is well known now (and partially proved in [13]) that under assumption (F):
For each integer n ≥ 0 problem (1.1)–(1.2) has a solution un which possesses
precisely n zeros in (0, 1) and that generally speaking this solution is not unique.

Definition A sequence {un} (n = 0, 1, 2, . . .) of solutions to (1.1)–(1.2) is
called standard if the solution un has precisely n zeros in (0, 1).

The main result in [13] states that there exists s0 < 0 such that for s < s0

any standard sequence of solutions {un} is a basis in Hs(0, 1). In addition, the
sequence {un/‖un‖Hs(0,1)} is a Riesz basis in Hs(0, 1). Here Hs(0, 1) is the
usual Sobolev space with negative index s. In the present paper, we improve
this result by showing the above properties of a standard system {un} in L2

(see Theorem 1.3 below), by first obtaining a general result on bases in L2 (see
Theorem 1.1 below). We believe that this result is of a separate interest.

Notation

By c, C,C1, C2, C
′, C ′′, . . . we denote positive constants. By L2(a, b) we denote

the standard Lebesgue space of square integrable functions on the interval (a, b).
In this space we introduce the standard inner product, and norm:

(g, h)L2(a,b) =
∫ b

a

g(x)h(x)dx , ‖g‖L2(a,b) = (g, g)1/2
L2(a,b) .

For short notation we will use (·, ·) and ‖ · ‖ respectively.
Let l2 be the space of square summable sequences of real numbers. For a

Banach space X with a norm ‖ · ‖X , let L(X;X) be the linear space of linear
bounded operators acting from X into X, equipped with the norm

‖A‖L(X;X) = sup
x∈X: ‖x‖X=1

‖Ax‖X .

We also set ‖ · ‖ = ‖ · ‖L(L2;L2) for short notation.
Now, for convenience of readers, we define some well-known terms.
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Definition A system {en} ⊂ L2(a, b) is called a basis in L2(a, b) if for any
g ∈ L2(a, b) there exists a unique sequence {an} of real numbers such that
g =

∑∞
n=0 anen in L2(a, b).

There are several definitions of Riesz bases. In accordance with the classical
paper by N. K. Bari [1], where this concept was introduced for the first time,
we use the following definition.

Definition A basis {en} in L2(a, b) is called a Riesz basis in this space when
the series

∑∞
n=0 anen, with real coefficients an, converges in L2(a, b) if and only

if
∑∞
n=0 a

2
n <∞.

Remark It is proved in [1] (see also [8]) that if {en} is a Riesz basis in L2(a, b)
in the sense of this definition, then there exist constants 0 < c < C such that

c
∞∑
n=0

a2
n ≤

∥∥∥ ∞∑
n=0

anen

∥∥∥2

L2(a,b)
≤ C

∞∑
n=0

a2
n

for all a = (a0, a1, a2, . . .) ∈ l2. These estimates have been often used to define
Riesz bases.

Definition A system of functions {gn} in L2(a, b) is called ω-linearly inde-
pendent in L2(a, b) when

∑∞
n=0 angn = 0, with an are real numbers, holds in

L2(a, b) if and only if 0 = a0 = a1 = a2 = . . ..

Definition Two systems of functions {hn} and {en} in L2(a, b) are called
quadratically close in L2(a, b), if

∑∞
n=0 ‖hn − en‖2L2(a,b) <∞.

Results

Theorem 1.1 Let {hn} be a system of real-valued, three-times continuously
differentiable functions. Assume that for each integer n ≥ 0 the following holds:

(a) hn
(
x+ 1

n+1

)
= −hn(x) and hn

(
1

2(n+1) +x
)

= hn
(

1
2(n+1) −x

)
for all x ∈ R

(b) h′n(x) > 0, h′′n(x) ≤ 0, and h′′′n (x) ≤ 0 for all x ∈
(
0, 1

2(n+1)

)
(c) There exist 0 < c < C such that c < hn

(
1

2(n+1)

)
< C for all n.

Then, the system {hn} is a Riesz basis in L2.

Remark Clearly, it follows from Theorem 1.1 that if a system of functions
{hn} satisfies all the conditions of this theorem, except maybe (c), then it is a
basis in L2.

