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A second order ODE with a nonlinear final

condition ∗

Pablo Amster & Maŕıa Cristina Mariani

Abstract

We study a semilinear second-order ordinary differential equation with
initial condition u(0) = u0. We prove the existence of solutions satisfying
a nonlinear final condition u(T ) = h′(u(T )), under a certain growth con-
dition. Also we state conditions ensuring that any solution with Cauchy
data u(0) = u0, u′(0) = v0 is defined on the whole interval [0, T ].

1 Introduction

We study the differential equation

u′′(t) + r(t)u′(t) + g(t, u(t)) = f(t) (1.1)

with initial condition u(0) = u0.
In the first section, we state the basic assumptions and results concerning

the Dirichlet problem associated with (1.1). In the second section, we define a
fixed point setting for solving a problem with final value u(T ) depending on the
velocity at time T . We prove that if g satisfies a growth condition that holds
for example when g is sublinear, then there exist a class of functions h such
that (1.1) admits at least one solution u with u(0) = u0, u(T ) = h(u′(T )). A
physical example of this equation is the forced pendulum equation, for which
existence results under Dirichlet and periodic conditions are known, see [3, 5, 6]
and their references. For nonexistence results, see e.g. [1, 8]. Finally, in the
third section we prove the existence of a continuous real function ψ = ψu0 such
that a solution of (1.1) with initial value u0 is defined over [0, T ] if and only if
the equation ψ(s) = u′(0) is solvable. Furthermore, if g is locally Lipschitz on
u the union over u0 of the sets {u0} × Range(ψu0) is a simply connected open
subset of R2.
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2 Basic assumptions and unique solvability of
the Dirichlet problem

Let S : H2(0, T )→ L2(0, T ) be the semi-linear operator Su = u′′+ru′+g(t, u).
We assume throughout this paper that g is continuous and satisfies the condition

g(t, u)− g(t, v)
u− v

≤ c <
( π
T

)2 for all t ∈ [0, T ], u, v ∈ R, u 6= v (2.1)

Moreover, we shall assume that the friction coefficient r ∈ H1(0, T ) is non-
decreasing.

Concerning the Dirichlet problem for (1.1), we recall the following results
whose proofs can be found in [2]. For related results and a general overview of
this problem, we refer the reader to [4, 7].

Lemma 2.1 Let u, v ∈ H2(0, T ) with u− v ∈ H1
0 (0, T ). Then

‖Su− Sv‖2 ≥
(
(
π

T
)2 − c

)
‖u− v‖2

and

‖Su− Sv‖2 ≥
(π/T )2 − c

π/T
‖u′ − v′‖2

Theorem 2.2 The Dirichlet problem

Su = f(t) in (0, T )
u(0) = u0, u(T ) = uT

is uniquely solvable in H2(0, T ) for any f ∈ L2(0, T ), u0, uT ∈ R.

Theorem 2.3 Let f ∈ L2(0, T ) and S = S−1(f) with the topology induced
by the H2-norm. Then the trace function, Tr : S → R

2, given by Tr(u) =
(u(0), u(T )) is an homeomorphism.

3 Nonlinearities at the endpoint

In this section we study the problem

u′′ + ru′ + g(t, u) = f in (0, T )
u(0) = u0, u(T ) = h(u′(T ))

(3.1)

for f ∈ L2(0, T ) and h continuous. First we transform the problem in a one-
dimensional fixed point problem: Indeed, for s ∈ R, we define us as the unique
solution of the problem

u′′ + ru′ + g(t, u) = f in (0, T )
u(0) = u0, u(T ) = h(s)
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Hence, when ϕs(t) = h(s)−u0
T t+ u0, we have

us(t)− ϕs(t) =
∫ T

0

(f − ru′s − g(θ, u′s))G(t, θ)dθ

where G is the Green function associated with the second order differential
operator. Namely,

G(t, θ) =

{
t(θ−T )
T if θ ≥ t

θ(t−T )
T if θ ≤ t

By simple computation we obtain

u′s(T ) =
h(s)− u0

T
+
∫ T

0

(f − ru′s − g(θ, us))
θ

T
dθ

and from Theorem 2.2 we have

Theorem 3.1 Let ξ : R→ R with

ξ(s) =
h(s)− u0

T
+
∫ T

0

(f − ru′s − g(θ, us))
θ

T
dθ .

