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The nonlocal bistable equation: Stationary

solutions on a bounded interval ∗

Adam J. J. Chmaj & Xiaofeng Ren

Abstract

We discuss instability and existence issues for the nonlocal bistable
equation. This model arises as the Euler-Lagrange equation of a nonlocal,
van der Waals type functional. Taking the viewpoint of the calculus of
variations, we prove that for a class of nonlocalities this functional does not
admit nonconstant C1 local minimizers. By taking variations along non-
smooth paths, we give examples of nonlocalities for which the functional
does not admit local minimizers having a finite number of discontinuities.
We also construct monotone solutions and give a criterion for nonexistence
of nonconstant solutions.

1 Introduction

We study the semilinear integral equation (the nonlocal bistable equation)

−J [u] + ju+ f(u) = 0, (1.1)

on the interval (0, 1), where

J [u](x) =
∫ 1

0

J(x, y)u(y)dy, j(x) =
∫ 1

0

J(x, y)dy.

We assume J ∈W 1,1 is symmetric, in the sense J(x, y) = J(y, x) for x, y ∈ (0, 1),
and f ∈ C1 is a bistable function with three zeros: −1, a ∈ (−1, 1), 1, with
f ′(±1) > 0 and f ′(a) < 0. Equation (1.1) (which has no boundary conditions)
arises as the Euler-Lagrange equation of the functional (defined on L2(0, 1))

I(u) =
1
4

∫ 1

0

∫ 1

0

J(x, y)(u(x)− u(y))2dxdy +
∫ 1

0

W (u(x)) dx, (1.2)
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where W is a double-well function. Depending on the type of problem studied,
one can impose the mass constraint

∫ 1

0
u(x)dx = m on (1.2). This was done in

the seminal work of van der Waals in 1892 [14], who simplified (1.2) by expanding
the nonlocal part in power series and considering the first order approximation

I loc(u) =
1
2

∫ 1

0

|u′(x)|2dx+
∫ 1

0

W (u(x))dx. (1.3)

The gradient flow of (1.3) without the mass constraint:

ut = uxx − f(u), u′(0) = u′(1) = 0, (1.4)

is sometimes referred to as the Ginzburg-Landau or Allen-Cahn equation. (1.2)
can be viewed as a model for materials whose constitutive relations are nonlocal
(see [11, 12] for other examples). Namely, if u denotes the general phase field
characterizing the state of a material, and if the energy density of the continuum
is postulated to be e = −J [u]u/2 + ju2/2 + W (u), then the total free energy
can be written as

I(u) =
∫ 1

0

e(x)dx =
∫ 1

0

(
−1

2
J [u]u+

ju2

2
+W (u)

)
dx. (1.5)

(1.2) can also be derived from elementary statistical mechanics. In [2] and [3]
it was shown that (1.2) arises as the Helmholtz free energy of an Ising-like
spin system with long range interactions. In particular, in this approach J can
change sign and W does not have to be balanced. An infinite lattice system
similar to (1.1) was studied in [3, 1].

Results on solutions of the whole line version of (1.1) (i.e., −J∗u+ju+f(u) =
0) can be found in e.g., [4, 6, 7, 2, 8]. An interesting discovery was made in
those papers: the existence of discontinuous solutions when ju + f(u) is not
monotone. In [8] and [9] we studied (1.1) for ju + f(u) monotone and estab-
lished, using singular perturbation techniques, another interesting phenomenon:
the existence of nonconstant local minimizers of I for a class of sign-changing
interaction kernels J . By comparison, the local functional (1.3) does not admit
nonconstant local minimizers, the stationary solutions of (1.4) are metastable,
and the evolution of (1.4) is through slow motion [10, 5]. In this paper we
show that for ju + f(u) monotone and a different wide class of J ’s which are
nonnegative and translationally invariant (i.e., J(x, y) = J(x−y)), nonconstant
local minimizers do not exist. In the case ju+ f(u) non-monotone (where solu-
tions are in general discontinuous), we show in some examples that variations
along non-smooth paths lead to a similar nonexistence result. Using an iteration
method, we construct monotone solutions of (1.1) under certain assumptions.
To our knowledge, it is the first nonperturbative existence result for a class of
nonlocal equations such as (1.1). Finally, we give a criterion for nonexistence of
stationary solutions of (1.1).
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2 Nonexistence of local minimizers

