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Existence principles for inclusions of
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multivalued maps ∗

Jean-François Couchouron & Radu Precup

Abstract

We apply Mönch type fixed point theorems for acyclic multivalued
maps to the solvability of inclusions of Hammerstein type in Banach
spaces. Our approach makes possible to unify and improve the existence
theories for nonlinear evolution problems and abstract integral inclusions
of Volterra and Fredholm type.

1 Introduction

In [17], the following two fixed point theorems of Mönch type for multivalued
maps with convex and compact values were proved:

Theorem 1.1 Let D be a closed, convex subset of a Banach space X and N :
D → 2D \ {∅} be a map with convex values. Assume graph(N) is closed, N
maps compact sets into relatively compact sets and that for some x0 ∈ D one
has

M ⊂ D, M = conv({x0} ∪N(M))
and M = C with C a countable subset of M

}
=⇒M is compact.

Then there exists x ∈ D with x ∈ N(x).

Theorem 1.2 Let K be a closed, convex subset of a Banach space X, U be a
relatively open subset of K, and N : U → 2K \ {∅} a map with convex values.
Assume graph(N) is closed, N maps compact sets into relatively compact sets
and that for some x0 ∈ U , the following two conditions are satisfied:

M ⊂ U, M ⊂ conv({x0} ∪N(M))
and M = C with C a countable subset of M

}
=⇒M is compact;

x 6∈ (1− λ)x0 + λN(x) for all x ∈ U \ U , λ ∈]0, 1[.

Then there exists x ∈ U with x ∈ N(x).
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In [17] and [18], some applications of Theorems 1.1 and 1.2 are presented for
Hammerstein integral inclusions of the form

u(t) ∈
∫ T

0

k(t, s)g(s, u(s))ds a.e. on [0, T ]. (1.1)

Here k is a real single-valued function, while g is a set-valued map with convex,
compact values in a Banach space E. Equation (1.1) can be written in the
operator form

u ∈ SG(u) (1.2)

where G is the Nemitsky multivalued operator associated to g, and S is the
linear integral operator of kernel k.

The aim of this paper is to present a unified existence theory for inclusions of
type (1.2) with linear and nonlinear operators S. Such inclusions arise naturally
in the theory of evolution inclusions of the form

u′(t) ∈ f(t, u(t)) + g(t, u(t))

subject to initial conditions. They also arise in the theory of boundary-value
problems for second order differential inclusions of the form

u′′(t) ∈ f(t, u(t)) + g(t, u(t)).

In both cases S is the solution operator assigning to each function w the solution
(assuming its existence and uniqueness) of the corresponding problem for

u′(t) ∈ f(t, u(t)) + w(t),

respectively
u′′(t) ∈ f(t, u(t)) + w(t).

If S is nonlinear, we can not assume that the map N := SG has convex values
and so Theorems 1.1 and 1.2 do not apply. This was the motivation in [19] to give
extensions of Theorems 1.1-1.2 for multivalued maps with non-convex values.
These extensions are based on the Eilenberg-Montgomery fixed point theorem
[9] and generalize previous results obtained by Fitzpatrick and Petryshyn [10]
for condensing set-valued maps. Our approach to (1.2) and several hypotheses
are inspired from [5, 6]. Notice in [5] and [6] it is assumed that the nonlinear
operator S can be compared (in some sense explained latter) with a Volterra
linear integral operator. This assumption together with a suitable compactness
property of g guarantees that N is condensing with respect to a specific measure
of non-compactness in the space of continuous functions on [0, T ]. In the present
paper, the hypotheses on S and g are more general, so that N have not to be
condensing, but just to satisfy a Mönch type compactness condition. Moreover,
in this paper we discuss not only continuous solutions but also Lp-solutions, and
this is done by a common existence theory. Our results improve and extend those
in [5, 6, 17, 18]. They also extend a lot of classical results on perturbed evolution
problems and abstract integral inclusions of both Volterra and Fredholm type.
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2 Preliminaries

First we recall some definitions. Let H∗ = {Hn}n≥0 denote the Čech homology
functor with compact carriers and coefficients in the field of rational numbers
Q (see Gorniewicz [12]). A nonempty metric space X is said to be acyclic if

Hn(X) =
{
Q if n = 0
0 if n ≥ 1

i.e., X has the same homology as a single point space. A metric space X is said
to be contractible if there is a homotopy h : X× [0, 1]→ X such that h(x, 0) = x
and h(x, 1) = x0 for every x ∈ X and with x0 ∈ X given.

