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Completeness of elementary solutions of second

order elliptic equations in a semi-infinite tube

domain ∗

Yakov Yakubov

Abstract

Boundary-value problems for second order abstract differential equa-
tions on a semi-axis are considered in this article. We find isomorphisms
for the corresponding operators and prove completeness of elementary so-
lutions corresponding to subsets of eigenvalues. As an application of the
abstract results, we study second order elliptic equations in semi-infinite
tube domains. Our results can be applied to pure differential, integro-
differential, functional-differential and equations with a shift.

Introduction

The question of completeness for systems of eigenvectors corresponding to the
whole spectrum arises when solving non-stationary equations. However, when
solving stationary equations the question changes to the completeness of systems
corresponding to subsets of the spectrum. For general equations this question
can be very difficult. For thermal conduction and elasticity systems [9, 10, 11],
it is an open question. In this article, we consider only equations without mixed
derivatives.

There are many articles and monographs devoted to the solvability of reg-
ular elliptic boundary-value problems in non-smooth bounded and unbounded
domains [2, 7, 4, 3]. In this article, we obtain algebraic conditions for the solv-
ability of boundary-value problems for second order elliptic equations on semi-
infinite cylindrical domains. We also obtain conditions for the completeness of
elementary solutions corresponding to subsets of eigenvalues. The presence of
an abstract operator in our equation allows us to consider integro-differential
equations, functional-differential equations, equations with a shift, in addition
to pure differential equations. To the best of our knowledge, our results are
new.
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Similar questions were considered by Yakubov and Yakubov [14] for fourth
order elliptic equations and by Shkalikov [8] for second order elliptic equations
in semi-infinite tube domains. In contrast to Shkalikov [8] who assumes that
two supplementary Kondratiev problems do not have eigenvalues on the line
Reλ = 1, we find sufficient conditions for the completeness of root functions
and elementary solutions corresponding to eigenvalues with Reλi < 0.

We start by giving the notation and definitions to be used in this paper.
Let E be a Banach space and n a non-negative integer. Let Wn

p ((0, 1);E)
denote the Banach space of functions with values from E which have generalized
derivatives up to order n on (0, 1). In this space, we consider the norm

‖u‖Wn
p ((0,1);E) :=

n∑
k=0

( ∫ 1

0

‖u(k)(x)‖p dx
)1/p

.

Let the standard Sobolev space be Wn
p (0, 1) := Wn

p ((0, 1);C).
Let E0 and E1 be two Banach spaces continuously embedded into the Banach

space E: E0 ⊂ E, E1 ⊂ E. Such spaces are called an interpolation couple
{E0, E1}. We also consider the Banach space

E0 + E1 :=
{
u | u ∈ E : u = u0 + u1 with uj ∈ Ej , j = 0, 1

}
,

‖u‖E0+E1 := inf{‖u0‖E0 + ‖u1‖E1 : u = u0 + u1, uj ∈ Ej}.

Due to Triebel [12, 1.3.1], the functional

K(t, u) := inf{‖u0‖E0 + t‖u1‖E1 : u = u0 + u1, uj ∈ Ej}

is continuous on (0,∞) in t, and

min{1, t}‖u‖E0+E1 ≤ K(t, u) ≤ max{1, t}‖u‖E0+E1 .

An interpolation space for {E0, E1} by the K-method is defined as follows:

‖u‖(E0,E1)θ,p :=
( ∫ ∞

0

t−1−θpKp(t, u) dt
)1/p

, 0 < θ < 1, 1 ≤ p <∞,

(E0, E1)θ,p := {u | u ∈ E0 + E1, ‖u‖(E0,E1)θ,p <∞},
‖u‖(E0,E1)θ,∞ := sup

t∈(0,∞)

t−θK(t, u), 0 < θ < 1,

(E0, E1)θ,∞ := {u | u ∈ E0 + E1, ‖u‖(E0,E1)θ,∞ <∞}.

When ` is an non-negative integer, W `
p(G) is a standard Sobolev space. Let

Bsp,q(G) := (W s0
p (G),W s1

p (G))θ,q,

where s0, s1 are non-negative integers, 0 < θ < 1, 1 < p < ∞, 1 ≤ q ≤ ∞ and
s = (1− θ)s0 + θs1. Set W s

p (G) := Bsp,p(G), where 0 < s is not an integer.
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Let {E0, E1} be an interpolation couple. Further, let ` = 1, 2, . . . , and
1 ≤ p ≤ ∞. Then one sets

W `
p((0, 1);E0, E1) :=

{
u(t) | u(t) is an (E0 + E1)-valued function in (0, 1)

with u(t) ∈ Lp((0, 1);E0), u(`)(t) ∈ Lp((0, 1);E1)
}

‖u‖W `
p((0,1);E0,E1) := ‖u(t)‖Lp((0,1);E0) + ‖u(`)(t)‖Lp((0,1);E1),

where Lp((0, 1);E) := W 0
p ((0, 1);E). It is known that W `

p((0, 1);E0, E1) is a
Banach space [12, Lemma 1.8.1]. One can also replace (0, 1) by (0,∞).

Let H be a Hilbert space. Consider a polynomial operator pencil equation
in H

L(λ)u := λnu+ λn−1A1u+ · · ·+Anu = 0, (0.1)

where n is a natural number and Ak are, generally speaking, unbounded opera-
tors in H. Let Hn ⊂ H be a Hilbert space, such that operators Ak, k = 1, . . . , n,
from Hn into H, are bounded.

A number λ0 is called an eigenvalue of equation (0.1), or of the operator
pencil L(λ), if

L(λ0)u = 0

has a nontrivial solution belonging to Hn. The nontrivial solution u0 ∈ Hn is
called an eigenvector of equation (0.1), or of the operator pencil L(λ) corre-
sponding to the eigenvalue λ0. A solution of the equation

L(λ0)up +
1
1!
L′(λ0)up−1 + · · ·+ 1

p!
L(p)(λ0)u0 = 0,

up ∈ Hn is called a p-associated vector to the eigenvector u0 of (0.1), or of the
operator pencil L(λ).

