A second order ODE with a nonlinear final condition *

Pablo Amster \& María Cristina Mariani

Abstract

We study a semilinear second-order ordinary differential equation with initial condition $u(0)=u_{0}$. We prove the existence of solutions satisfying a nonlinear final condition $u(T)=h^{\prime}(u(T))$, under a certain growth condition. Also we state conditions ensuring that any solution with Cauchy data $u(0)=u_{0}, u^{\prime}(0)=v_{0}$ is defined on the whole interval $[0, T]$.

1 Introduction

We study the differential equation

$$
\begin{equation*}
u^{\prime \prime}(t)+r(t) u^{\prime}(t)+g(t, u(t))=f(t) \tag{1.1}
\end{equation*}
$$

with initial condition $u(0)=u_{0}$.
In the first section, we state the basic assumptions and results concerning the Dirichlet problem associated with (1.1). In the second section, we define a fixed point setting for solving a problem with final value $u(T)$ depending on the velocity at time T. We prove that if g satisfies a growth condition that holds for example when g is sublinear, then there exist a class of functions h such that (1.1) admits at least one solution u with $u(0)=u_{0}, u(T)=h\left(u^{\prime}(T)\right)$. A physical example of this equation is the forced pendulum equation, for which existence results under Dirichlet and periodic conditions are known, see $[3,5,6]$ and their references. For nonexistence results, see e.g. [1, 8]. Finally, in the third section we prove the existence of a continuous real function $\psi=\psi_{u_{0}}$ such that a solution of (1.1) with initial value u_{0} is defined over $[0, T]$ if and only if the equation $\psi(s)=u^{\prime}(0)$ is solvable. Furthermore, if g is locally Lipschitz on u the union over u_{0} of the sets $\left\{u_{0}\right\} \times \operatorname{Range}\left(\psi_{u_{0}}\right)$ is a simply connected open subset of \mathbb{R}^{2}.

[^0]
2 Basic assumptions and unique solvability of the Dirichlet problem

Let $S: H^{2}(0, T) \rightarrow L^{2}(0, T)$ be the semi-linear operator $S u=u^{\prime \prime}+r u^{\prime}+g(t, u)$. We assume throughout this paper that g is continuous and satisfies the condition

$$
\begin{equation*}
\frac{g(t, u)-g(t, v)}{u-v} \leq c<\left(\frac{\pi}{T}\right)^{2} \quad \text { for all } t \in[0, T], u, v \in \mathbb{R}, u \neq v \tag{2.1}
\end{equation*}
$$

Moreover, we shall assume that the friction coefficient $r \in H^{1}(0, T)$ is nondecreasing.

Concerning the Dirichlet problem for (1.1), we recall the following results whose proofs can be found in [2]. For related results and a general overview of this problem, we refer the reader to $[4,7]$.

Lemma 2.1 Let $u, v \in H^{2}(0, T)$ with $u-v \in H_{0}^{1}(0, T)$. Then

$$
\|S u-S v\|_{2} \geq\left(\left(\frac{\pi}{T}\right)^{2}-c\right)\|u-v\|_{2}
$$

and

$$
\|S u-S v\|_{2} \geq \frac{(\pi / T)^{2}-c}{\pi / T}\left\|u^{\prime}-v^{\prime}\right\|_{2}
$$

Theorem 2.2 The Dirichlet problem

$$
\begin{aligned}
S u & =f(t) \quad \text { in }(0, T) \\
u(0) & =u_{0}, \quad u(T)=u_{T}
\end{aligned}
$$

is uniquely solvable in $H^{2}(0, T)$ for any $f \in L^{2}(0, T), u_{0}, u_{T} \in \mathbb{R}$.
Theorem 2.3 Let $f \in L^{2}(0, T)$ and $\mathcal{S}=S^{-1}(f)$ with the topology induced by the H^{2}-norm. Then the trace function, $\operatorname{Tr}: \mathcal{S} \rightarrow \mathbb{R}^{2}$, given by $\operatorname{Tr}(u)=$ $(u(0), u(T))$ is an homeomorphism.