The space X is an absolute retract (AR for short) if for every metric space
Z and closed set A ⊂ Z, every continuous map f : A → X has a continuous
extension f̂ : Z → X. We say that X is an absolute neighborhood retract (ANR
for short) if the above f has a continuous extension to some neighborhood of A.

It is well known that AR’s spaces as well as contractible spaces are acyclic.
So are Rδ-sets, i.e. compact metric spaces X for which there exists a decreasing
sequence (An)n≥1 of compact absolute retracts such that X =

⋂
n≥1An. Also,

every convex subset of a normed space is contractible and every compact and
convex subset of a normed space is an ANR and is acyclic.

If X is a Hausdorff topological space, we let

Pf (X) = {A ⊂ X : A is nonempty, closed} ,
Pk(X) = {A ⊂ X : A is nonempty, compact}.

If X is a metric space we define

Pa(X) = {A ⊂ X : A is nonempty, acyclic} ,
Pka(X) = {A ⊂ X : A is nonempty, compact, acyclic}.

If X is a closed, convex subset of a normed space (E, | · |), then we define

Pc(X) = {A ⊂ X : A is nonempty, convex},
Pkc(X) = {A ⊂ X : A is nonempty, compact,convex},

and for any nonempty subset A ⊂ E we let |A| = sup{|x| : x ∈ A}, By conv(A)
we mean the convex hull of A.

Now we state the Eilenberg-Montgomery fixed point theorem [9].

Theorem 2.1 Let Ξ be acyclic and ANR, Θ a compact metric space, Φ : Ξ→
Pa(Θ) an upper semi-continuous map and Γ : Θ→ Ξ a continuous single-valued
map. Then the map ΓΦ : Ξ→ 2Ξ has a fixed point.

An extension of this theorem for condensing (noncompact) acyclic maps is
due to Fitzpatrick-Petryshyn [10]. Next we recall a well-known result of set-
valued analysis (see [16], Proposition 1.2.17, Proposition 1.2.23 and Corollary
1.2.20).
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Theorem 2.2 Let X, Y be Hausdorff topological spaces.

(a) Let N : X → Pf (Y ), If N is upper semicontinuous, then graph(N) is
closed in X ×Y , Conversely, if graph(N) is closed and N(X) is compact,
then N is upper semicontinuous.

(b) Let N : X → Pk(Y ) be upper semicontinuous. Then N(A) is compact for
each compact A ⊂ X.

Throughout this paper E will be a real Banach space with norm | · |. A
function u : [a, b] → E is said to be strongly measurable on [a, b] if there exists
a sequence of finitely-valued functions un with

un(t)→ u(t) as n→∞, a.e. on [a, b].

By
∫ b
a
u(t)dt we mean the Bochner integral of u, assuming its existence. Recall

that a strongly measurable function u is Bochner integrable if and only if |u| is
Lebesgue integrable.

For any real p ∈ [1,∞[, we consider the space Lp([a, b];E) of all strongly
measurable functions u : [a, b] → E such that |u|p is Lebesgue integrable on
[a, b]. Then Lp([a, b];E) is a Banach space under the norm

|u|p = (
∫ b

a

|u(s)|pds)1/p.

Also for p = ∞, we let L∞([a, b];E) be the space of all strongly measurable
function u : [a, b]→ E which are essentially bounded, i.e.

ess sup
t∈[a,b]

|u(t)| := inf{c ≥ 0 : |u(t)| ≤ c a.e. on [a, b]} <∞.

L∞([a, b];E) is a Banach space under the norm |u|∞ = ess supt∈[a,b] |u(t)|. When
E = R the space Lp([a, b];R) is simply denoted by Lp[a, b]. By |u|∞ we also
denote the max-norm on the space C([a, b];E) of all continuous functions u :
[a, b]→ E.