Eigenvectors and associated vectors are combined under the general name
root vectors of equation (0.1), or of the operator pencil L(λ). The dimension
of the linear space of all root vectors corresponding to λ0 is called algebraic
multiplicity of λ0.

A complex number λ is called a regular point of (0.1), or of the operator
pencil L(λ) : u→ L(λ)u which is bounded from Hn into H, if for any f ∈ H,

L(λ)u = f

has a unique solution u ∈ Hn and ‖u‖Hn ≤ C(λ)‖f‖.
The complement of the set of regular points in the complex plane is called

the spectrum of (0.1), or of the operator pencil L(λ).
The spectrum of (0.1), or of the operator pencil L(λ), is called discrete, if:

a) All points which are not eigenvalues of (0.1) are regular points of (0.1)

b) The eigenvalues are isolated and have finite algebraic multiplicities

c) Infinity is the only limit point of the set of the eigenvalues of (0.1).
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Consider the Cauchy problem for a differential-operator equation

L(D)u := u(n)(t) +A1u
(n−1)(t) + · · ·+Anu(t) = 0, (0.2)

u(k)(0) = vk+1, k = 0, . . . , n− 1, (0.3)

where vk+1 are given elements of H, D := d
dt , and t ≥ 0.

By [14, Lemma 1, p.56], a function

u(t) := eλ0t
( tk
k!
u0 +

tk−1

(k − 1)!
u1 + · · ·+ uk

)
(0.4)

is a solution of (0.2), if and only if the system of vectors u0, u1, · · · , uk is a chain
of root vectors of (0.1), corresponding to the eigenvalue λ0. A solution of the
form (0.4) is called an elementary solution of (0.2).

The possibility of approximating solutions of (0.2)–(0.3) by linear combina-
tions of the elementary solutions, suggests that the vector (v1, v2, . . . , vn) should
be approximated by linear combinations of vectors of the form

(u(0), u′(0), . . . , u(n−1)(0)), (0.5)

where u(t) is an elementary solution of the form (0.4).
Let H be a Hilbert space, continuously embedded into the orthogonal sum

of Hilbert spaces
n
⊕H = H ⊕H ⊕ · · · ⊕H.

A system of root vectors of (0.1) is called n-fold complete in the space H, if
the system of vectors (0.5) is complete in H, i.e., the closure of a linear span of
vectors (0.5) is equal to H.

1 Abstract results for second order elliptic equa-
tions

In this section we prove completeness of a system of root vectors corresponding
to a part of the spectrum of a quadratic operator pencil in a Hilbert space.
Isomorphism and the completeness of elementary solutions corresponding to
the eigenvalues λi with Reλi < 0 for some special cases of abstract differential
equations of the second order are established.

1.1 Completeness of a system of root vectors

Let us consider, in a Hilbert space H, the unbounded operator pencil:

L(λ) := λ2I +B. (1.1)

Theorem 1 Let the following conditions be satisfied:

1. B is a densely defined and closed operator in in a Hilbert space H;
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2. There exists a Hilbert space H1 for which the compact embeddings H(B) ⊂
H1 ⊂ H take place; H1

∣∣
H

= H and H(B)
∣∣
H1

= H1;

3. sj(J1;H(B),H1) ≤ Cj−p and sj(J2;H1,H) ≤ Cj−p, j = 1, . . . ,∞, for
some p > 0 1;

4. There exist 2 rays `k with angles between neighboring rays less than pπ
2

and a number η such that numbers λ from `k and with sufficiently large
moduli are regular points for the operator pencil L(λ) and

‖L(λ)−1‖B(H,H1) ≤ C|λ|η, λ ∈ `k, |λ| → ∞.

Then the spectrum of pencil (1.1) is discrete and a system of root vectors of
pencil (1.1), corresponding to the eigenvalues λi with Reλi ≤ 0, is complete in
the spaces H1 and H(B).

Proof When applying a theorem from [14, p.65] or [13, Theorem 3.6, p.71]) to
operator pencil (1.1), we have two-fold completeness of a system of root vectors
of (1.1) in H1 ⊕H and H(B)⊕H1.

Let v0, v1, v2, . . . , vs be a chain of root vectors of the operator pencil (1.1)
corresponding to the eigenvalue λ0, i.e.,

(λ2
0I +B)v0 = 0, (1.2)

(λ2
0I +B)v1 + 2λ0v

0 = 0, (1.3)

(λ2
0I +B)vk + 2λ0v

k−1 + vk−2 = 0, k = 2, . . . , s. (1.4)

Then−v0, v1,−v2, . . . , (−1)s−1vs is a chain of root vectors of the operator pencil
L(λ) corresponding to −λ0, i.e.,

[(−λ0)2I +B](−v0) = 0,

which follows from (1.2),

[(−λ0)2I +B]v1 + 2(−λ0)(−v0) = 0,

which follows from (1.3), and[
(−λ0)2I +B

]
(−vk) + 2(−λ0)vk−1 + 2(−vk−2) = 0, if k is even,[

(−λ0)2I +B
]
vk + 2(−λ0)(−vk−1) + 2vk−2 = 0, if k is odd,

which follow from (1.4).
Let v(t) be an elementary solution of the equation u′′(t) +Bu(t) = 0, t > 0.

Then

v(0) =

{
vj if v(t) corresponds to λ0,

(−1)j+1vj if v(t) corresponds to − λ0.
1Singular numbers sj of the compact operator A from a Hilbert space H into a Hilbert

space H1 are eigenvalues λj of the compact selfadjoint non-negative operator (A∗A)
1
2 in H.

2For p > 4 the existence of one such ray is enough.
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By virtue of the above-mentioned two-fold completeness,

∥∥∥(F1

F2

)
−

N∑
k=1

CkN

(
vk(0)
v′k(0)

)∥∥∥
H1⊕H

< ε for eigenvalues λk

and ∥∥∥(F1

F2

)
−

N∑
k=1

CkN

(
vk(0)
v′k(0)

)∥∥∥
H(B)⊕H1

< ε for eigenvalues λk,

then

‖F1 −
N∑
k=1

C̃kNv
j
k‖H1 < ε for λk with Reλk ≤ 0

and

‖F1 −
N∑
k=1

C̃kNv
j
k‖H(B) < ε for λk with Reλk ≤ 0.