3 Nonlinearities at the endpoint

In this section we study the problem

$$
\begin{gather*}
u^{\prime \prime}+r u^{\prime}+g(t, u)=f \quad \text { in }(0, T) \\
u(0)=u_{0}, \quad u(T)=h\left(u^{\prime}(T)\right) \tag{3.1}
\end{gather*}
$$

for $f \in L^{2}(0, T)$ and h continuous. First we transform the problem in a onedimensional fixed point problem: Indeed, for $s \in \mathbb{R}$, we define u_{s} as the unique solution of the problem

$$
\begin{gathered}
u^{\prime \prime}+r u^{\prime}+g(t, u)=f \quad \text { in }(0, T) \\
u(0)=u_{0}, \quad u(T)=h(s)
\end{gathered}
$$

Hence, when $\varphi_{s}(t)=\frac{h(s)-u_{0}}{T} t+u_{0}$, we have

$$
u_{s}(t)-\varphi_{s}(t)=\int_{0}^{T}\left(f-r u_{s}^{\prime}-g\left(\theta, u_{s}^{\prime}\right)\right) G(t, \theta) d \theta
$$

where G is the Green function associated with the second order differential operator. Namely,

$$
G(t, \theta)= \begin{cases}\frac{t(\theta-T)}{T} & \text { if } \theta \geq t \\ \frac{\theta(t-T)}{T} & \text { if } \theta \leq t\end{cases}
$$

By simple computation we obtain

$$
u_{s}^{\prime}(T)=\frac{h(s)-u_{0}}{T}+\int_{0}^{T}\left(f-r u_{s}^{\prime}-g\left(\theta, u_{s}\right)\right) \frac{\theta}{T} d \theta
$$

and from Theorem 2.2 we have
Theorem 3.1 Let $\xi: \mathbb{R} \rightarrow \mathbb{R}$ with

$$
\xi(s)=\frac{h(s)-u_{0}}{T}+\int_{0}^{T}\left(f-r u_{s}^{\prime}-g\left(\theta, u_{s}\right)\right) \frac{\theta}{T} d \theta
$$

Then ξ is a continuous fixed point operator for (3.1), i.e. u is a solution of (3.1) if and only if $u=u_{\text {s }}$ for some $s \in \mathbb{R}$ such that $\xi(s)=s$.

Proof Continuity of ξ follows immediately from the continuity of $\operatorname{Tr}^{-1}: \mathbb{R}^{2} \rightarrow$ $S^{-1}(f)$. Moreover, if $\xi(s)=s$, then $u_{s}(T)=h\left(u_{s}^{\prime}(T)\right)$, proving that u_{s} is a solution of (3.1). Conversely, if u is a solution of (3.1), then $u=u_{s}$ for $s=u^{\prime}(T)$.

We establish an existence result for (3.1) assuming that the graph of h crosses the constant u_{0}.

Theorem 3.2 Assume that (2.1) holds and that $h-u_{0}$ has nonconstant sign on \mathbb{R}. Then (3.1) admits a solution for T small enough.

Proof First we give a slightly different formulation of the equality $\xi(s)=s$. Integrating by parts, we see that

$$
\int_{0}^{T} r(\theta) u_{s}^{\prime}(\theta) \theta d \theta=r(T) T h(s)-\int_{0}^{T}\left[r(\theta)+\theta r^{\prime}(\theta)\right] u_{s}(\theta) d \theta
$$

and then
$\xi(s)=\left(\frac{1}{T}-r(T)\right) h(s)+\frac{1}{T}\left[\int_{0}^{T} \theta f(\theta) d \theta-u_{0}\right]+\frac{1}{T} \int_{0}^{T}\left(r+\theta r^{\prime}\right) u_{s}-\theta g\left(\theta, u_{s}\right) d \theta$
Hence, s is a fixed point of ξ if and only if

$$
\begin{equation*}
s T=(1-r(T) T) h(s)-u_{0}+\int_{0}^{T}\left(r+\theta r^{\prime}\right) u_{s}-\theta g\left(\theta, u_{s}\right) d \theta+\int_{0}^{T} \theta f(\theta) d \theta \tag{3.2}
\end{equation*}
$$