Then ξ is a continuous fixed point operator for (3.1), i.e. u is a solution of (3.1)
if and only if u = us for some s ∈ R such that ξ(s) = s.

Proof Continuity of ξ follows immediately from the continuity of Tr−1 : R2 →
S−1(f). Moreover, if ξ(s) = s, then us(T ) = h(u′s(T )), proving that us is
a solution of (3.1). Conversely, if u is a solution of (3.1), then u = us for
s = u′(T ). �

We establish an existence result for (3.1) assuming that the graph of h crosses
the constant u0.

Theorem 3.2 Assume that (2.1) holds and that h − u0 has nonconstant sign
on R. Then (3.1) admits a solution for T small enough.

Proof First we give a slightly different formulation of the equality ξ(s) = s.
Integrating by parts, we see that∫ T

0

r(θ)u′s(θ)θdθ = r(T )Th(s)−
∫ T

0

[r(θ) + θr′(θ)]us(θ)dθ

and then

ξ(s) = (
1
T
−r(T ))h(s)+

1
T

[∫ T

0

θf(θ)dθ − u0

]
+

1
T

∫ T

0

(r+θr′)us−θg(θ, us)dθ

Hence, s is a fixed point of ξ if and only if

sT = (1− r(T )T )h(s)− u0 +
∫ T

0

(r+ θr′)us − θg(θ, us)dθ+
∫ T

0

θf(θ)dθ (3.2)
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¿From Lemma 2.1,

‖us − ϕs‖2 ≤
T 2

π2 − cT 2
‖Sus − Sϕs‖2 =

T 2

π2 − cT 2
‖f − rϕ′s − g(·, ϕs)‖2

and

‖us − ϕs‖∞ ≤
πT 3/2

π2 − cT 2
‖f − rϕ′s − g(·, ϕs)‖2

Moreover,

‖ϕs‖2 =

√
T

3
(h(s)2 + h(s)u0 + u2

0) := c(s)
√
T

and as

‖ϕs‖∞ = max{|u0|, |h(s)|}, ϕ′s =
h(s)− u0

T

then letting T → 0 for fixed s we have that ‖us‖2 → 0 and ‖us‖∞ is bounded.
Hence, we conclude that the right-hand side of (3.2) converges to h(s)− u0.

Setting s± ∈ R such that h(s+) < u0 < h(s−), it follows, for small T , that

Tξ(s+) ≤ h(s+)− u0 +B(s+)

and
Tξ(s−) ≥ h(s−)− u0 +B(s−)

for some B such that B(s±)→ 0. Hence it suffices to take T such that

h(s+)− u0 +B(s+) ≤ Ts+, h(s−)− u0 +B(s−) ≥ Ts−

�
For the next existence result, we assume that g grows at most linearly, i.e.

|g(t, x)| ≤ α|x|+ β (3.3)

for some positive constants α, β. We remark that (2.1) and (3.3) are inde-
pendent: for example, g(x) = −x3 satisfies (2.1) but not (3.3). Conversely,
g(x) = sin(Kx) does not satisfy (2.1) for K ≥

(
π
T

)2. For simplicity we define
the constants

cT =

√
T

3
+

T 2

π2 − cT 2

(
α

√
T

3
+
‖r‖2
T

)
, M =

(
‖r + θr′‖2 +

√
T 3

3
α
)
cT

and the functions

C±(s) =
(

(1− r(T )T ) sgn
(h(s)
s

)
±M

)∣∣∣h(s)
s

∣∣∣ .
Theorem 3.3 Assume that (2.1) and (3.3) hold. Then (3.1) admits at least
one solution u ∈ H2(0, T ) in each of the following cases
Case A: M < |1− r(T )T |, with

T < lim sup
s→+∞

C−(s) or T > lim inf
s→−∞

C+(s) (3.4)
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and
T < lim sup

s→−∞
C−(s) or T > lim inf

s→+∞
C+(s) (3.5)

Case B: M > |1− r(T )T |, with T > lim infs→±∞ C+(s)
Case C: M = |1− r(T )T |, and there exist sequences s−j → −∞, s+

j → +∞ such
that T > C+(s±j ) for every j, each one of them satisfying one of the following
conditions:

sgn
(h(sj)
sj

)
= sgn(1− r(T )T ) for every j (3.6)

or

lim
j→∞

h(sj)
s2
j

= 0 (3.7)