�

1.2 Isomorphism of problems on the semi-axis

In a Hilbert space H, consider a boundary-value problem in [0,∞) for the second
order elliptic equation

L(D)u := u′′(x) +Bu(x) = f(x), x > 0, (1.5)
Lu := αu(0) + βu′(0) = ϕ, (1.6)

where α and β are complex numbers. Denote L(λ) := λ2I +B.

Theorem 2 Let the following conditions be satisfied:

1. B is a densely defined and closed operator in a Hilbert space H;

2. (1 + |λ|2)‖L(λ)−1‖B(H) ≤ C, Reλ = 0;

3. |α|+ |β| 6= 0; Reαβ−1 ≤ 0 if β 6= 0.

Then the operator L : u→ Lu := (L(D)u, Lu) from W 2
p ((0,∞);H(B),H) onto

Lp((0,∞);H)+̇(H(B),H)m
2 + 1

2p ,p
, where m = 0 if β = 0 and m = 1 if β 6= 0,

and p > 1 is an isomorphism.3

3Isomorphism means that the operator and its inverse are bounded.
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Proof By Theorem 1.8.2 in [12], the operator L is continuous from the space
W 2
p ((0,∞);H(B),H) into Lp((0,∞);H)+̇(H(B),H)m

2 + 1
2p ,p

. Let us prove that
for any f ∈ Lp((0,∞);H) and any ϕ ∈ (H(B),H)m

2 + 1
2p ,p

problem (1.5)–(1.6)
has a unique solution that belongs to W 2

p ((0,∞);H(B),H). Let us show that a
solution of problem (1.5)–(1.6) is represented in the form u(x) = u1(x) + u2(x),
where u1(x) is the restriction on [0,∞) of a solution ũ1(x) of the equation

ũ′′1(x) +Bũ1(x) = f̃(x), x ∈ R, (1.7)

where f̃(x) := f(x) if x ∈ [0,∞) and f̃(x) := 0 if x ∈ (−∞, 0), and u2(x) is a
solution of the problem

u′′2(x) +Bu2(x) = 0, x > 0,
αu2(0) + βu′2(0) = −Lu1 + ϕ.

(1.8)

Apply Theorem 1 of [14, p.250] to equation (1.7). Let H1 := (H(B),H) 1
2 ,2

,
H2 := H(B), A1 := 0, A2 := B. Then, by virtue of [14, formula (1), p.39], we
have

‖L(λ)−1f‖H1 = ‖L(λ)−1f‖(H(B),H) 1
2 ,2
≤ C‖L(λ)−1f‖1/2H(B)‖L(λ)−1f‖1/2H .

From condition (2) it follows that

|λ|2‖L(λ)−1f‖H + ‖L(λ)−1f‖H(B) ≤ C‖f‖H , f ∈ H, Reλ = 0. (1.9)

Using the last inequality and the Young inequality [14, p.53], we have

|λ|‖L(λ)−1f‖H1 ≤ C‖L(λ)−1f‖1/2H(B)

(
|λ|2‖L(λ)−1f‖H

)1/2
≤ C

(
‖L(λ)−1f‖H(B) + |λ|2‖L(λ)−1f‖H

)
≤ C‖f‖.

Therefore, conditions (1)–(3) of [14, Theorem 1, p.250] are satisfied and, hence,
(1.7) has a solution ũ1 ∈W 2

p (R;H(B),H1,H). Then u1 ∈W 2
p ((0,∞);H(B),H).

Let us now prove that for any ϕ ∈ (H(B),H)m
2 + 1

2p ,p
problem (1.8) has

a unique solution u2(x) that belongs to W 2
p ((0,∞); H(B),H). By the above

inequality (1.9), we have for f ∈ H, Reλ = 0

‖(λ2I +B)−1f‖H ≤ C|λ|−2‖f‖H , ‖(λ2I +B)−1f‖H ≤ C‖f‖H .

This implies that ‖(λ2I +B)−1f‖H ≤ C(1 + |λ|2)−1‖f‖H , Reλ = 0, i.e.,

‖R(λ,−B)‖ ≤ C(1 + |λ|)−1, arg λ = π .

Hence, as shown in Balakrishnan [1], there exists an operator e−x(−B)1/2
and

for some ω > 0,
‖e−x(−B)1/2

‖ ≤ Ce−ωx, x ≥ 0.
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Repeating the proof of [14, Lemma 1, p.263], one can show that an arbitrary
solution of the equation in (1.8) that belongs to W 2

p ((0,∞);H(B),H) has the
form

u2(x) = e−x(−B)1/2
g, (1.10)

where g ∈ (H(B),H) 1
2p ,p

(and conversely). To this end one should use Theorem
3.2.11 in Krein [5]. Function (1.10) satisfies the boundary condition in (1.8) if

αg − β(−B)1/2g = Φ, (1.11)

where Φ = −Lu1 + ϕ. Since u1 ∈ W 2
p ((0,∞);H(B),H), by Theorem 1.8.2 in

[12], Lu1 ∈ (H(B),H)m
2 + 1

2p ,p
. Then Φ ∈ (H(B),H)m

2 + 1
2p ,p

.
For β = 0, a solution of problem (1.8) has the form

u2(x) = α−1e−x(−B)1/2
Φ.

Since Φ ∈ (H(B),H) 1
2p ,p

, u2 ∈W 2
p ((0,∞);H(B),H).

Let β 6= 0. From conditions (2) and (3), by T. Kato’s theorem [14, p.31], it
follows that (1.11) has a unique solution g = (αI−β(−B)

1
2 )−1Φ. Then solutions

of (1.8) have the form

u2(x) = e−x(−B)1/2
(αI − β(−B)1/2)−1Φ.

By Theorem 1.15.2 in [12], the operator (−B)1/2 from (H(B),H) 1
2p ,p

onto

(H(B), H) p+1
2p ,p

is an isomorphism. Then (αI−β(−B)1/2)−1Φ ∈ (H(B),H) 1
2p ,p

,

i.e., u2 ∈W 2
p ((0,∞);H(B),H).