(1.1) has a rich structure of solutions, whose properties in general depend both
on the nonlocality J and on the nonlinearity f . In [8] and [9] we showed using
the Γ-convergence method that by taking J and W having particular forms:

J(x, y) =
1
ε
Js
(x− y

ε

)
− εJ l(x, y), W = W0 + εW1, (2.1)

with Js ≥ 0, js
2

2 +W (s) convex in s, W0(−1) = W0(1) and |W1(1)−W1(−1)| <
2
∫ 1

0
J l(0, y)dy, there exist nonconstant local minimizers of I for ε > 0 small

enough. Observe that J in (2.1) changes sign for ε > 0 small enough. The
properties of these minimizers are as follows. Briefly speaking, if Iε is the energy
(1.2) corresponding to (2.1), then 1

ε Iε Γ-converges to I0, defined by

I0(u) =
{
c0
||Du||(0,1)

2 + I l(u) if u ∈ BV((0, 1), {−1, 1}),
∞ otherwise

(2.2)

where I l(u) = − 1
4

∫ 1

0

∫ 1

0
J l(x, y)(u(x) − u(y))2dxdy +

∫ 1

0
W1(u(x))dx and

c0
1
2 (||Du||(0, 1)) is equal to a constant multiplied by the number of jumps u

has. If an isolated local minimizer of I0 exists in the space of step functions
having a fixed number of jumps, then 1

ε Iε also has a local minimizer, which is
C1 and L2-close to the BV one. The layers ξ1, . . . , ξn of the minimizers of I0
are determined from the system

J l[u](ξi) = −1
2
f1(r)dr, i = 1, . . . , n, (2.3)

where f1 = W ′1. (2.3) is in general difficult to solve. In [8] we considered J l

to be the Green’s function of the linear differential equation −γ2v′′ + v = u,
v′(0) = v′(1) = 0, i.e.,

J l(x, y) =
1

γ(e
1
γ − e−

1
γ )

[
cosh

(x+ y − 1
γ

)
+ cosh

( |x− y| − 1
γ

)]
, γ > 0. (2.4)

In this case, (2.3) can be written as a system of ODE’s, and we showed that for
every n, there exists a unique solution of (2.3) such that u(ξ1+) = −1, and it is
an isolated local minimum of (2.2). In [9], we considered more general J l(x, y) =
J l(x−y). This is a more complicated case, as (2.3) becomes progressively more
difficult to solve with an increasing number of layers. On an interesting note, we
found that if J l changes sign, then in the class of critical points u of (2.2) having
one jump at ξ such that u(ξ+) = −1, there are in general two local minima ξ1,
ξ3, and a local maximum ξ2 between them, i.e., ξ1 < ξ2 < ξ3. We do not know
if ξ2 can be perturbed for small ε > 0 to, say, a mountain pass solution of 1

ε Iε.
We now show that for a class of nonnegative J ’s there are no local minimizers

of I.

Theorem 2.1 Let J(x, y) = J(x− y) and j( 1
2 ) + f ′(s) > 0 for s ∈ [−1, 1]. Let

J ′(x) ≤ 0 for x ∈ (0, 1) and J(1) ≥ 0. Then any nonconstant solution of (1.1)
is unstable, in the sense that it is not a local minimum of I.
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Proof. With the regularity of J and f we can compute the second variation
of I. For every w, φ ∈ L2(0, 1)

d2I(w + εφ)
dε2

∣∣∣
ε=0

=
∫ 1

0

[−J [φ]φ+ jφ2 + f ′(w)φ2]dx. (2.5)

It suffices to show that the right side of (2.5) is < 0 for w = u and a particular
choice of φ. Let us assume that u is a critical point of I, i.e., a solution of (1.1).
Then (1.1) can be rewritten as

u = (j ·+f(·))−1(J [u]).

The regularity of J and f imply that u is in C1. Differentiating (1.1) with
respect to x, we deduce

−J [u′] + ju′ + f ′(u)u′ = J(x− 1)(u(x)− u(1))− J(x)(u(x)− u(0)).