Remarks: i) The left-hand-side in condition 3.4 (resp. 3.5) implies

lim sup
s→+∞

h(s)
s

sgn(1− r(T )T ) >
T

|1− r(T )T | −M
(resp. s→ −∞)

ii) The following assumptions are sufficient for the right-hand-side in condition
3.4 (resp. 3.5) to be satisfied.

lim inf
s→−∞

∣∣∣h(s)
s

∣∣∣ < T

M + |1− r(T )T |
(resp. s→ +∞)

or

sgn
(h(sj)
sj

)
= − sgn(1− r(T )T )

for a sequence sj → −∞ (resp. sj → +∞).
iii) Conditions in case B are not fulfilled when

|h(s)| ≥ a|s|+ b, with a ≥ T

M − |1− r(T )T |

In the same way, conditions in case C imply

lim inf
|s|→∞

∣∣∣h(s)
s

∣∣∣ < T

2M

Proof of Theorem 3.3 As in the previous theorem,

‖us‖2 ≤
√
Tc(s) +

T 2

π2 − cT 2

(
α
√
Tc(s) + |h(s)− u0|

‖r‖2
T

+ ‖f‖2 + β
)

:= A(s)

and then
‖us‖2 ≤ cT |h(s)|+ γ|h(s)|1/2 + δ

for some constants γ, δ ∈ R. Moreover,∣∣∣ ∫ T

0

(r + θr′)us − θg(θ, us)dθ
∣∣∣ ≤ (‖r + θr′‖2 +

√
T 3

3
α
)
cT |h(s)|+R(s)
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with R(s) ≤ C1|h(s)|1/2 + C2 for some constants C1, C2. We remark that
R(s)
s → 0 for |s| → ∞ if h is subquadratic (i.e. h(s)

s2 → 0 for |s| → ∞). Hence,

[(1− r(T )T )−M sgn(h(s))]h(s)−R(s)
≤Tξ(s)
≤[(1− r(T )T ) +M sgn(h(s))]h(s) +R(s)

and it suffices to find s± satisfying:

s−T ≤ [(1− r(T )T )−M sgn(h(s−))]h(s−)−R(s−) (3.8)
s+T ≥ [(1− r(T )T ) +M sgn(h(s+))]h(s+) +R(s+) (3.9)

Assuming that s− > 0 then (3.8) is equivalent to

T ≤
[

sgn
(h(s−)
s−

)
(1− r(T )T )−M

]∣∣∣h(s−)
s−

∣∣∣− R(s−)
s−

Hence, if M < |1 − r(T )T | then left-hand-side of (3.4) is a sufficient condition
for (3.8): indeed, if T < k

∣∣∣h(sj)
sj

∣∣∣ for sj → +∞ and some k > 0, then

k
∣∣∣h(sj)
sj

∣∣∣− R(sj)
sj

=
∣∣∣h(sj)
sj

∣∣∣(k − R(sj)
|h(sj)|

)
As |h(sj)| → ∞, we have that R(sj)/|h(sj)| → 0 and the result follows.

In the same way, if we assume that s− < 0, then (3.8) is equivalent to

T ≥
[

sgn
(h(s−)

s−

)
(1− r(T )T ) +M

]∣∣∣h(s−)
s−

∣∣∣− R(s−)
s−

and right-hand-side of (3.4) is sufficient, as well as conditions in cases B and C.
The same conclusions can be obtained for (3.9), which completes the proof. �

Example We consider the forced pendulum equation

u′′(t) + sinu = f(t) (3.10)

for which it is clear that (3.3) holds, and (2.1) holds when T < π. In this case

cT =
√

T
3 , M = 0, and C−(s) = C+(s) = h(s)

s . If we assume, further, that

lim
s→±∞

h(s)
s

= L±

then (3.1) is solvable, unless

L− ≤ T ≤ L+ or L+ ≤ T ≤ L−

In particular, (3.1) is solvable when h is sublinear or superlinear (and obviously
when h is linear, h(s) = as+ b, for T 6= a).