¿From Lemma 2.1,

$$
\left\|u_{s}-\varphi_{s}\right\|_{2} \leq \frac{T^{2}}{\pi^{2}-c T^{2}}\left\|S u_{s}-S \varphi_{s}\right\|_{2}=\frac{T^{2}}{\pi^{2}-c T^{2}}\left\|f-r \varphi_{s}^{\prime}-g\left(\cdot, \varphi_{s}\right)\right\|_{2}
$$

and

$$
\left\|u_{s}-\varphi_{s}\right\|_{\infty} \leq \frac{\pi T^{3 / 2}}{\pi^{2}-c T^{2}}\left\|f-r \varphi_{s}^{\prime}-g\left(\cdot, \varphi_{s}\right)\right\|_{2}
$$

Moreover,

$$
\left\|\varphi_{s}\right\|_{2}=\sqrt{\frac{T}{3}\left(h(s)^{2}+h(s) u_{0}+u_{0}^{2}\right)}:=c(s) \sqrt{T}
$$

and as

$$
\left\|\varphi_{s}\right\|_{\infty}=\max \left\{\left|u_{0}\right|,|h(s)|\right\}, \quad \varphi_{s}^{\prime}=\frac{h(s)-u_{0}}{T}
$$

then letting $T \rightarrow 0$ for fixed s we have that $\left\|u_{s}\right\|_{2} \rightarrow 0$ and $\left\|u_{s}\right\|_{\infty}$ is bounded. Hence, we conclude that the right-hand side of (3.2) converges to $h(s)-u_{0}$.

Setting $s_{ \pm} \in \mathbb{R}$ such that $h\left(s_{+}\right)<u_{0}<h\left(s_{-}\right)$, it follows, for small T, that

$$
T \xi\left(s_{+}\right) \leq h\left(s_{+}\right)-u_{0}+B\left(s_{+}\right)
$$

and

$$
T \xi\left(s_{-}\right) \geq h\left(s_{-}\right)-u_{0}+B\left(s_{-}\right)
$$

for some B such that $B\left(s_{ \pm}\right) \rightarrow 0$. Hence it suffices to take T such that

$$
h\left(s_{+}\right)-u_{0}+B\left(s_{+}\right) \leq T s_{+}, \quad h\left(s_{-}\right)-u_{0}+B\left(s_{-}\right) \geq T s_{-}
$$

For the next existence result, we assume that g grows at most linearly, i.e.

$$
\begin{equation*}
|g(t, x)| \leq \alpha|x|+\beta \tag{3.3}
\end{equation*}
$$

for some positive constants α, β. We remark that (2.1) and (3.3) are independent: for example, $g(x)=-x^{3}$ satisfies (2.1) but not (3.3). Conversely, $g(x)=\sin (K x)$ does not satisfy (2.1) for $K \geq\left(\frac{\pi}{T}\right)^{2}$. For simplicity we define the constants

$$
c_{T}=\sqrt{\frac{T}{3}}+\frac{T^{2}}{\pi^{2}-c T^{2}}\left(\alpha \sqrt{\frac{T}{3}}+\frac{\|r\|_{2}}{T}\right), \quad M=\left(\left\|r+\theta r^{\prime}\right\|_{2}+\sqrt{\frac{T^{3}}{3}} \alpha\right) c_{T}
$$

and the functions

$$
C_{ \pm}(s)=\left((1-r(T) T) \operatorname{sgn}\left(\frac{h(s)}{s}\right) \pm M\right)\left|\frac{h(s)}{s}\right|
$$