The next result follows from Theorem 1.1 by taking hn(x) = h((n+ 1)x).

Theorem 1.2 Let h(x) be a real-valued three-times continuously differentiable
function satisfying:
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(a) h(1 + x) = −h(x) and h(1/2 + x) = h(1/2− x) for all x ∈ R

(b) h′(x) > 0, h′′(x) ≤ 0 and h′′′(x) ≤ 0 for all x ∈ (0, 1/2)

Then, the sequence of functions hn(x) = h((n+ 1)x), where n = 0, 1, 2, . . ., is a
Riesz basis in L2.

The following statement also follows from Theorem 1.1, when applied to
problem (1.1)–(1.2).

Theorem 1.3 Let assumption (F) be valid and f(u2) + 2u2f ′(u2) ≤ 0 for all
sufficiently large u. Let {un} be an arbitrary standard sequence of solutions of
(1.1)–(1.2). Then, the sequence

{
‖un‖−1un

}
is a Riesz basis in L2.

To prove this theorem in Section 3, we exploit the following theorem.

Theorem 1.4 (Bari’s Theorem) Let {en} be a Riesz basis in L2(a, b) and let
a system {hn} ⊂ L2(a, b) be ω-linearly independent and quadratically close to
{en} in L2(a, b). Then, the system {hn} is a Riesz basis in L2(a, b).

This theorem, in a weaker form, was proved by N. K. Bari in [1]. In its
current form it is proved, for example, in [4] and in [8].

We conclude the introduction by pointing out that the concept of a Riesz
basis appeared for the first time in the middle of last century in the papers of N.
K. Bari, as a result of developments in the general theory of orthogonal series
and bases in infinite-dimensional spaces. Currently, this concept has important
applications in areas such as wavelet analysis. Readers may consult [2, 6] for
theoretical aspects of this field and [3] for applied aspects.

2 Proof of Theorem 1.1

Let en(x) =
√

2 sinπ(n + 1)x, n = 0, 1, 2, . . ., so that {en} is an orthonormal
basis in L2.

Lemma 2.1 Let g satisfy condition (a) of Theorem 1.1 with n ≥ 0 and let g be
positive in (0, 1

n+1 ). Then in the expansion

g(·) =
∞∑
m=0

cmem(·),

understanding in the sense of L2, one has c0 = . . . = cn−1 = 0 and cn > 0.

Proof We follow the arguments in the proof of a similar statement in [13]. We
have the above expansion in L2(0, 1

n+1 ) with cm = 0 if m 6= (n + 1)(l + 1) − 1
for all integers l ≥ 0 (this occurs because the functions {e(n+1)(m+1)−1}m form
an orthogonal basis in L2(0, 1

n+1 )). Therefore, c0 = . . . = cn−1 = 0. We
observe that each e(n+1)(m+1)−1 becomes zero at the points 1

n+1 ,
2

n+1 , . . . , 1.
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Furthermore, due to condition (a) of Theorem 1.1 the function g is odd with
respect to these points and each function e(n+1)(m+1)−1(x) is odd. Thus this
expansion also holds in each space L2( 1

n+1 ,
2

n+1 ), L2( 2
n+1 ,

3
n+1 ), . . . , L2( n

n+1 , 1).
Finally, cn > 0 because en(x) and g(x) are of the same sign everywhere. �

Due to Lemma 2.1, we have the following sequence of expansions:

hn(·) =
∞∑
m=0

anmem(·) in L2, (2.1)

with an0 = . . . = ann−1 = 0 and ann > 0, for n = 0, 1, 2, . . ..

Lemma 2.2 Under the assumptions of Theorem 1.1, the coefficients in (2.1)
satisfy

(ann)−1|an(n+1)(m+1)−1| ≤
π

2
(m+ 1)−2

for all n and m. In addition, an(n+1)(m+1)−1 = 0 if m = 2l+ 1 for l = 0, 1, 2, . . ..