For a function u : [a, b]→ E, we define the translation by h (0 < h < b− a),
to be the function τhu : [a, b − h] → E, given by τhu(t) = u(t + h). We now
state a compactness criterion for a subset of vector-valued functions. For the
proof see for example [13], Theorems 1.2.5 and 1.2.8.

Theorem 2.3 Let p ∈ [1,∞]. Let M ⊂ Lp([a, b];E) be countable and suppose
there exists some ν ∈ Lp[a, b] with |u(t)| ≤ ν(t) a.e. on [a, b] for all u ∈ M .
Assume M ⊂ C([a, b];E) if p =∞. Then M is relatively compact in Lp([a, b];E)
if and only if

(i) supu∈M |τhu− u|Lp([a,b−h];E) → 0 as h→ 0;

(ii) M(t) is relatively compact in E for a.a. t ∈ [a, b].
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Next we state a weak compactness criterion in Lp([a, b];E) which follows
from the results of Diestel-Ruess-Schachermayer [8].

Theorem 2.4 Let p ∈ [1,∞[. Let M ⊂ Lp([a, b];E) be countable and suppose
there exists some ν ∈ Lp[a, b] with |u(t)| ≤ ν(t) a.e. on [a, b] for all u ∈ M . If
M(t) is relatively compact in E for a.a. t ∈ [a, b], then M is weakly relatively
compact in Lp([a, b];E).

Finally we introduce the following definition. A map ψ : [a, b]×D → 2Y \{∅},
where D ⊂ X and (X, | · |X) (Y, | · |Y ) are two Banach spaces, is said to be (q, p)-
Carathéodory (1 ≤ q ≤ ∞, 1 ≤ p ≤ ∞) if

(C1) ψ(., x) is strongly measurable for each x ∈ D;

(C2) ψ(t, .) is upper semicontinuous for a.a. t ∈ [a, b];

(C3) (a) if 1 ≤ p < ∞, there exists c ∈ Lq([a, b];R+) and d ∈ R+ such that
|ψ(t, x)|Y ≤ c(t) + d|x|pX a.e. on [a, b], for all x ∈ D.

(b) if p = ∞, for each ρ > 0 there exists cρ ∈ Lq([a, b];R+) such that
|ψ(t, x)|Y ≤ cρ(t) a.e. on [a, b], for all x ∈ D with |x|X ≤ ρ.

A map ψ which satisfies (C1)-(C2) is said to be a Carathéodory function.

3 Fixed point theorems

In this section, we present the extensions of Theorems 1.1 and 1.2 to set-valued
maps with acyclic values, which were established in [19]. For the reader conve-
nience, we also reproduce here their proofs.

Theorem 3.1 Let D be a closed, convex subset of a Banach space X, Y a
metric space, N : D → Pa(Y ) and J : Y → D continuous. Assume graph (N)
is closed, N maps compact sets into relatively compact sets and that for some
x0 ∈ D one has

M ⊂ D, M = conv({x0} ∪ JN(M))
and M = C with C a countable subset of M

}
=⇒M is compact. (3.1)

Then there exists x ∈ D with x ∈ JN(x).

Proof Since J is continuous, the map JN also has a closed graph and maps
compact sets into relatively compact sets.

Following the steps (a) and (b) of the proof of Theorem 3.1 in [17], we find
a convex set M ⊂ D with x0 ∈ M , M = conv({x0} ∪ JN(M)) and K := M
compact. Next, instead of steps (c)-(d) of the above mentioned proof, we follow:
(c∗) Proof of inclusion JN(K) ⊂ K. Let ε > 0 be fixed. According to Theorem
2.2, JN is upper semicontinuous. Consequently, for each x ∈M there exists an
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open neighborhood Vx of x such that JN(y) ⊂ JN(x) + Bε(0) for all y ∈ Vx.
Since for x ∈M , one has JN(x) ⊂ K, it follows that JN(y) ⊂ Kε := K+Bε(0)
for every y ∈ Vx. Now M being dense in K, it results that {Vx : x ∈ M} is a
cover of K. Consequently, JN(K) ⊂ Kε. Hence JN(K) ⊂

⋂
ε>0Kε = K.