EJDE–2001/75 Pablo Amster & Maŕıa Cristina Mariani 7

It is well known that (3.10) admits T -periodic solutions when f is T -periodic
and

∫ T
0
f = 0. Furthermore, in [3] it has been proved that for any 2π-periodic

f0 ∈ L2(0, 2π) such that
∫ 2π

0
f0 = 0 there exist two numbers d(f0) ≤ 0 ≤ D(f0)

such that (P) admits 2π-periodic solutions for f(t) = f0(t) + f1 if and only if

d(f0) ≤ f1 ≤ D(f0)

Remark Assuming (2.1) and (3.3) we may define the functions ξ± : R → R

as

ξ±(s) =
1
T

(
(1− r(T )T )h(s)±

[
‖r + θr′‖2A(s) +

√
T 3

3
(αA(s) + β)

]
+
∫ T

0

θf(θ)dθ − u0

)
with A(s) as in the previous proof. Then a sufficient condition for the solvability
of (3.1) is the existence of s± ∈ R such that s− ≤ ξ−(s−) and ξ+(s+) ≤ s+.
Indeed, from the previous computations we have

|
∫ T

0

(r + θr′)us − θg(θ, us)dθ| ≤ ‖r + θr′‖2A(s) +

√
T 3

3
(αA(s) + β)

Then ξ− ≤ ξ ≤ ξ+ and the result the result follows from Theorem 3.1. �

4 Blow-up results

In this section we study the behavior of the solutions of the Cauchy problem

u′′ + ru′ + g(t, u) = f in (0, T )
u(0) = u0, u′(0) = v0

(4.1)

As a simple remark, under condition (2.1) we see that if g is locally Lipschitz
on u, then there exists an interval I(u0) such that v0 ∈ I(u0) if and only if u is
defined over [0, T ]. Indeed, it suffices to show that the set

I := {v0 : the local solution of (4.1) does not blow up on [0, T ]}

is connected. Let v0, v2 ∈ I and v1 /∈ I such that v0 < v1 < v2. Then the
corresponding solution u1 intersects u0 or u2 in (0, T ], and from the uniqueness
in Theorem 2.2, a contradiction yields.

Remark It is well known that if the growth condition (3.3) holds, then any
solution of (4.1) is defined over R for every u0. In other words, the solutions
may blow up only when |g| grows faster than linearly.
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Example Let g(t, u) = −2u3 and f = 0. Then (2.1) holds, and for u0 = 0 6= v0

we have that
u′ = sgn(v0)

√
v2

0 + u4

Assume for example that u is defined over [0, 1]. Then, as |u′| > |v0| for t > 0,
we have that |u( 1

2 )| > v0
2 . Moreover, |u′| > u2, and hence

1
|u( 1

2 )|
− 1
|u(1)|

>
1
2

Thus,
2
|v0|
− 1

2
>

1
|u(1)|

proving that |v0| < 4. This shows that I(0) ⊂ (−4, 4).

The following theorem shows that the Lipschitz condition is not necessary
in order to prove the existence of I(u0). Further, we give an explicit expression
for I(u0) as the range of a continuous function.

Theorem 4.1 Assume that (2.1) holds. Then there exists an interval I(u0)
such that the following two conditions are equivalent:
i) v0 ∈ I(u0)
ii) At least one local solution of (4.1) is defined over [0, T ].
Moreover, if h(s) = u0 + sT and ψ : R→ R given by

ψ(s) = s+
∫ T

0

(f − ru′s − g(θ, us))
θ − T
T

dθ,

then I(u0) = Range(ψ).

Proof As in Section 3, we have

us(t)− ϕs(t) =
∫ T

0

(f − ru′s − g(θ, us))G(t, θ)dθ

with ϕs(t) = st + u0. By simple computation, u′s(0) = ψ(s), and the proof is
complete. �

Remark In particular, if g is locally Lipschitz on u then ψ is injective and
hence I(u0) is open.

Theorem 4.2 Assume (2.1) and that g is locally Lipschitz on u. Then the set⋃
u0∈R

{u0} × I(u0)

is open and simply connected in R2.
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Proof Let S = S−1(f) and consider the continuous mapping ρ : S → R
2,

ρ(u) = (u(0), u′(0)). Then v0 ∈ I(u0) if and only if (u0, v0) ∈ Range(ρ). As g is
locally Lipschitz, ρ is injective, and hence Range(ρ) = ρ ◦Tr−1(R2) is open and
simply connected. �
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