Theorem 3.3 Assume that (2.1) and (3.3) hold. Then (3.1) admits at least one solution $u \in H^{2}(0, T)$ in each of the following cases Case A: $M<|1-r(T) T|$, with

$$
\begin{equation*}
T<\limsup _{s \rightarrow+\infty} C_{-}(s) \quad \text { or } \quad T>\liminf _{s \rightarrow-\infty} C_{+}(s) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
T<\limsup _{s \rightarrow-\infty} C_{-}(s) \quad \text { or } \quad T>\liminf _{s \rightarrow+\infty} C_{+}(s) \tag{3.5}
\end{equation*}
$$

Case B: $M>|1-r(T) T|$, with $T>\liminf _{s \rightarrow \pm \infty} C_{+}(s)$
Case $C: M=|1-r(T) T|$, and there exist sequences $s_{j}^{-} \rightarrow-\infty$, $s_{j}^{+} \rightarrow+\infty$ such that $T>C_{+}\left(s_{j}^{ \pm}\right)$for every j, each one of them satisfying one of the following conditions:

$$
\begin{equation*}
\operatorname{sgn}\left(\frac{h\left(s_{j}\right)}{s_{j}}\right)=\operatorname{sgn}(1-r(T) T) \quad \text { for every } j \tag{3.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{h\left(s_{j}\right)}{s_{j}^{2}}=0 \tag{3.7}
\end{equation*}
$$

Remarks: i) The left-hand-side in condition 3.4 (resp. 3.5) implies

$$
\limsup _{s \rightarrow+\infty} \frac{h(s)}{s} \operatorname{sgn}(1-r(T) T)>\frac{T}{|1-r(T) T|-M} \quad(\text { resp. } s \rightarrow-\infty)
$$

ii) The following assumptions are sufficient for the right-hand-side in condition 3.4 (resp. 3.5) to be satisfied.

$$
\left.\liminf _{s \rightarrow-\infty}\left|\frac{h(s)}{s}\right|<\frac{T}{M+|1-r(T) T|} \quad \text { (resp. } s \rightarrow+\infty\right)
$$

or

$$
\operatorname{sgn}\left(\frac{h\left(s_{j}\right)}{s_{j}}\right)=-\operatorname{sgn}(1-r(T) T)
$$

for a sequence $s_{j} \rightarrow-\infty$ (resp. $s_{j} \rightarrow+\infty$).
iii) Conditions in case B are not fulfilled when

$$
|h(s)| \geq a|s|+b, \quad \text { with } \quad a \geq \frac{T}{M-|1-r(T) T|}
$$

In the same way, conditions in case C imply

$$
\liminf _{|s| \rightarrow \infty}\left|\frac{h(s)}{s}\right|<\frac{T}{2 M}
$$

Proof of Theorem 3.3 As in the previous theorem,

$$
\left\|u_{s}\right\|_{2} \leq \sqrt{T} c(s)+\frac{T^{2}}{\pi^{2}-c T^{2}}\left(\alpha \sqrt{T} c(s)+\left|h(s)-u_{0}\right| \frac{\|r\|_{2}}{T}+\|f\|_{2}+\beta\right):=A(s)
$$

and then

$$
\left\|u_{s}\right\|_{2} \leq c_{T}|h(s)|+\gamma|h(s)|^{1 / 2}+\delta
$$

for some constants $\gamma, \delta \in \mathbb{R}$. Moreover,

$$
\left|\int_{0}^{T}\left(r+\theta r^{\prime}\right) u_{s}-\theta g\left(\theta, u_{s}\right) d \theta\right| \leq\left(\left\|r+\theta r^{\prime}\right\|_{2}+\sqrt{\frac{T^{3}}{3}} \alpha\right) c_{T}|h(s)|+R(s)
$$

with $R(s) \leq C_{1}|h(s)|^{1 / 2}+C_{2}$ for some constants C_{1}, C_{2}. We remark that $\frac{R(s)}{s} \rightarrow 0$ for $|s| \rightarrow \infty$ if h is subquadratic (i.e. $\frac{h(s)}{s^{2}} \rightarrow 0$ for $|s| \rightarrow \infty$). Hence,