(d∗) Application of the Eilenberg-Montgomery theorem. Since every compact
and convex subset of a Banach space is an ANR and is acyclic, we may apply
Theorem 2.1 to: Ξ := K, Θ := N(K), Φ = N and Γ = J . �

Remark 3.1 (a) Under the assumptions of Theorem 3.1, N : D → Pka(Y ).
(b) According to Theorem 2.2, Theorem 3.1 is true under the following assump-
tions: N : D → Pka(Y ) and N is upper semicontinuous.

The next result is a version of Theorem 1.2 for set-valued maps with acyclic
values.

Theorem 3.2 Let K be a closed, convex subset of a Banach space X, U a
convex, relatively open subset of K, Y a metric space, N : U → Pa(Y ) and
J : Y → K continuous. Assume graph(N) is closed, N maps compact sets into
relatively compact sets and that for some x0 ∈ U , the following two conditions
are satisfied:

M ⊂ U, M ⊂ conv({x0} ∪ JN(M))
and M = C with C a countable subset of M

}
=⇒M is compact; (3.2)

x 6∈ (1− λ)x0 + λJN(x) for all x ∈ U \ U, λ ∈]0, 1[. (3.3)

Then there exists x ∈ U with x ∈ JN(x).

Proof. Let D = conv({x0} ∪ JN(U)). Clearly, x0 ∈ D ⊂ K. Let P : K → U
be

P (x) =
{
x for x ∈ U
x for x ∈ K \ U

Here x = (1 − λ)x0 + λx ∈ U \ U , λ ∈]0, 1[. It is easy to see that P is single
valued and continuous.

Let Ñ : D → Pa(Y ), Ñ(x) = N(P (x)). It is easily seen that graph(Ñ) is
closed and Ñ maps compact sets into relatively compact sets. Next we check
(3.1) for JÑ . Let M ⊂ D be such that M = conv({x0} ∪ JÑ(M)) and M = C
for some countable subset C of M . Since

P (M) ⊂ conv({x0} ∪M) ⊂ conv({x0} ∪ JÑ(M))
= conv({x0} ∪ JNP (M)),

P (M) = P (C), P (C) ⊂ P (M), and P (C) is countable, from (3.2) we deduce
that P (M) is relatively compact. Then JÑ(M) = JNP (M) is relatively com-
pact and Mazur’s lemma implies that M is compact. Thus (3.1) holds for JÑ .

Now we apply Theorem 3.1 to deduce that there exists an x ∈ D with
x ∈ JÑ(x). We claim that x ∈ D ∩ U . Assume the contrary, that is x ∈
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D \ U . Then x ∈ JN(x), where x = (1 − λ)x0 + λx ∈ U \ U , λ ∈]0, 1[. Then
x = (1/λ)x + (1 − 1/λ)x0 ∈ JN(x). Hence x ∈ (1 − λ)x0 + λJN(x), which
contradicts (3.3). Thus x ∈ D ∩ U and so x ∈ JN(x). �

4 Inclusions of Hammerstein type

Let 0 < T < ∞, I = [0, T ], (E, | · |) be a real Banach space, p ∈ [1,∞] and
q ∈ [1,∞[. Let r ∈]1,∞] be the conjugate exponent of q, that is 1/q + 1/r = 1.

Consider g : I × E → 2E and the Nemitsky set-valued operator associated
to g, p and q: G : Lp(I;E)→ 2L

q(I;E) given by

G(u) = {w ∈ Lq(I;E) : w(s) ∈ g(s, u(s)) a.e. on I}.

Also consider a single-valued operator

S : Lq(I;E)→ Lp(I;E).

We discuss here the inclusion of Hammerstein type

u ∈ SG(u), u ∈ Lp(I;E). (4.1)

Theorem 3.2 immediately yields the following existence principle for (4.1).