The uniqueness of a solution of problem (1.5)–(1.6) follows from the unique-
ness of a solution of problem (1.8). Indeed, if problem (1.5)–(1.6) has two solu-
tions u(x), ũ(x), then functions u2(x) := u(x)−u1(x) and ũ2(x) := ũ(x)−u1(x),
where u1(x) is the restriction on [0,∞) of the solution ũ1(x) of (1.7), are two
different solutions of problem (1.8), which is a contradiction. �

1.3 Completeness of elementary solutions of a problem on
the semi-axis

In those cases when it is difficult to prove the applicability of the Fourier method,
it is desirable at least to establish that a solution of an initial boundary-value
problem may be approximated by linear combinations of elementary solutions.
In a Hilbert space H, consider a boundary-value problem in [0,∞) for the second
order elliptic equation

u′′(x) +Bu(x) = 0, x > 0, (1.12)
αu(0) + βu′(0) = ϕ. (1.13)

Let us find conditions that allow building an approximation of a solution of
(1.12)–(1.13) by linear combinations of elementary solutions of (1.12).
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As it was mentioned in the introduction, the function

ui(x) := eλix
(xki
ki!

ui0 +
xki−1

(ki − 1)!
ui1 + · · ·+ uiki

)
(1.14)

is a solution of (1.12) if and only if ui0, ui1, . . . , uiki is a chain of root vectors of
the characteristic operator pencil (1.1) corresponding to the eigenvalue λi and
(1.14) is called an elementary solution of (1.12).

Let u10, u11, . . . , u1,r−1 be one of the maximal chains of root vectors of (1.1)
corresponding to the eigenvalue µ. Then λ1 = λ2 = · · · = λr = µ and k1 =
0, k2 = 1, . . . , kr = r − 1. Note, it may happen that λr+1 = µ.

Lemma 3 Let |α|+|β| 6= 0 and Reαβ−1 ≤ 0 if β 6= 0. Then, if a system of root
vectors {uip} of (1.1) corresponding to eigenvalues λi with Reλi < 0 is complete
(a basis) in a Hilbert space H then a system of vectors {(α+βλi)uip+βui,p−1},
where ui,−1 = 0, is also complete (a basis) in H.

Proof Let u10, u11, . . . , u1,r−1 be one of the maximal chains of root vectors
of (1.1) corresponding to the eigenvalue µ with Reµ < 0. Show that we can
uniquely define coefficients Mi with respect to coefficients Ci from the equation

C1u10 + C2u11 + · · ·+ Cru1,r−1 =M1(α+ βµ)u10 +M2((α+ βµ)u11 + βu10)
+ · · ·+Mr((α+ βµ)u1,r−1 + βu1,r−2).

Rewrite the last equation in the form

C1u10 + C2u11 + · · ·+ Cru1,r−1 =u10(M1(α+ βµ) + βM2) + u11(M2(α+ βµ)
+ βM3) + · · ·+ u1,r−1Mr(α+ βµ).

Therefore,

M1(α+ βµ) + βM2 = C1,

M2(α+ βµ) + βM3 = C2,

...
Mr−1(α+ βµ) + βMr = Cr−1,

Mr(α+ βµ) = Cr.

If β = 0 then α 6= 0 and Mi = 1
αCi, i = 1, . . . , r. If β 6= 0 then α + βµ 6= 0

(since Reαβ−1 ≤ 0 and Reµ < 0). Therefore, starting from the last equation
of the previous system we find that

Mr =
Cr

α+ βµ
, Mr−1 =

Cr−1 − βMr

α+ βµ
, . . . , M1 =

C1 − βM2

α+ βµ
.

�

Theorem 4 Let the following conditions be satisfied:
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1. B is a densely defined and closed operator in a Hilbert space H;

2. sj(J ;H(B),H) ≤ Cj−q, j = 1, . . . ,∞, for some q > 0;

3. For L(λ) := λ2I +B, (1 + |λ|2)‖L(λ)−1‖B(H) ≤ C, Reλ = 0;

4. |α|+ |β| 6= 0; Reαβ−1 ≤ 0 if β 6= 0;

5. For q ≤ 4 there exist rays `k with angles between neighboring rays less
than qπ

4 and η such that

‖L(λ)−1‖B(H,H(B)) ≤ C|λ|η, λ ∈ `k, |λ| → ∞;

6. ϕ ∈ (H(B),H)m
2 + 1

2p ,p
for some p > 1, where m = 0 if β = 0 and m = 1

if β 6= 0.

Then problem (1.12)–(1.13) has a unique solution u ∈ W 2
p ((0,∞);H(B),H)

and there exist numbers Cin such that

lim
n→∞

∑
k=0,2

∫ ∞
0

‖u(k)(x)−
n∑
i=1

Cinu
(k)
i (x)‖pH2−k

dx = 0, (1.15)

where H0 = H,H2 = H(B), ui(x) are elementary solutions (1.14) of equation
(1.12) corresponding to the eigenvalue λi with Reλi < 0.

Proof Consider in H an operator S such that D(S) = H(B), S = S∗ ≥ c2I
(see, for example, Lions and Magenes [6, 1.2.1]). By Lemma 1 in [14, p.15] and
condition (2), we have

sj(J ;H(B),H) = sj(J ;H(S),H) = sj(JS−1;H,H) = λj(S−1) ≤ Cj−q.

Let H1 := (H(B),H) 1
2 ,2

. Then H1 = (H(S),H) 1
2 ,2

= H(S1/2) and by Lemma 1
in [14, p.15],

sj(J ;H(B),H1) = sj(J ;H(S),H(S1/2))

= sj(S1/2JS−1;H,H) = λj(S−
1
2 ) ≤ Cj−q/2,

sj(J ;H1,H) = sj(J ;H(S1/2),H) = sj(JS−
1
2 ;H,H) = λj(S−

1
2 ) ≤ Cj−q/2.