Proof The second claim of this lemma is obvious because e(n+1)(2l+2)−1(x) is
odd with respect to the middles of the intervals (0, 1

n+1 ), ( 1
n+1 ,

2
n+1 ), . . . , ( n

n+1 , 1)
and the function hn(x) is even so that an(n+1)(2l+2)−1 = (e(n+1)(2l+2)−1, hn) = 0.
Let us prove the first claim. Due to the properties of the functions hn and
e(n+1)(m+1)−1, with m = 2l, we have

(ann)−1|an(n+1)(m+1)−1| =

∣∣∣∫ 1

0
hn(x) sinπ(n+ 1)(m+ 1)xdx

∣∣∣∫ 1

0
hn(x) sinπ(n+ 1)xdx

=

∣∣∣∫ 1/2(n+1)

0
hn(x) sinπ(n+ 1)(m+ 1)xdx

∣∣∣∫ 1/2(n+1)

0
hn(x) sinπ(n+ 1)xdx

= (m+ 1)−1

∣∣∣∫ 1/2(n+1)

0
h′n(x) cosπ(n+ 1)(m+ 1)xdx

∣∣∣∫ 1/2(n+1)

0
h′n(x) cosπ(n+ 1)xdx

= (m+ 1)−1

∣∣∣∫ 1

0
h′n( s

2(n+1) ) cos π(m+1)s
2 ds

∣∣∣∫ 1

0
h′n( s

2(n+1) ) cos πs2 ds
.

Due to the conditions of Theorem 1.1, h′n( s
2(n+1) ) is a positive non-increasing

concave function on (0, 1). Therefore,∫ 1

0

h′n(
s

2(n+ 1)
) cos

πs

2
ds ≥ h′n(0)

∫ 1

0

(1− s) cos
πs

2
ds =

4
π2
h′n(0).

Using the same properties of h′n, one can easily see on its graph that∣∣∣ ∫ 1

0

h′n(
s

2(n+ 1)
) cos

π(m+ 1)s
2

ds
∣∣∣ ≤ h′n(0)

∫ 1/(m+1)

0

cos
π(m+ 1)s

2
ds

=
2

π(m+ 1)
h′n(0) .
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Detailed arguments leading to a similar estimate are considered in [13]. We
easily obtain now

(ann)−1|an(n+1)(m+1)−1| ≤
π

2
(m+ 1)−2,

which completes the proof. �

From the conditions on Theorem 1.1, we have 0 < c ≤ |ann| ≤ C. Then to
prove this theorem, it suffices to prove that the system {hn} with hn = (ann)−1hn
is a Riesz basis in L2.

Lemma 2.3 Let {gn} be a sequence of functions such that gn satisfies condition
(a) on Theorem 1.1 and is positive in (0, 1

n+1 ). Then the system {gn} is ω-
linearly independent in L2.

The proof of this lemma is rather simple. We refer the reader to the proof
of similar statements in [8, 11, 13]. �

Let bnm = (ann)−1anm, and let Id be the unit operator in L2. For positive
integers m, let Bm be the operator mapping en into bn(n+1)(m+1)−1e(n+1)(m+1)−1,
Bm ∈ L(L2;L2). Also let B =

∑∞
m=1Bm. Then for each m,

‖Bm‖ ≤ sup
n
|bn(n+1)(m+1)−1| = bm.

Furthermore, by Lemma 2,

∞∑
m=1

bm ≤
π

2

∞∑
l=1

(2l + 1)−2 ≤ π

2

∫ ∞
1/2

(2x+ 1)−2dx = π/8 ;

hence, B ∈ L(L2;L2) and ‖B‖ ≤ π/8 < 1. Therefore, the operator A = Id +B
has a bounded inverse A−1 = Id +

∑∞
n=1(−1)nBn. Note also that Aen = hn.

Hence, as proved in [4], {hn} is a Riesz basis in L2(0, 1). For the convenience
of the reader, we present a short proof of this statement.

Take an arbitrary v ∈ L2 and let u = A−1v =
∑∞
n=0 cnen ∈ L2 where

cn are real coefficients. Then,
∑∞
n=0 c

2
n < ∞ because {en} is an orthonor-

mal basis in L2. Since the series
∑∞
n=0 cnen converges in L2, we have v =

Au =
∑∞
n=0 cnAen =

∑∞
n=0 cnhn where all infinite sums also converge in L2.