Theorem 4.1 Let K be a closed, convex subset of Lp(I;E) (1 ≤ p ≤ ∞), U a
relatively open subset of K and u0 ∈ U . Assume

(H1) SG : U → Pa(K) has closed graph and maps compact sets into relatively
compact sets;

(H2)
M ⊂ U, M ⊂ conv({u0} ∪ SG(M))

M = C, with C a countable subset of M

}
=⇒M is compact;

(H3) u /∈ (1− λ)u0 + λSG(u) for all λ ∈]0, 1[ and u ∈ U \ U .

Then (4.1) has a solution in U .

For the proof of this theorem, apply Theorem 3.2 to N = SG and J the
identity map of K.

Remark 4.1 (solutions in C(I;E)) (a) If the values of S are in C(I;E), then
any solution of (4.1) in K ⊂ Lp(I;E) (1 ≤ p ≤ ∞) belongs to C(I;E).
(b) The existence theory in C(I;E) appears as a particular case, where p =∞
and K ⊆ C(I;E).

According to Remark 4.1 (a), when S takes values in C(I;E), there is no
loss of regularity in t if we work in an Lp space instead of C(I;E). This is, for
example, the case of the mild solution operator S associated to the generator
of a continuous semigroup. On the other hand, we may image (by topological
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reasons, or others) that working in an Lp space could be more flexible than
working in C(I;E) (especially if E is reflexive and separable).

In what follows, u0 = 0 (so it is assumed that 0 ∈ K). For the next result,
let U = BR, the open ball {u ∈ K : |u|p < R}. We give sufficient conditions on
S and g in order that the assumptions (H1)-(H3) be satisfied. Thus we assume:

(S1) There is a function k : I2 → R+ such that k(t, .) ∈ Lr(I), the function
t 7−→ |k(t, .)|r belongs to Lp(I) and

|S(w1)(t)− S(w2)(t)| ≤
∫
I

k(t, s)|w1(s)− w2(s)|ds (4.2)

a.e. on I, for all w1, w2 ∈ Lq(I;E).

(S2) S : Lq(I;E) → K and for every compact, convex subset C of E, S is
sequentially continuous from Lqw(I;C) to Lp(I;E). Here Lqw(I;C) stands
for the set Lq(I;C) endowed with the weak topology of Lq(I;E).

(g1) g : I × E → Pkc(E).

(g2) g(., x) has a strongly measurable selection on I, for each x ∈ E.

(g3) g(t, .) is upper semicontinuous for a.a. t ∈ I.

(g4) If 1 ≤ p < ∞, then |g(t, x)| ≤ a(t) + b|x|p/q a.e. on I, for all x ∈ E. If
p = ∞, then |g(t, x)| ≤ a(t) a.e. on I, for all x ∈ E with |x| ≤ R. Here
a ∈ Lq(I) and b ∈ R+.

(g5) For every separable closed subspace E0 of E, there exists a (q, p/q)-
Carathéodory function ω : I × R+ → R+ such that for almost every
t ∈ I,

βE0(g(t,M) ∩ E0) ≤ ω(t, βE0(M))

for every set M ⊂ E0 satisfying

|M | ≤ |S(0)(t)|+ (|a|q + bRp/q)|k(t, .)|r

if p <∞, and respectively

|M | ≤ |S(0)(t)|+ |a|q|k(t, .)|r

if p = ∞. In addition ϕ = 0 is the unique solution in Lp(I;R+) to the
inequality

ϕ(t) ≤
∫
I

k(t, s)ω(s, ϕ(s))ds a.e. on I. (4.3)

Here βE0 is the ball measure of non-compactness on E0. Recall that for a
bounded set A ⊂ E0, βE0(A) is the infimum of ε > 0 for which A can be
covered by finitely many balls of E0 with radius not greater than ε.

(SG) For every u ∈ K the set SG(u) is acyclic in K.
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Now we can state the main result of this section.

Theorem 4.2 Assume (S1)-(S2), (g1)-(g5) and (SG) hold. In addition suppose
(H3). Then (4.1) has at least one solution u in K ⊂ Lp(I;E) with |u|p ≤ R.