Hence, by Theorem 1, a system of root vectors of pencil (1.1) corresponding to
the eigenvalues λi, {ui(0)} = {uiki}, with Reλi < 0 is complete in the spaces
H1 and H(B). On the other hand, H1|H = H. Then the same system of root
vectors is complete in the space H and, therefore, in (H(B),H)θ,p, 0 < θ < 1
(see [12, Theorems 1.3.3 and 1.6.2]). Therefore, by virtue of Lemma 3, a system
{αui(0) + βu′i(0)} is also complete in (H(B),H)θ,p, 0 < θ < 1. Hence, there
exist numbers Cin such that

lim
n→∞

‖ϕ−
n∑
i=1

Cin(αui(0) + βu′i(0))‖(H(B),H)m
2 + 1

2p ,p
= 0.
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On the other hand, from Theorem 2 we have

‖u−
n∑
i=1

Cinui‖W 2
p ((0,∞);H(B),H)

≤ C‖ϕ−
n∑
i=1

Cin(αui(0) + βu′i(0))‖(H(B),H)m
2 + 1

2p ,p
. (1.16)

�

2 Boundary-value problems for second order el-
liptic equations

In this section we apply abstract results of section 1 to boundary-value prob-
lems for second order elliptic equations in semi-infinite tube domains. The cor-
responding isomorphism and completeness theorems are proved. Completeness
theorems apply to eigenvalues λi with Reλi < 0.

2.1 An isomorphism

In the semi-infinite strip Ω := [0,∞) × [0, 1], consider a principally boundary-
value problem for an elliptic equation of the second order,

Lu := D2
xu(x, y) + b(y)D2

yu(x, y) +Mu(x, ·)
∣∣
y

= f(x, y), (x, y) ∈ Ω, (2.1)

Pu := γu(0, y) + δDxu(0, y) = ϕ(y), y ∈ [0, 1], (2.2)

L1u := α1Dyu(x, 0) + α0u(x, 0) = 0, x ∈ [0,∞),
L2u := β1Dyu(x, 1) + β0u(x, 1) = 0, x ∈ [0,∞),

(2.3)

where αν , βν , γ, δ are complex numbers, Dx := ∂
∂x , Dy := ∂

∂y . The correspond-
ing spectral problem is

λ2u(y) + b(y)u′′(y) +Mu
∣∣
y

= 0, y ∈ [0, 1], (2.4)

L̃1u := α1u
′(0) + α0u(0) = 0,

L̃2u := β1u
′(1) + β0u(1) = 0.

(2.5)

Let mν := ordLν , W `,s
p,q (Ω) := W `

p((0,∞);W s
q (0, 1), Lq(0, 1)),

Lp,q(Ω) := W 0,0
p,q (Ω).

Theorem 5 Let the following conditions be satisfied:

1. b ∈ C[0, 1], b(y) > 0;

2. |α1|+ |α0| 6= 0 and |β1|+ |β0| 6= 0;
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3. The operator M from W 2
2 (0, 1) into L2(0, 1) is compact.

This is equivalent to ∀ε > 0, ‖Mu‖L2(0,1) ≤ ε‖u‖W 2
2 (0,1) +C(ε)‖u‖L2(0,1),

u ∈W 2
2 (0, 1) (see Lemma 4 and Remark 5 [14, p.45]);

4. The spectral problem (2.4)–(2.5) does not have eigenvalues on the straight
line Reλ = 0;

5. |γ|+ |δ| 6= 0; Re γδ−1 ≤ 0 when δ 6= 0.

Then the operator L : u → Lu := (Lu, Pu) from W 2,2
p,2 (Ω;Lνu = 0, ν = 1, 2)

onto Lp,2(Ω)+̇B
2−m− 1

p

2,p ((0, 1); L̃νu = 0,mν <
3
2 −m −

1
p ), if p > 1 and p 6= 2,

or p = 2 and mν 6= 1−m, is an isomorphism, where m = 0 if δ = 0; m = 1 if
δ 6= 0.

Remark In the case p = 2 and mν = 1 − m, (W 2
2 ((0, 1); L̃νu = 0, ν =

1, 2), L2(0, 1))m
2 + 1

4 ,2
= B

3
2−m
2,2 ((0, 1); L̃νu = 0, mν < 1 −m; L̃νu ∈ B̃

1
2
2,2(0, 1),

mν = 1−m) (see Triebel [12, 4.3.3]) should be written instead of

B
3
2−m
2,2 ((0, 1); L̃νu = 0,mν < 1 −m). B̃sp,q(G) := {u | u ∈ Bsp,q(Rr), supp(u) ⊂

G}. From the introduction, Bs2,2 = W s
2 . Moreover, by virtue of Theorem 6 of

Grisvard and Seeley [14, p.45], (W 2
2 ((0, 1); L̃νu = 0, ν = 1, 2), L2(0, 1))m

2 + 1
4 ,2
⊃

(W 2
2 ((0, 1); L̃νu = 0, ν = 1, 2), L2(0, 1)) 1

5 ,2
= W

8
5

2 ((0, 1); L̃νu = 0, ν = 1, 2).
Then, for a unique solvability (and not an isomorphism) it is enough to take

ϕ ∈W
8
5

2 ((0, 1); L̃νu = 0, ν = 1, 2).

Proof Let us denote H := L2(0, 1). Consider an operator B defined by

D(B) := W 2
2 ((0, 1); L̃νu = 0, ν = 1, 2),

Bu := b(y)u′′(y) +Mu
∣∣
y
.

(2.6)

Then problem (2.1)–(2.3) can be rewritten in the form

u′′(x) +Bu(x) = f(x),
γu(0) + δu′(0) = ϕ,

(2.7)

where u(x) := u(x, ·), f(x) := f(x, ·) are functions with values in the Hilbert
space H := L2(0, 1) and ϕ := ϕ(·) is an element of H.