Therefore, in view of Lemma 2.3, the system {hn} is a basis in L2 and, if∑∞
n=0 c

2
n < ∞, then the series

∑∞
n=0 cnhn converges in L2. Conversely, let a

series u =
∑∞
n=0 cnhn converge in L2. Then A−1u =

∑∞
n=0 cnen in L2; hence∑∞

n=0 c
2
n <∞. Thus, {hn} is a Riesz basis in L2, and the proof of Theorem 1.1

is complete.

3 Proof of Theorem 1.3

As was proved in [13], any solution un of problem (1.1)–(1.2), that possesses
precisely n zeros in (0, 1), satisfies condition (a) of Theorem 1.1. In addition,
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un is strictly monotone (u′n(x) 6= 0) in the interval (0, 1
2(n+1) ). Let u > 0 be an

arbitrary number such that f(u2) < 0 and f(u2) + 2u2f ′(u2) ≤ 0 for all u ≥ u.
Let {un} be an arbitrary standard system of solutions of problem (1.1)–(1.2).
We assume that un(x) > 0 for x ∈ (0, 1

n+1 ) for each n which is possible without
loss of generality due to the invariance of (1.1) when u(x) is replaced by −u(x).
Due to the standard comparison theorem maxu∈[0,un(1/2(n+1))] |f(u2)| → +∞
as n → ∞; hence un( 1

2(n+1) ) → +∞ as n → ∞. For n sufficiently large, we
denote by xn ∈ (0, 1

2(n+1) ) the point for which un(xn) = u. Then

un(
1

2(n+ 1)
)− u =

∫ 1/2(n+1)

xn

u′n(x)dx = u′n(x̃n)(
1

2(n+ 1)
− xn)

for some x̃n ∈ (xn, 1
2(n+1) ). Since u′n(xn) ≥ u′n(x̃n) (because f(u2) < 0 for

u > u and, therefore, u′′n(x) < 0 for x ∈ (xn, 1
2(n+1) )), we derive

u′n(xn) ≥ 3
2
un(

1
2(n+ 1)

)(n+ 1)

for all sufficiently large n. Since in view of (1.1), supn maxx∈[0,xn] |u′′n(x)| ≤
C ′, we have minx∈[0,xn] |u′n(x)| ≥ un( 1

2(n+1) )(n + 1) for all sufficiently large n.
Therefore,

0 < xn ≤ (n+ 1)−1
[
un(

1
2(n+ 1)

)
]−1 (3.1)

for all sufficiently large n.
Using un and n large, we now want to construct a function hn that satisfies

the conditions of Theorem 1.1. Introduce the linear function ln(x) = u
xn
x which

is equal to 0 at x = 0 and to u = un(xn) at x = xn. Multiply (1.1), with u = un,
by 2u′n(x) and integrate the result from 0 to x. Then

{[u′n(x)]2 + F (u2
n(x))}′ = 0, x ∈ R, (3.2)

where F (s) = −
∫ s

0
f(t)dt. Due to condition (F), F (u2) → +∞ as u → ∞,

therefore, without loss of generality, we can assume that u > 0 and is large
enough so that |uf(u2)| > |uf(u2)| and F (u2) > F (u2) for all u ∈ [0, u). Then
from (3.2), it follows that

u′n(xn) < u′n(x), x ∈ [0, xn), (3.3)

for all sufficiently large n. By (3.3), we have

u =
∫ xn

0

u′n(x)dx > xnu
′
n(xn);

therefore,

u′n(xn) <
u

xn
= l′n(x) (3.4)
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for all sufficiently large n.
Take a sufficiently small ∆ ∈ (0, xn2 ) and define a continuous function ω1(x)

equal to u′′′n (x) for x ∈ [xn, 1
2(n+1) ] such that u′′′n (x) ≤ ω1(x) ≤ 0 for x ∈

[xn −∆, xn] and ω1(x) = 0 for x ∈ [0, xn −∆). We define g1(x) to be equal to
un(x) for x ∈ [xn, 1

2(n+1) ], and for x ∈ [0, xn) to be given by the rules:

g′′1 (x) = u′′n(xn)−
∫ xn

x

ω1(t)dt,

g′1(x) = u′n(xn)−
∫ xn

x

g′′1 (t)dt, (3.5)

g1(x) = un(xn)−
∫ xn

x

g′1(t)dt.