The proof is based on Theorem 4.1 and the following two lemmas that extend
some results in [5].

Lemma 4.3 Let S : Lq(I;E) → Lp(I;E) satisfy (S1)-(S2), q ∈ [1,∞[ and
p ∈ [1,∞]. Let M ⊂ Lq(I; E) be countable with

|u(t)| ≤ ν(t) (4.4)

a.e. on I, for all u ∈M , where ν ∈ Lq(I). Let E0 be a separable closed subspace
of E with u(t) ∈ E0 a.e. on I, for every u ∈ M ∪ S(M). Then the function
ϕ(t) = βE0(M(t)) belongs to Lq(I) and satisfies

βE0(S(M)(t)) ≤
∫
I

k(t, s)ϕ(s)ds a.e. on I. (4.5)

Proof Let M = {un : n ∈ N}. The space E0 being separable, we may
represent it as

⋃
k≥1Ek where for each k, Ek is a k-dimensional subspace of E0

with Ek ⊂ Ek+1. The fact that ϕ is measurable follows from the formula of
representation of β for separable spaces which yields

ϕ(t) = lim
k→∞

sup
n≥1

d(un(t), Ek). (4.6)

Now ϕ ∈ Lq(I) since ϕ(t) ≤ ν(t) a.e. on I.
Since M is countable, we may suppose that (4.4) hold for all t ∈ I and

u ∈ M . We will prove (4.5) for any fixed t0 ∈ I. Let ε > 0 and choose δ > 0
such that for every measurable subset Θ of I we have

|Θ| ≤ δ =⇒
∫

Θ

k(t0, s)ν(s)ds < ε.

Here |Θ| is the Lebesgue measure of Θ. Also choose a constant ρ > 0 such that
|Θ1| < δ/3 for

Θ1 = {t ∈ I : ν(t) > ρ}.
So we have d(un(t), Ek) ≤ |un(t)| ≤ ρ for t ∈ I \Θ1 and n, k ∈ N. Consequently,
d(un(t), Ek) = d(un(t), Bk) with Bk = {x ∈ Ek : |x| ≤ ρ}.

From (4.6) and Egorov’s Theorem there is a set Θ2 ⊂ I \Θ1 with |Θ2| < δ/3
and an integer k0 such that

sup
n≥1

d(un(t), Bk) ≤ ϕ(t) + ε (4.7)

for t ∈ I \ (Θ1 ∪Θ2), n ≥ 1 and k ≥ k0. Since M is a countable set of strongly
measurable functions, we may find a set Θ3 ⊂ I with |Θ3| < δ/3 and a countable
set M̃ = {ũn : n ≥ 1} of finitely-valued functions from I to E with

|un(t)− ũn(t)| ≤ ε (4.8)
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for t ∈ I \Θ3 and n ≥ 1. From (4.7) and (4.8) we obtain

d(ũn(t), Bk) ≤ ϕ(t) + 2ε

for n ∈ N, k ≥ k0 and t ∈ I \ Θ with Θ = Θ1 ∪ Θ2 ∪ Θ3. Then there exists a
finitely-valued function ûn,k from I to Bk with

|un(t)− ûn,k(t)| ≤ ϕ(t) + 3ε

for n ≥ 1, k ≥ k0 and t ∈ I \ Θ. We put ûn,k(t) = 0 for t ∈ Θ. Note that
|Θ| ≤ δ.

For each fixed k ≥ k0, Theorem 2.4 guarantees that the sequence (ûn,k)n≥1

is relatively compact in Lqw(I;Bk). Then, from (S2) the sequence (S(ûn,k))n≥1 is
relatively compact in Lp(I;E). Therefore, for every t ∈ I the set (S(ûn,k(t)))n≥1

is relatively compact in E. Now using (S1), we obtain

|S(un)(t0)− S(ûn,k)(t0)|

≤
∫
I

k(t0, s)|un(s)− ûn,k(s)|ds

≤
∫
I\Θ

k(t0, s)(ϕ(s) + 3ε)ds+
∫

Θ

k(t0, s)|un(s)|ds

≤
∫
I

k(t0, s)ϕ(s)ds+ 3ε|k(t0, .)|1 +
∫

Θ

k(t0, s)ν(s)ds

≤
∫
I

k(t0, s)ϕ(s)ds+ 3ε|k(t0, .)|1 + ε.