Let us apply Theorem 2 to problem (2.7). From Theorem 1 [14, p.111] (or
Theorem 1.7 [13, p.100]) it follows that the operator (λ2I +B)−1 is bounded in
L2(0, 1) (see below for the proof). A bounded operator is closed. The inverse
operator to a closed operator is also closed. Therefore, λ2I + B is a closed
operator. This implies that the operator B is closed, i.e., condition (1) of
Theorem 2 is fulfilled.
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Consider the problem

λ2u(y) + b(y)u′′(y) +Mu
∣∣
y

= f(y), y ∈ (0, 1),

α1u
′(0) + α0u(0) = 0,

β1u
′(1) + β0u(1) = 0.

(2.8)

By condition (1), the equation 1 + b(y)ω2 = 0 has roots ω1(y) = i 1√
b(y)

and

ω2(y) = −i 1√
b(y)

. Then

ω := inf
y∈[0,1]

min{argω1(y), argω2(y) + π} =
π

2
,

ω := sup
y∈[0,1]

max{argω1(y), argω2(y) + π} =
π

2
.

When choosing ω1(y) = −i 1√
b(y)

, ω2(y) = i 1√
b(y)

we get that ω = ω = −π2 .

Therefore, from Theorem 1 [14, p.111] it follows that condition (2) of Theorem 2
is satisfied. Indeed, for a solution of problem (2.8), from formula (5) [14, p.112]
for ` = 2, q = 2, γ = 0 and ω = ω = π

2 we have

|λ|2‖u‖L2(0,1) + ‖u‖W 2
2 (0,1) ≤ C‖f‖L2(0,1),

f ∈ L2(0, 1), ε < arg λ < π − ε, |λ| → ∞.

and for ω = ω = −π2 ,

|λ|2‖u‖L2(0,1) + ‖u‖W 2
2 (0,1) ≤ C‖f‖L2(0,1),

f ∈ L2(0, 1), π + ε < arg λ < 2π − ε, |λ| → ∞.

These two inequalities and condition (4) give us condition (2) of Theorem 2.
By a theorem of Grisvard and Seeley (see, e.g., [14, Theorem 6, p.45]), we

have

(H(B),H)θ,p = (W 2
2 ((0, 1); L̃νu = 0, ν = 1, 2), L2(0, 1))θ,p

= B
2(1−θ)
2,p ((0, 1); L̃νu = 0,mν < 2(1− θ)− 1

2
),

if there does not exist a number mν such that mν = 2(1−θ)− 1
2 . Consequently,

(H(B),H)m
2 + 1

2p ,p
= B

2−m− 1
p

2,p ((0, 1); L̃νu = 0,mν <
3
2
−m− 1

p
).

If there exists mν = 2(1−θ)− 1
2 then see the corresponding remark to Theorem

5. So, for problem (2.7) all conditions of Theorem 2 are fulfilled, from which
the statement of Theorem 5 follows. �

In the semi-infinite domain Ω := [0,∞) × G, where G ⊂ Rr, r ≥ 2, is a
bounded domain with an (r − 1)-dimensional smooth boundary ∂G, consider a
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principally boundary-value problem for an elliptic equation of the second order

Lu := D2
xu(x, y) +

r∑
j,k=1

bjk(y)DjDku(x, y) +Mu(x, ·)
∣∣
y

= f(x, y), (2.9)

Pu := γu(0, y) + δDxu(0, y) = ϕ(y), y ∈ G, (2.10)

L1u :=
∑
|α|≤m1

b1α(y′)Dα
y u(x, y′) = 0, (x, y′) ∈ [0,∞)× ∂G, (2.11)

where γ, δ are complex numbers, m1 ≤ 1, y := (y1, . . . , yr), Dx := ∂
∂x , D

α
y :=

Dα1
1 · · ·Dαr

r , Dj = ∂
∂yj

. Let W `,s
p,q (Ω) := W `

p((0,∞);W s
q (G), Lq(G)), Lp,q(Ω) :=

W 0,0
p,q (Ω).
The corresponding spectral problem is

λ2u(y) +
r∑

j,k=1

bjk(y)DjDku(y) +Mu
∣∣
y

= 0, y ∈ G, (2.12)

L̃1u :=
∑
|α|≤m1

b1α(y′)Dα
y u(y′) = 0, y′ ∈ ∂G. (2.13)

Let us denote H := L2(G) and consider the operator B which is defined by

D(B) := W 2
2 (G; L̃1u = 0),

Bu :=
r∑

j,k=1

bjk(y)DjDku(y) +Mu
∣∣
y
.

(2.14)

Theorem 6 Let the following conditions be satisfied:

1. bjk ∈ C(G), b1α ∈ C2−m1(G), ∂G ∈ C2;

2. If y ∈ G, σ := (σ1, . . . , σr) ∈ Rr, |σ|+ |λ| 6= 0 then

λ2 −
r∑

j,k=1

bjk(y)σjσk 6= 0, Reλ = 0;

3.
∑
|α|=m1

b1α(y′)σα 6= 0 for any vector σ normal to ∂G at the point y′ ∈
∂G;

4. Let y′ be any point on ∂G, the vector σ′ tangent and the vector σ normal
to ∂G at the point y′ ∈ ∂G. Consider the following ordinary differential
problem[

λ2 −
r∑

j,k=1

bjk(y′)
(
σ′j + σj

d

dt

)(
σ′k + σk

d

dt

)]
u(t) = 0, t > 0, Reλ = 0,

(2.15)∑
|α|=m1

b1α(y′)
(
σ′ + σ

d

dt

)α
u(t)

∣∣
t=0

= h1; (2.16)
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problem (2.15)–(2.16) should have only one solution that with all its deriva-
tives tend to zero as t→∞ for any number h1 ∈ C;

5. |γ|+ |δ| 6= 0; Re γδ−1 ≤ 0 when δ 6= 0;

6. The spectral problem (2.12)–(2.13) does not have eigenvalues on the line
Reλ = 0;

7. The operator M from W 2
2 (G) into L2(G) is compact.

Then the operator L : u → Lu := (Lu, Pu) from W 2,2
p,2 (Ω;L1u = 0) onto

Lp,2(Ω)+̇ B
2−m− 1

p

2,p (G; L̃1u = 0,m1 < 3
2 − m − 1

p ), if p > 1 and p 6= 2, or
p = 2 and m1 6= 1 −m, 4 is an isomorphism, where m = 0 if δ = 0; m = 1 if
δ 6= 0.