We now choose φ = u′. Multiplying the last equation by u′ and integrating over
(0, 1), we obtain

d2I(u+ εu′)
dε2

∣∣∣
ε=0

=
∫ 1

0

[J(x− 1)(u(x)− u(1))− J(x)(u(x)− u(0))]u′(x)dx.

We break up this expression into four integrals and integrate by parts each one
of them to get∫ 1

0

J(x− 1)u(x)u′(x)dx =
1
2

[J(0)u(1)2 − J(1)u(0)2]− 1
2

∫ 1

0

J ′(x− 1)u(x)2dx,

∫ 1

0

J(x− 1)u(1)u′(x)dx = J(0)u(1)2− J(1)u(1)u(0)−
∫ 1

0

J ′(x− 1)u(1)u(x)dx,∫ 1

0

J(x)u(x)u′(x)dx =
1
2

[J(1)u(1)2 − J(0)u(0)2]− 1
2

∫ 1

0

J ′(x)u(x)2dx,∫ 1

0

J(x)u(0)u′(x)dx = J(1)u(0)u(1)− J(0)u(0)2 −
∫ 1

0

J ′(x)u(0)u(x)dx.

By completing the squares in the multiples of J ′(x) and J ′(x− 1) we finally get

d2I(u+ εu′)
dε2

∣∣∣
ε=0
≡ R(u′) = −J(1)(u(1)− u(0))2

−1
2

∫ 1

0

J ′(x− 1)[u(x)− u(1)]2dx

+
1
2

∫ 1

0

J ′(x)[u(x)− u(0)]2dx ≤ 0. (2.6)

We now show that actually R(u′) < 0. Assume that R(u′) = 0. Then also
R(|u′|) = 0 (

∫ 1

0

∫ 1

0
J(x − y)|u′(x)||u′(y)|dxdy ≥

∫ 1

0

∫ 1

0
J(x − y)u′(x)u′(y)dxdy).
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Consider the variational problem inf ||φ||2=1R(φ). If this inf is less than 0, then
there exists some φ0 for which R(φ0) < 0, thus u is unstable. If it is equal to 0,
then since it is achieved at φ1 ≡ |u′|/||u′||2 we have

−J [|u′|] + j|u′|+ f ′(u)|u′| = λ|u′|.

If |u′| = 0 at some x0, then −J [|u′|](x0) + j(x0)|u′(x0)| = 0, which implies that
|u′| ≡ 0 (an inductive argument is used if |suppJ| < 2), a contradiction. So
|u′| > 0. But then it is easily seen that R(u′) < 0.

The following example [9] shows that condition J ≥ 0 might be relaxed
somewhat.

Theorem 2.2 If in Theorem 2.1 we set J(x) = b − m|x|, b,m > 0, and b ≥
3m/4, then any nonconstant solution of (1.1) is unstable.

Proof. Let u be a solution of (1.1). In (2.6) we break up −(b−m)(u(1)−u(0))2

and use m
4 (u(1)−u(0))2 together with the other two terms in (2.6) to complete

the square. We get

d2I(u+ εu′)
dε2

∣∣∣
ε=0

= −
(
b− 3m

4
)
[u(1)− u(0)]2

−m
∫ 1

0

[
u(x)− 1

2
(u(1) + u(0))

]2
dx < 0.

Note that J changes sign on (−1, 1) if 3m
4 ≤ b < m.

In the case j + f ′ changes sign the previous argument cannot be used. In
fact, as was shown in [2], in some cases (1.1) has discontinuous solutions with
discontinuities along arbitrarily prescribed interfaces, which are stable in L∞

norm. However, we give two examples showing instability in L2 sense. Recall
that I is defined on L2(0, 1).

Theorem 2.3 Let J(x, y) = c and c+f ′(s) > 0 on [−1, 1]\[s1, s2], c+f ′(s) < 0
on (s1, s2). Then any nonconstant solution of (1.1) with a finite number of
discontinuities is unstable, in the sense it is not a local minimum of I.