Hence {S(ûn,k)(t0) : n ≥ 1} is a relatively compact γ-net of the set {S(un)(t0) :
n ≥ 1} with

γ =
∫
I

k(t0, s)ϕ(s)ds+ 3ε|k(t0, .)|1 + ε→
∫
I

k(t0, s)ϕ(s)ds

as ε→ 0. �

Lemma 4.4 Assume (S1) and (S2). Let M be a countable subset of Lq(I;E)
such that M(t) is relatively compact for a.a. t ∈ I and there is a function
ν ∈ Lq(I) with |u(t)| ≤ ν(t) a.e. on I, for every u ∈ M . Then the set S(M)
is relatively compact in Lp(I;E). In addition S is continuous from M equipped
with the relative weak topology of Lq(I;E) to Lp(I;E) equipped with its strong
topology.

Proof. Let M = {un : n ≥ 1}. Let ε > 0. As in the proof of Lemma 4.3, we
can find functions ûn,k with values in the compact Bk ⊂ E such that

|un − ûn,k|q ≤ ε

for every n ≥ 1. Then (S1) implies via Hölder’s inequality that

|S(un)− S(ûn,k)|p ≤ γ := ε||k(t, .)|r|p. (4.9)
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On the other hand, from Theorem 2.4 the set {ûn,k : n ≥ 1} ⊂ Lq(I;E) is weakly
relatively compact in Lq(I;E). Next (S2) guarantees that {S(ûn,k) : n ≥ 1} is
relatively compact in Lp(I;E). Hence from (4.9) we see that {S(ûn,k) : n ≥ 1}
is a relatively compact γ-net of S(M). Since ε is arbitrary, we conclude that
S(M) is relatively compact.

Now suppose that (wm)m converges weakly in Lq(I;E) to w and wm ∈ M .
In view of the relative compactness of S(M), we may assume that (S(wm))m
converges in Lp(I;E) towards some function h∞. We have to prove

h∞ = S(w). (4.10)

For each fixed ε > 0, we have already seen that the proof of Lemma 4.3 again
provides a compact set Kε and a sequence (wεm)m of Kε-valued functions satis-
fying

|wm − wεm|q ≤ ε (4.11)

for every m ≥ 1. The sequence (wεm)m being weakly precompact in Lq(I, E),
a suitable subsequence (wεmj )j must be weakly convergent in Lq(I, E) towards
some wε∞. Then the Masur’s Theorem and (4.11) provide

|w − wε∞|q ≤ ε. (4.12)

The triangle inequality yields

|h∞ − S(w)|p ≤|h∞ − S(wmj )|p + |S(wmj )− S(wεmj )|p
+ |S(wεmj )− S(wε∞)|p + |S(wε∞)− S(w)|p.

(4.13)

Passing to the limit when j approaches infinity in (4.13) and using Assumption
(S2) we obtain

|h∞ − S(w)|p ≤ lim sup
j
|S(wmj )− S(wεmj )|p + |S(wε∞)− S(w)|p. (4.14)

According to (4.11) and (4.12) we deduce from (4.14) and Assumption (S1)

|h∞ − S(w)|p ≤ 2ε||k(t, .)|r|p.