Proof Problem (2.9)–(2.11) can be rewritten in the form

u′′(x) +Bu(x) = f(x), x > 0, (2.17)
γu(0) + δu′(0) = ϕ, (2.18)

where u(x) := u(x, ·), f(x) := f(x, ·) are functions with values in the Hilbert
space H := L2(G), ϕ := ϕ(·) is an element of H, the operator B is defined by
the equalities (2.14).

Apply Theorem 2 to problem (2.17)–(2.18). From Theorem 1 in [14, p.207]
it follows that the operator (λ2I + B)−1 is bounded in L2(0, 1). A bounded
operator is closed. The inverse operator to a closed operator is also closed.
Therefore, λ2I + B is a closed operator. This implies that the operator B is
closed, i.e., condition (1) of Theorem 2 is fulfilled. On the other hand, from
Theorem 1 in [14, p.207] and condition (6), condition (2) of Theorem 2 follows.
The last part of the proof is similar to that in the proof of Theorem 5. �

2.2 Completeness of elementary solutions

Let us consider, in the semi-infinite strip Ω := [0,∞) × [0, 1], a principally
boundary-value problem for an elliptic equation of the second order,

D2
xu(x, y) + b(y)D2

yu(x, y) +Mu(x, ·)
∣∣
y

= 0, (2.19)

γu(0, y) + δDxu(0, y) = ϕ(y), y ∈ [0, 1], (2.20)

L1u := α1Dyu(x, 0) + α0u(x, 0) = 0, x ∈ [0,∞),
L2u := β1Dyu(x, 1) + β0u(x, 1) = 0, x ∈ [0,∞),

(2.21)

and the corresponding spectral problem (2.4)–(2.5), where αν , βν are complex
numbers, Dx := ∂

∂x , Dy := ∂
∂y ; mν := ordLν and W `,s

p,q (Ω) := W `
p((0,∞);

W s
q (0, 1), Lq(0, 1)).
4See the corresponding remark of Theorem 5.
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As it was mentioned in the introduction, a function of the form

ui(x, y) := eλix
(xki
ki!

ui0(y) +
xki−1

(ki − 1)!
ui1(y) + · · ·+ uiki(y)

)
(2.22)

becomes an elementary solution of problem (2.19), (2.21) if and only if a system
of functions ui0(y), ui1(y), . . . , uiki(y) is a chain of root functions of problem
(2.4)–(2.5) corresponding to the eigenvalue λi. See the corresponding remark in
subsection 1.3.

Theorem 7 Let the following conditions be satisfied:

1. The conditions of Theorem 5 are fulfilled;

2. ϕ ∈ B2−m− 1
p

2,p ((0, 1); L̃νu = 0,mν <
3
2 − m −

1
p ) if p > 1 and p 6= 2, or

p = 2 and mν 6= 1−m5, where m = 0 if δ = 0; m = 1 if δ 6= 0.

Then problem (2.19)–(2.21) has a unique solution u ∈W 2,2
p,2 (Ω), and there exist

numbers Cin such that

lim
n→∞

∫ ∞
0

(
‖D2

xu(x, ·)−
n∑
i=1

CinD
2
xui(x, ·)‖

p
L2(0,1)

+ ‖u(x, ·)−
n∑
i=1

Cinui(x, ·)‖pW 2
2 (0,1)

)
dx = 0,

where u(x, y) is a solution of problem (2.19)–(2.21) and ui(x, y) is the elemen-
tary solution (2.22) of problem (2.19), (2.21) corresponding to the eigenvalue
λi with Reλi < 0.

Proof Apply Theorem 4 to problem (2.19)–(2.21). In H := L2(0, 1), consider
an operator B which is defined by equality (2.6). Then, problem (2.19)–(2.21)
can be rewritten in the form

u′′(x) +Bu(x) = 0, x > 0, (2.23)
γu(0) + δu′(0) = ϕ, (2.24)

where u(x) := u(x, ·) is a function with values in the Hilbert space H := L2(0, 1)
and ϕ := ϕ(·) is an element of H.

Conditions (1) and (3) of Theorem 4 have been checked in the proof of
Theorem 5. By virtue of Triebel [12, formula 4.10.2/14],

sj(J ;W 2
2 (0, 1), L2(0, 1)) ∼ j−2. (2.25)

Since W 2
2 ((0, 1); L̃νu = 0, ν = 1, 2) is a subspace of W 2

2 (0, 1) then, by Lemma 3
in [14, p.17], from (2.15) it follows that

sj(J ;H(B),H) ≤ Csj(J ;W 2
2 (0, 1), L2(0, 1)) ≤ Cj−2,

5See the corresponding remark of Theorem 5.
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i.e., condition (2) of Theorem 4 is fulfilled for q = 2. We have shown in the
proof of Theorem 5 that for ε < arg λ < π − ε or π + ε < arg λ < 2π − ε and
|λ| → ∞,

|λ|2‖u‖L2(0,1) + ‖u‖W 2
2 (0,1) ≤ C‖f‖L2(0,1), f ∈ L2(0, 1).

This gives us condition (5) of Theorem 4 for q = 2 and η = 0. Condition (6) of
Theorem 4 one can see in the proof of Theorem 5.