Proof. Let u be a solution of (1.1). Note that g(u) =
∫ 1

0
u(y)dy = const, thus

u is a step function. Assume that u(x) = ui on (ξi, ξi+1), 1 ≤ i ≤ k − 1. For
small ε > 0, extend u to (−ε, 0) by setting u(x) = u(0), so that u(x − ε) is
defined on (0, 1). It now suffices to note that the second directional derivative
along the continuous but non-smooth path u(· − ε) is negative:

d2I(u(· − ε))
dε2

∣∣∣
ε=0

= −
( n∑
i=1

(−1)i+1ui
)2
< 0.
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3 Variations along non-smooth paths

In this section we further examine the role played by non-smooth paths of
variations when studying the functional I. We show that when ju+ f(u) is not
monotone, or in other words ju2

2 +W (u) in (1.5) is not convex, variations along
non-smooth paths select some special discontinuous solutions of (1.1).

We consider the following example. Let J be as in (2.4) with γ = 1. Let f
be the piecewise linear function

f(u) =
{
u+ 1 u < 0
u− 1 u > 0. (3.1)

Since the solutions we will consider jump across value 0, the discontinuity
of f at 0 does not really violate the requirement f ∈ C1. We may modify f to
make it smooth after we have found jump solutions.

The equation (1.1) can be written as a system

−v′′ + v = u
−v + u+ u± 1 = 0
v′(0) = v′(1) = 0

(3.2)

Denote the set of discontinuities of a solution by ξ1, ξ2, . . . , ξk. Assume u < 0
on (0, ξ1), u > 0 on (ξ1, ξ2), etc.

Denote the set of all such vectors ξi by A−k , where − refers to the fact that
u < 0 on (0, ξ1). Let

u =
v − (±1)

2
(3.3)

Substitute the second equation of (3.2) into the first to obtain

−v′′ + v

2
= −±1

2
, v′(0) = v′(1) = 0 (3.4)

Let G be Green’s function of this ODE. With the ξi’s fixed we solve the last
equation to find v and then u by (3.3). This way we have obtained a discontin-
uous solution of (1.1). The energy of this solution can be written as

I(u) =
∫ 1

0

[−1
2
J [u]u+

j

2
u2 +W (u)] dx

=
∫ 1

0

[−1
2
u(v − u) +W (u)] dx

=
∫ 2

0

[−1
2
u(u± 1) +

1
2

(u± 1)2] dx

=
∫ 1

0

1
2

(1± u) dx

=
1
4

+
1
4

[
∫ ξ1

0

v dx−
∫ ξ2

ξ1

v dx+
∫ ξ3

ξ2

v dx− . . .] (3.5)
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Now we treat the ξi’s as variables and obtain a family of variations of I.
Here the variations are taken along discontinuous solutions of (1.1). This family
is continuous but not C1 under the L2-norm.

We differentiate I with respect to ξi. For instance

∂I(u)
∂ξ1

=
1
2
v(ξ1) +

1
4

[
∫ ξ1

0

∂v

∂ξ1
dx−

∫ ξ2

ξ1

∂v

∂ξ1
dx+

∫ ξ3

ξ2

∂v

∂ξ1
dx− . . .]

=
1
2
v(ξ1) +

1
4

[−
∫ ξ1

0

G(x, ξ1) dx+
∫ ξ2

ξ1

G(x, ξ1) dx+ . . .]

=
1
2
v(ξ1) +

1
2
v(ξ1)

= v(ξ1)

since

∂v

∂ξ1
=

∂

∂ξ1
[
∫ ξ1

0

G(x, y)(−1
2

) dy +
∫ ξ2

ξ1

G(x, y)
1
2
dy + . . .]

= −G(x, ξ1),

and in a similar way
∂I(u)
∂ξi

= (−1)i+1v(ξi). (3.6)

Let us now look for solutions of I with k jump discontinuous points that are
stationary with respect to these non-smooth paths of variations. Set ∂I(u)

∂ξi
= 0,

we conclude that
v(ξi) = 0, i = 1, 2, . . . , k. (3.7)

Two conclusions are drawn from (3.7). First, according to (3.3) at ξ1 u
must jump from −1/2 to 1/2, and in general at ξi u jumps from (−1)i+1/2 to
(−1)i/2. The two numbers −1/2 and 1/2 are precisely the two global minima
of the function u2

2 +W (u) that appears in (1.5). Also see [13] for the role played
by these two numbers.