$$
\begin{aligned}
& {[(1-r(T) T)-M \operatorname{sgn}(h(s))] h(s)-R(s)} \\
& \quad \leq T \xi(s) \\
& \quad \leq[(1-r(T) T)+M \operatorname{sgn}(h(s))] h(s)+R(s)
\end{aligned}
$$

and it suffices to find $s_{ \pm}$satisfying:

$$
\begin{align*}
& s_{-} T \leq\left[(1-r(T) T)-M \operatorname{sgn}\left(h\left(s_{-}\right)\right)\right] h\left(s_{-}\right)-R\left(s_{-}\right) \tag{3.8}\\
& s_{+} T \geq\left[(1-r(T) T)+M \operatorname{sgn}\left(h\left(s_{+}\right)\right)\right] h\left(s_{+}\right)+R\left(s_{+}\right) \tag{3.9}
\end{align*}
$$

Assuming that $s_{-}>0$ then (3.8) is equivalent to

$$
T \leq\left[\operatorname{sgn}\left(\frac{h\left(s_{-}\right)}{s_{-}}\right)(1-r(T) T)-M\right]\left|\frac{h\left(s_{-}\right)}{s_{-}}\right|-\frac{R\left(s_{-}\right)}{s_{-}}
$$

Hence, if $M<|1-r(T) T|$ then left-hand-side of (3.4) is a sufficient condition for (3.8): indeed, if $T<k\left|\frac{h\left(s_{j}\right)}{s_{j}}\right|$ for $s_{j} \rightarrow+\infty$ and some $k>0$, then

$$
k\left|\frac{h\left(s_{j}\right)}{s_{j}}\right|-\frac{R\left(s_{j}\right)}{s_{j}}=\left|\frac{h\left(s_{j}\right)}{s_{j}}\right|\left(k-\frac{R\left(s_{j}\right)}{\left|h\left(s_{j}\right)\right|}\right)
$$

As $\left|h\left(s_{j}\right)\right| \rightarrow \infty$, we have that $R\left(s_{j}\right) /\left|h\left(s_{j}\right)\right| \rightarrow 0$ and the result follows.
In the same way, if we assume that $s_{-}<0$, then (3.8) is equivalent to

$$
T \geq\left[\operatorname{sgn}\left(\frac{h\left(s_{-}\right)}{s_{-}}\right)(1-r(T) T)+M\right]\left|\frac{h\left(s_{-}\right)}{s_{-}}\right|-\frac{R\left(s_{-}\right)}{s_{-}}
$$

and right-hand-side of (3.4) is sufficient, as well as conditions in cases B and C. The same conclusions can be obtained for (3.9), which completes the proof.

Example We consider the forced pendulum equation

$$
\begin{equation*}
u^{\prime \prime}(t)+\sin u=f(t) \tag{3.10}
\end{equation*}
$$

for which it is clear that (3.3) holds, and (2.1) holds when $T<\pi$. In this case $c_{T}=\sqrt{\frac{T}{3}}, M=0$, and $C_{-}(s)=C_{+}(s)=\frac{h(s)}{s}$. If we assume, further, that

$$
\lim _{s \rightarrow \pm \infty} \frac{h(s)}{s}=L_{ \pm}
$$

then (3.1) is solvable, unless

$$
L_{-} \leq T \leq L_{+} \quad \text { or } \quad L_{+} \leq T \leq L_{-}
$$

In particular, (3.1) is solvable when h is sublinear or superlinear (and obviously when h is linear, $h(s)=a s+b$, for $T \neq a)$.