Then g1(x) is three times continuously differentiable in [0, 1
2(n+1) ] and satisfies

condition (b) of Theorem 1.1. It is easy to see that if ∆ > 0 is sufficiently small,
then g1(xn − ∆) and g′1(xn − ∆) are arbitrary close to un(xn) and u′n(xn),
respectively, and g′′1 (x) is arbitrary close to u′′n(xn) for all x ∈ [0, xn−∆]. Now,
due to our choice of u > 0, for ∆ > 0 and sufficiently small, g1(0) is arbitrary
close to

un(xn)− xnu′n(xn) +
x2
n

2
u′′n(xn) . (3.6)

This expression is negative because

0 = un(0) = un(xn)− xnu′n(xn) +
∫ xn

0

dx

∫ xn

x

u′′n(t)dt

where the last term in the right-hand side of this equality is larger than the last
term in (3.6), due to our choice of u and (1.1). We have defined a function g1(x)
satisfying g1(0) < 0.

Take now a sufficiently small ∆ ∈ (0, xn2 ) and a continuous function ω2(x) ≤
0 which is equal to u′′′n (x) for x ∈ [xn, 1

2(n+1) ] and to 0 for x ∈ [0, xn −∆), such
that ∫ xn

xn−∆

ω2(x)dx = u′′n(xn).

Then, defining the function g2(x) just as g1(x) in (3.5) with the substitution of
ω2 in place of ω1 and of g2 in place of g1, we get that if ∆ > 0 is sufficiently small,
then g2(xn−∆) and g′2(xn−∆) are arbitrary close, respectively, to un(xn) and
u′n(xn), and g′′2 (x) = 0 for 0 ≤ x ≤ xn −∆. Therefore, due to (3.4), g2(0) > 0
if ∆ > 0 is sufficiently small, for all sufficiently large n. We have defined a
function g2(x) satisfying g2(0) > 0.

Now, consider the family of functions gλ(x) = λg1(x) + (1 − λ)g2(x) where
λ ∈ [0, 1]. Clearly, there exists a unique λ0 ∈ (0, 1) such that gλ0(0) = 0. Extend
gλ0(x) continuously on the entire real line by the rules:

gλ0(
1

n+ 1
+ x) = −gλ0(x), gλ0(

1
2(n+ 1)

+ x) = gλ0(
1

2(n+ 1)
− x)
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and denote the obtained function by hn(x). This function satisfies conditions (a)
and (b) of Theorem 1.1. In addition, by Theorem 1.1(b), h′′n(xn) ≤ h′′n(x) ≤ 0
for all x ∈ [0, xn).

So far, we have constructed hn for n sufficient large. For small values of n,
we use arbitrary functions hn satisfying the conditions of Theorem 1.1. There-
fore the sequence {hn} (n = 0, 1, 2, . . .) satisfies the conditions (a) and (b) of
Theorem 1.1.

Let αn = [hn( 1
2(n+1) )]−1. Then, by Theorem 1.1, the system {αnhn} is a

Riesz basis in L2. Furthermore, by Lemma 2.3, the system {αnun} is ω-linearly
independent in L2. Also, due to (1.1) and by construction, there exists C1 > 0
such that

|u′′n(x)| = max
u∈[0,u]

|uf(u2)| ≤ C1

and
max

x∈[0,xn]
|h′′n(x)| = |h′′n(xn)| = |u′′n(xn)| = |uf(u2)| ≤ C1

for all n sufficiently large. Hence,

|u′n(x)− h′n(x)| ≤ C2xn

for all n sufficiently large and all x ∈ [0, xn]. Hence, due to (3.1),

‖αnun − αnhn‖2 ≤ C3x
4
n ≤ C4(n+ 1)−4

for all n sufficiently large. Therefore, the systems {αnun} and {αnhn} are
quadratically close in L2. In view of Bari’s Theorem, the proof of Theorem 1.3
is complete.

Acknowledgment The author is thankful to Mrs. G. G. Sandukovskaya for
editing the original manuscript.
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