The second conclusion is that the ξi’s are equally distributed. This is because
we may solve the equation (3.4) on each (ξi, ξi+1) with the boundary conditions
(3.7). Then the continuity of v′ across the ξi’s requires that the sub-intervals
(with the exception of (0, ξ1) and (ξk, 1)) all have the same length. The two end
intervals have half the length. Such a solution u is unique in A−k .

Let us now compute the energy of this particular u. Because of (3.5) and
ξ1 = 1/(2k) we deduce

I(u) =
1
4
− 2kv′(

1
ξ1

).

Because v satisfies (3.4) and v′(0) = v(ξ1) = 0, we solve the ODE to find

v(x) = −
sinh x√

2

cosh 1
2k
√

2

.
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So
I(u) =

1
4
− k

2
√

2
tanh

1
2k
√

2
, (3.8)

which is increasing in k. A similar computation in A+
k shows that the critical

point u in A+
k has the same energy.

We remark that u a local maximum of I in A−k with respect to ξi. Suppose
this is not true. Since there is only one critical point of I in A−k , the maximum of
I with respect to ξi must be achieved at some u on the boundary of the domain
of ξi, which is identified by the union of all A±m with m < k. Suppose u is in
A±m. Consider in this A±m the stationary solution u∗ with respect to the similar
non-smooth paths of variations. Ask whether u∗ is local maximum of I in A±m.
If it is, then we have a contradiction, since I(u) ≤ I(u) ≤ I(u∗) contradicting
the fact that the expression (3.8) is increasing in k.

If it is not, we repeat this process until it stops at k = 0. But there the lone
element ±1 is trivially a local maximum. So in conclusion I achieves a local
maximum at u.

4 Existence of monotone solutions, nonexistence
of solutions

We now turn our attention to the existence of nonconstant solutions of (1.1)
for nonlocalities other than (2.4). We construct monotone solutions for a wide
class of J ’s.

Assume f is odd, J(x, y) = J(x− y) and J is decreasing on [0, 1]. Note that
here J is allowed to change sign. In addition, in the case j( 1

2 ) + f ′(s) ≥ 0 for
s ∈ [−1, 1], we assume∫ x−1

x

tJ(t)dt > (x− 1
2

)f ′(0), forx ∈ (
1
2
, 1] (4.1)

and
J(

1
2

) < −f ′(0). (4.2)

Note that the slightly weaker J( 1
2 ) ≤ −f ′(0) follows from (4.1). Also, note

that (4.1) guarantees that J is not constant. Otherwise, if J = c, then (4.1) is
equivalent to f ′(0) < −c, which violates j( 1

2 ) + f ′(s) = c+ f ′(s) ≥ 0. For J = c
and j( 1

2 ) + f ′(s) ≥ 0 on [−1, 1], it can be easily determined that (1.1) has only
constant solutions, whose values are the zeros of f .

Conditions (4.1) and (4.2) relate the nonlocal effect with f ′(0). As an ex-
ample, let us choose J(x) = b−m|x|, b,m > 0. j( 1

2 ) + f ′(s) ≥ 0 is equivalent to
m ≤ 4(b+f ′(s)). (4.1) and (4.2) are then satisfied if and only if m > 2(b+f ′(0)).

With these assumptions we have the following.

Theorem 4.1 There exists an increasing solution U of (1.1), such that U(x) =
−U(1 − x) (i.e., U(· + 1

2 )) is odd. Moreover, with U ′ denoting the pointwise
derivative of U and assuming J( 1

2 ) < J(0),
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1. In the case j( 1
2 ) + f ′(s) > 0 for s ∈ [−1, 1], U ′ > 0.

2. In the case j( 1
2 )+f ′(s) > 0 for s ∈ [−1,−u0)∪(u0, 1] and j( 1

2 )+f ′(s) < 0
for s ∈ (−u0, u0), U( 1

2±) = ±u0 and U ′(x) > 0 for x ∈ (0, 1
2 ) ∪ ( 1

2 , 1).