It is well known that (3.10) admits T-periodic solutions when f is T-periodic and $\int_{0}^{T} f=0$. Furthermore, in [3] it has been proved that for any 2π-periodic $f_{0} \in L^{2}(0,2 \pi)$ such that $\int_{0}^{2 \pi} f_{0}=0$ there exist two numbers $d\left(f_{0}\right) \leq 0 \leq D\left(f_{0}\right)$ such that (P) admits 2π-periodic solutions for $f(t)=f_{0}(t)+f_{1}$ if and only if

$$
d\left(f_{0}\right) \leq f_{1} \leq D\left(f_{0}\right)
$$

Remark Assuming (2.1) and (3.3) we may define the functions $\xi^{ \pm}: \mathbb{R} \rightarrow \mathbb{R}$ as

$$
\begin{aligned}
\xi^{ \pm}(s)= & \frac{1}{T}\left((1-r(T) T) h(s) \pm\left[\left\|r+\theta r^{\prime}\right\|_{2} A(s)+\sqrt{\frac{T^{3}}{3}}(\alpha A(s)+\beta)\right]\right. \\
& \left.+\int_{0}^{T} \theta f(\theta) d \theta-u_{0}\right)
\end{aligned}
$$

with $A(s)$ as in the previous proof. Then a sufficient condition for the solvability of (3.1) is the existence of $s_{ \pm} \in \mathbb{R}$ such that $s_{-} \leq \xi^{-}\left(s_{-}\right)$and $\xi^{+}\left(s_{+}\right) \leq s_{+}$. Indeed, from the previous computations we have

$$
\left|\int_{0}^{T}\left(r+\theta r^{\prime}\right) u_{s}-\theta g\left(\theta, u_{s}\right) d \theta\right| \leq\left\|r+\theta r^{\prime}\right\|_{2} A(s)+\sqrt{\frac{T^{3}}{3}}(\alpha A(s)+\beta)
$$

Then $\xi^{-} \leq \xi \leq \xi^{+}$and the result the result follows from Theorem 3.1.

4 Blow-up results

In this section we study the behavior of the solutions of the Cauchy problem

$$
\begin{gather*}
u^{\prime \prime}+r u^{\prime}+g(t, u)=f \quad \text { in }(0, T) \\
u(0)=u_{0}, \quad u^{\prime}(0)=v_{0} \tag{4.1}
\end{gather*}
$$

As a simple remark, under condition (2.1) we see that if g is locally Lipschitz on u, then there exists an interval $I\left(u_{0}\right)$ such that $v_{0} \in I\left(u_{0}\right)$ if and only if u is defined over $[0, T]$. Indeed, it suffices to show that the set

$$
I:=\left\{v_{0}: \text { the local solution of (4.1) does not blow up on }[0, T]\right\}
$$

is connected. Let $v_{0}, v_{2} \in I$ and $v_{1} \notin I$ such that $v_{0}<v_{1}<v_{2}$. Then the corresponding solution u_{1} intersects u_{0} or u_{2} in ($0, T$], and from the uniqueness in Theorem 2.2, a contradiction yields.

Remark It is well known that if the growth condition (3.3) holds, then any solution of (4.1) is defined over \mathbb{R} for every u_{0}. In other words, the solutions may blow up only when $|g|$ grows faster than linearly.

Example Let $g(t, u)=-2 u^{3}$ and $f=0$. Then (2.1) holds, and for $u_{0}=0 \neq v_{0}$ we have that

$$
u^{\prime}=\operatorname{sgn}\left(v_{0}\right) \sqrt{v_{0}^{2}+u^{4}}
$$

Assume for example that u is defined over $[0,1]$. Then, as $\left|u^{\prime}\right|>\left|v_{0}\right|$ for $t>0$, we have that $\left|u\left(\frac{1}{2}\right)\right|>\frac{v_{0}}{2}$. Moreover, $\left|u^{\prime}\right|>u^{2}$, and hence

$$
\frac{1}{\left|u\left(\frac{1}{2}\right)\right|}-\frac{1}{|u(1)|}>\frac{1}{2}
$$

Thus,

$$
\frac{2}{\left|v_{0}\right|}-\frac{1}{2}>\frac{1}{|u(1)|}
$$

proving that $\left|v_{0}\right|<4$. This shows that $I(0) \subset(-4,4)$.
The following theorem shows that the Lipschitz condition is not necessary in order to prove the existence of $I\left(u_{0}\right)$. Further, we give an explicit expression for $I\left(u_{0}\right)$ as the range of a continuous function.