So, for problem (2.23)–(2.24) all conditions of Theorem 4 have been checked
and the statement of Theorem 7 follows. �

In the semi-infinite domain Ω := [0,∞) × G, where G ⊂ Rr, r ≥ 2, is a
bounded domain with an (r − 1)-dimensional smooth boundary ∂G, consider a
principally boundary-value problem for an elliptic equation of the second order

D2
xu(x, y) +

r∑
j,k=1

bjk(y)DjDku(x, y) +Mu(x, ·)
∣∣
y

= 0, (2.26)

γu(0, y) + δDxu(0, y) = ϕ(y), y ∈ G, (2.27)

L1u :=
∑
|α|≤m1

b1α(y′)Dα
y u(x, y′) = 0, (x, y′) ∈ [0,∞)× ∂G, (2.28)

and the corresponding spectral problem

λ2u(y) +
r∑

j,k=1

bjk(y)DjDku(y) +Mu
∣∣
y

= 0, y ∈ G, (2.29)

L̃1u :=
∑
|α|≤m1

b1α(y′)Dα
y u(y′) = 0, y′ ∈ ∂G, (2.30)

where m1 ≤ 1, y := (y1, . . . , yr), Dx := ∂
∂x , Dα

y := Dα1
1 · · ·Dαr

r , Dj = ∂
∂yj

. As
above, W `,s

p,q (Ω) := W `
p((0,∞);W s

q (G), Lq(G)).
A function of the form

ui(x, y) := eλix
(xki
ki!

ui0(y) +
xki−1

(ki − 1)!
ui1(y) + · · ·+ uiki(y)

)
(2.31)

becomes an elementary solution of problem (2.26), (2.28) (see the introduction)
if and only if a system of functions ui0(y), ui1(y), . . . , uiki(y) is a chain of root
functions of the spectral problem (2.29)–(2.30) corresponding to the eigenvalue
λi. See the corresponding remark in subsection 1.3.

Consider in H := L2(G) the operator B which is defined by the equalities
in (2.14).

Theorem 8 Let the following conditions be satisfied:

1. The conditions of Theorem 6 are fulfilled;
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2. There exist rays `k with angles between neighbouring rays less than π
2r such

that for y ∈ G, σ ∈ Rr, |σ|+ |λ| 6= 0, λ ∈ `k, the following is true:

λ2 +
r∑

j,k=1

bjk(y)σjσk 6= 0;

3. Let y′ be any point on ∂G, the vector σ′ tangent and the vector σ normal
to ∂G at the point y′ ∈ ∂G. Consider the following ordinary differential
problem[

λ2 +
r∑

j,k=1

bjk(y′)
(
σ′j + σj

d

dt

)(
σ′k + σk

d

dt

)]
u(t) = 0, t ≥ 0, λ ∈ `k,

(2.32)∑
|α|=m1

b1α(y′)
(
σ′ + σ

d

dt

)α
u(t)

∣∣
t=0

= h1; (2.33)

problem (2.32)–(2.33) should have only one solution that with all its deriva-
tives tend to zero as t→∞ for any number h1 ∈ C;

4. ϕ ∈ B2−m− 1
p

2,p (G; L̃1u = 0,m1 <
3
2 −m−

1
p ) if p > 1 and p 6= 2, or p = 2

and m1 6= 1−m6, where m = 0 if δ = 0; m = 1 if δ 6= 0.

Then problem (2.26)–(2.28) has a unique solution u ∈W 2,2
p,2 (Ω), and there exist

numbers Cin such that

lim
n→∞

∫ ∞
0

(
‖D2

xu(x, ·)−
n∑
i=1

CinD
2
xui(x, ·)‖

p
L2(G)

+ ‖u(x, ·)−
n∑
i=1

Cinui(x, ·)‖pW 2
2 (G)

)
dx = 0,

where u(x, y) is a solution of problem (2.26)–(2.28) and ui(x, y) is the elemen-
tary solution (2.31) of problem (2.26), (2.28) corresponding to the eigenvalue
λi with Reλi < 0.

Proof Apply Theorem 4 to problem (2.26)–(2.28). Problem (2.26)–(2.28) can
be rewritten in the form

u′′(x) +Bu(x) = 0, x > 0, (2.34)
γu(0) + δu′(0) = ϕ, (2.35)

where u(x) := u(x, ·) is a function with values in the Hilbert space H := L2(G)
and ϕ := ϕ(·) is an element of H.

6See the corresponding remark of Theorem 5.
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Conditions (1) and (3) of Theorem 4 have been checked in Theorem 6. By
formula 4.10.2/14 in [12],

sj(J ;W 2
2 (G), L2(G)) ∼ j− 2

r . (2.36)

Since W 2
2 (G; L̃1u = 0) is a subspace of W 2

2 (G) then, by Lemma 3 in [14, p.17],
from (2.36) it follows that

sj(J ;H(B),H) ≤ Csj(J ;W 2
2 (G), L2(G)) ≤ Cj− 2

r ,

i.e., condition (2) of Theorem 4 is fulfilled for q = 2
r . By Theorem 1 in [14,

p.207], from conditions (2) and (3), condition (5) of Theorem 4, for q = 2
r ,

follows.
Condition (6) of Theorem 4 one can see in the proof of Theorem 5. So, for

problem (2.34)–(2.35) all conditions of Theorem 4 have been checked and the
statement of the theorem follows. �

The results of this paper can be applied to the thermal conduction problem
from [9] in the case when there are not mixed derivatives in the equation. We
get completeness of a system of root functions of the corresponding spectral
problem and completeness of elementary solutions of the original problem for
eigenvalues λi with Reλi < 0. Moreover, since the corresponding operator B of
the thermal conduction problem is selfadjoint then one can get a basis property
theorem instead of completeness Theorem 7 (for p = 2). But the latter needs
some additional considerations.

A few examples of the operator M which satisfies conditions of Theorems
5 and 6 and, therefore, Theorems 7 and 8 are the following. Let G denote the
interval (0, 1) or a bounded domain in Rr, r ≥ 2, with an (r − 1)-dimensional
smooth boundary.

1. If bj ∈ L2(G), then the operator

Mu :=
1∑
j=0

bj(x)u(j)(x)

from W 2
2 (G) into L2(G) is compact.

2. If bji ∈ L2(G) and ϕji(x) are functions mapping G into itself and belong
to C(G), then the operator

Mu :=
1∑
j=0

Nj∑
i=1

bji(x)u(j)(ϕji(x)),

from W 2
2 (G) into L2(G) is compact.

3. If Bj(x, y) are kernels such that for some σ > 1∫
G

|Bj(x, y)|σdy +
∫
G

|Bj(x, y)|σdx ≤ C
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then the operator

Mu :=
2∑
j=0

∫
G

Bj(x, y)u(j)(y) dy

from W 2
2 (G) into L2(G) is compact.

The proofs can be found in [14, p.201].
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