3. In the case j( 1
2 ) + f ′(s) > 0 for s ∈ [−1, 0) ∪ (0, 1] and j( 1

2 ) + f ′(0) = 0,
U ′(0±) = +∞ and U ′(x) > 0 for x ∈ (0, 1

2 ) ∪ ( 1
2 , 1).

Proof. U is constructed from an iteration scheme. Let

u0(x) =
{
−1, x ∈ (0, 1

2 )
1, x ∈ ( 1

2 , 1) .

Define the sequence {un}, n = 0, 1, 2, . . . , by

J [un](x) + (j(
1
2

)− j(x))un(x) = g(un+1(x)), (4.3)

where g(s) ≡ j( 1
2 )s+f(s). Note that since J is decreasing on (0, 1), j( 1

2 )−j(x) ≥
0 for x ∈ (0, 1).

First, un(x) = −un(1− x) and J even imply

J [un](x) = −
∫ 1

0

J(x−y)un(1−y)dy = −
∫ 1

0

J(1−x−y)un(y) = −J [un](1−x).

Since g is odd, it then easily follows that un+1(x) = −un+1(1− x) as well.
We show by induction that u′n(x) ≥ 0 for x ∈ (0, 1

2 ) ∪ ( 1
2 , 1) and n ≥ 1,

where u′n denotes the pointwise derivative of un. First assume that g′(s) > 0
for s ∈ [−1, 0)∪ (0, 1]. Inverting (4.3), we see that un+1 is C1 on (0, 1

2 )∪ ( 1
2 , 1).

Thus we can differentiate (4.3) on (0, 1
2 ) ∪ ( 1

2 , 1) to get:

−J(x− 1)un(1) + J(x)un(0) + J(x− 1
2

)(un(
1
2

+)− un(
1
2
−))

+
∫ 1

0

J(x− y)u′n(y)dy + (J(x− 1)− J(x))un(x) + (j(
1
2

)− j(x))u′n(x)

= g′(un+1(x))u′n+1(x). (4.4)

Since J is decreasing, the integral appearing on the left side of (4.4) can be
estimated as follows:∫ 1

0

J(x− y)u′n(y)dy ≥
∫ x

0

J(x)u′n(y)dy +
∫ 1

x

J(1− x)u′n(y)dy. (4.5)

With this estimate, (4.4) becomes

[J(x− 1
2

)− J(
1
2

+ |x− 1
2
|)][un(

1
2

+)− un(
1
2
−)] + (j(

1
2

)− j(x))u′n(x)

≤ g′(un+1(x))u′n+1(x).
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Since u′n(x) ≥ 0 and J is decreasing on (0, 1), also u′n+1(x) ≥ 0 for x ∈ (0, 1
2 ) ∪

( 1
2 , 1).

We now show that (4.3) has the following monotonicity property. If v and
w are two functions such that v(x) = −v(1 − x) and w(x) = −w(1 − x), with
v(x) ≤ w(x) for 1

2 ≤ x ≤ 1, and ṽ and w̃ are defined by (4.3), namely J [v](x) +
(j( 1

2 )− j(x))v(x) = g(ṽ(x)) and similarly for w̃, then ṽ ≤ w̃ for 1
2 ≤ x ≤ 1.

First note that if u is such that u(x) = −u(1−x) and u(x) ≥ 0 for x ∈ ( 1
2 , 1),

then J being even and decreasing on (0, 1) implies that

J [u](x) =
∫ 1

1
2

[J(x− y)− J(1− x− y)]u(y)dy ≥ 0. (4.6)

For x ∈ ( 1
2 , 1), (4.3), (4.6) and v(x) ≤ w(x) imply that 0 ≥ g(ṽ) − g(w̃) =

g′(c(x))(ṽ − w̃) for some function c(x), thus since g′ > 0 we get ṽ ≤ w̃.
To show by induction that {un(x)} is nonincreasing in n for x ∈ ( 1

2 , 1), it
now suffices to note by direct computation that u0(x) is a supersolution of (4.3)
on ( 1

2 , 1):

J [u0](x) + (j(
1
2

)− j(x))u0(x) ≤ g(u0(x)).