Theorem 4.1 Assume that (2.1) holds. Then there exists an interval $I\left(u_{0}\right)$ such that the following two conditions are equivalent:
i) $v_{0} \in I\left(u_{0}\right)$
ii) At least one local solution of (4.1) is defined over $[0, T]$. Moreover, if $h(s)=u_{0}+s T$ and $\psi: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\psi(s)=s+\int_{0}^{T}\left(f-r u_{s}^{\prime}-g\left(\theta, u_{s}\right)\right) \frac{\theta-T}{T} d \theta
$$

then $I\left(u_{0}\right)=$ Range (ψ).
Proof As in Section 3, we have

$$
u_{s}(t)-\varphi_{s}(t)=\int_{0}^{T}\left(f-r u_{s}^{\prime}-g\left(\theta, u_{s}\right)\right) G(t, \theta) d \theta
$$

with $\varphi_{s}(t)=s t+u_{0}$. By simple computation, $u_{s}^{\prime}(0)=\psi(s)$, and the proof is complete.

Remark In particular, if g is locally Lipschitz on u then ψ is injective and hence $I\left(u_{0}\right)$ is open.

Theorem 4.2 Assume (2.1) and that g is locally Lipschitz on u. Then the set

$$
\bigcup_{u_{0} \in \mathbb{R}}\left\{u_{0}\right\} \times I\left(u_{0}\right)
$$

is open and simply connected in \mathbb{R}^{2}.

Proof Let $\mathcal{S}=S^{-1}(f)$ and consider the continuous mapping $\rho: \mathcal{S} \rightarrow \mathbb{R}^{2}$, $\rho(u)=\left(u(0), u^{\prime}(0)\right)$. Then $v_{0} \in I\left(u_{0}\right)$ if and only if $\left(u_{0}, v_{0}\right) \in \operatorname{Range}(\rho)$. As g is locally Lipschitz, ρ is injective, and hence Range $(\rho)=\rho \circ \operatorname{Tr}^{-1}\left(\mathbb{R}^{2}\right)$ is open and simply connected.

Acknowledgement The authors want to thank Professor Alfonso Castro for the careful reading of the manuscript and his fruitful suggestions and remarks.

References

[1] Alonso, J.: Nonexistence of periodic solutions for a damped pendulum equation. Diff. and Integral Equations, 10 (1997), 1141-8.
[2] Amster, P., Mariani, M.C.: Nonlinear two-point boundary value problems and a Duffing equation. Submitted.
[3] Castro, A: Periodic solutions of the forced pendulum equation. Diff. Equations 1980, 149-60.
[4] Dolph, C.L.: Nonlinear integral equations of the Hammerstein type, Trans. Amer. Math. Soc. 66 (1949), 289-307.
[5] Hamel, G.: Über erzwungene Schwingungen bei endlichen Amplituden. Math. Ann., 86 (1922), 1-13.
[6] Mawhin, J.: The forced pendulum: A paradigm for nonlinear analysis and dynamical systems. Expo. Math., 6 (1988), 271-87.
[7] Mawhin, J.: Boudary value problems for nonlinear ordinary differential equations: from successive approximations to topology. Recherches de mathématique (1998), Inst. de Math Pure et Apliquée, Univ.Cath. de Louvain. Prepublication
[8] Ortega, R., Serra, E., Tarallo, M.: Non-continuation of the periodic oscillations of a forced pendulum in the presence of friction. To appear.

Pablo Amster (e-mail: pamster@dm.uba.ar)
Maria Cristina Mariani (e-mail: mcmarian@dm.uba.ar)
Departamento de Matemática,
Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires - CONICET,
Pab. I, Ciudad Universitaria, (1428) Buenos Aires, Argentina

[^0]: * Mathematics Subject Classifications: 34B15, 34C37.

 Key words: Nonlinear boundary-value problems, fixed point methods.
 © 2001 Southwest Texas State University.
 Submitted: October 15, 2000. Published December 10, 2001.