We can now set U(x) ≡ limn→∞ un(x). Clearly, U solves (1.1). To guarantee
that U is not the constant solution 0, we show that u(x) ≡ m(x − 1

2 ) is a
subsolution of (4.3) on ( 1

2 , 1):

J [u](x)−j(x)u = m

∫ x−1

x

tJ(t)dt ≥ m(x− 1
2

)(f ′(0)+ε) ≥ f(m(x− 1
2

)) = f(u),

for m and ε > 0 small enough, where we used (4.1) and (4.2).
In the case j( 1

2 ) + f ′(s) > 0 for s ∈ [−1,−u0) ∪ (u0, 1] and j( 1
2 ) + f ′(s) < 0

for s ∈ (−u0, u0), the construction is similar, except that u is now taken to be
u(x) = H(x − 1

2 )u0, where H is the Heaviside function. That u is indeed a
subsolution on (1

2 , 1), follows from (4.6) and g(u0) = 0.
We now show that U ′ > 0. First, in the case j( 1

2 ) + f ′(s) > 0 for s ∈ [−1, 1],
as we discussed before, u is in C1. Using (4.4) and (4.5), we see that J( 1

2 ) < J(0)
implies

[j(
1
2

)− j(x)]U ′(x) < g′(U(x))U ′(x),

thus U ′ > 0. The other two cases are discussed in a similar way. In particular,
the regularity of J [U ] implies that U( 1

2±) = ±u0.

Note that for the whole line version of (1.1), the increasing solution Û of
−J ∗ u + ju + f(u) = 0 has the property Û ′ > 0 under the milder assumption
J ≥ 0 [4]. One cannot expect the same property to hold in Theorem 4.1 (recall
that the discontinuous increasing solution for J = c is piecewise constant, as
was discussed before).

For J ≥ 0, the C1 solutions constructed in Theorem 4.1 are unstable, by
Theorem 2.1. We do not know if they are unique in the class of increasing
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functions. Recall that for the scaled local (1.4) equation −ε2u′′ + f(u) = 0,
u′(0) = u′(1) = 0, where f(u) = u3 − u, for εn+1 ≤ ε ≤ εn there exist n
solutions (such that u(0) < 0), where εi =

√
f ′(0)/2πi. The existence of similar

nonmonotone solutions of (1.1) is left as an open problem.
As was noted before, for J = c and c + f ′(s) ≥ 0, (1.1) has only constant

solutions. This nonexistence result can be improved in the following way.

Theorem 4.2 Let J(x, y) ≥ 0 and j(x) + f ′(s) > 0 for s ∈ [−1, 1], where
j(x) =

∫ 1

0
J(x, y)dy. Then, assuming

max
x∈[0,1]

∫ 1

0

|x− y||Jx(x, y)|dy < min
s∈[−1,1]

min
x∈[0,1]

[j(x) + f ′(s)], (4.7)

there are no nonconstant solutions of (1.1).

Proof. First, note that from the comparison principle J(x, y) ≥ 0 implies that
any solution u of (1.1) is such that |u| ≤ 1. Also, j(x) + f ′(s) > 0 implies that
u is C1. We write (1.1) as J [u] = ju + f(u), then differentiate it and estimate
both sides in the following way:[

max
x∈[0,1]

u′(x)
] ∫ 1

0

|x− y||Jx(x, y)|dy

≥
∫ 1

0

Jx(x, y)[
∫ 1

0

(y − x)u′(x− t(x− y))dt]dy

=
∫ 1

0

Jx(x, y)(u(y)− u(x))dy

= (j(x) + f ′(u))u′(x).

We take the maximum of both sides of this inequality to get[
max
x∈[0,1]

u′(x)
] ∫ 1

0

|x− y||Jx(x, y)|dy ≥ min
s∈[−1,1]

min
x∈[0,1]

[j(x) + f ′(s)] max
x∈[0,1]

u′(x).

If u is nonconstant, we divide both sides by maxx∈[0,1] u
′(x) to get a contradic-

tion.
To illustrate this theorem, we again choose J(x) = b −m|x|, b,m > 0 (as

was already noted, j( 1
2 ) + f ′(s) > 0 is equivalent to m < 4(b + f ′(s)). Then

condition (4.7) is equivalent to m < b+ mins∈[−1,1] f
′(s).
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