Since ε is arbitrary the proof of Lemma 4.4 is ended. �

Proof of Theorem 4.2 (a) First we show that G(u) 6= ∅ and so SG(u) 6= ∅ for
every u ∈ BR. Indeed, since g takes nonempty, compact values and satisfies (g2)-
(g3), for each strongly measurable function u there exists a strongly measurable
selection w of g(., u(.)) (see [7], Proof of Proposition 3.5 (a)). Next, if u ∈
Lp([0, T ];E), (g4) guarantees w ∈ Lq([0, T ];E). Hence w ∈ G(u).
(b) The values of SG are acyclic according to condition (SG).
(c) The graph of SG is closed. To show this, let (un, vn) ∈ graph(SG), n ≥ 1,
with |un − u|p, |vn − v|p → 0 as n → ∞. Let vn = S(wn), wn ∈ Lq([0, T ];E),
wn ∈ G(un). Since |un − u|p → 0, by Theorem 2.3 we may suppose that for
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every t ∈ I, there exists a compact set C ⊂ E with {un(t); n ≥ 1} ⊂ C.
Furthermore, since g satisfies (g3) and has compact values, Theorem 2.2 (b)
guarantees that g(t, C) is compact. Consequently, {wn(t) : n ≥ 1} is relatively
compact in E. If we also take into account (g4) we may apply Theorem 2.4 to
conclude that (at least for a subsequence) (wn) converges weakly in Lq(I;E) to
some w. As in [11], since g has convex values and satisfies (g3), we can show
that w ∈ G(u). Furthermore, by using Lemma 4.4 and a suitable subsequence
we deduce S(wn)→ S(w). Thus v = S(w) and so (u, v) ∈ graph(SG).
(d) We show that SG(M) is relatively compact for each compact M ⊂ BR. Let
M ⊂ BR be a compact set and (vn) be any sequence of elements of SG(M).
We prove that (vn) has a convergent subsequence. Let un ∈ M and wn ∈
Lq([0, T ];E) with

vn = S(wn) and wn ∈ G(un).

The set M being compact, we may assume that |un−u|p → 0 for some u ∈ BR.
As above, there exists a w ∈ G(u) with wn ⇀ w weakly in Lq([0, T ];E) (at
least for a subsequence) and S(wn) → S(w). Hence vn → S(w). Thus (H1) is
completely verified.
(e) Finally, we check (H2). Suppose M ⊂ BR, M ⊂ conv({0} ∪ SG(M)) and
M = C for some countable set C ⊂M . Since

C ⊂M ⊂ conv({0} ∪ SG(M)) and C is countable,

we can find a countable set V = {vn : n ≥ 1} ⊂ SG(M) with C ⊂ conv ({0}∪V ).
Then, there exists un ∈M and wn ∈ Lq([0, T ];E) with

vn = S(wn) and wn ∈ G(un).

From (S2) and (g4) with vn ∈ V and v0 = S(0), we have

|vn(t)− v0(t)| = |S(wn)(t)− S(0)(t)|

≤
∫
I

k(t, s)|wn(s)|ds

≤
∫
I

k(t, s)(a(s) + b|un(s)|p/q)ds

≤ (|a|q + bRp/q)|k(t, .)|r.

Hence
|vn(t)| ≤ |S(0)(t)|+ (|a|q + bRp/q)|k(t, .)|r a.e. on I (4.15)

for every n ≥ 1. From M ⊂ C ⊂ conv ({0} ∪ V ) it follows that (4.15) is also
true with any u ∈ M instead of vn. Since V and {wn : n ≥ 1} are countable
sets of strongly measurable functions, we may suppose that their values belong
to a separable closed subspace E0 of E. Clearly, the same is true for M = C.
Now Lemma 4.3 guarantees

βE0(M(t)) = βE0(C(t)) ≤ βE0(V (t))
= βE0({S(wn)(t) : n ≥ 1})

≤
∫
I

k(t, s)βE0({wn(s) : n ≥ 1})ds
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while (g5) gives

βE0({wn(s) : n ≥ 1}) ≤ βE0(g(s,M(s)) ∩ E0) ≤ ω(s, βE0(M(s))).

It follows
βE0(C(t)) ≤

∫
I

k(t, s)ω(s, βE0(C(s)))ds.

Moreover, the function ϕ given by ϕ(t) = βE0(C(t)) belongs to Lp(I;R+).
Consequently, ϕ = 0, and so ϕ(t) = βE0(M(t)) = 0 a.e. t ∈ [0, T ]. Moreover,
according to (4.15) and Assumption (g4) we have

|wn(t)| ≤ a(t) + b(|S(0)(t)|+ (|a|q + bRp/q)|k(t, .)|r)p/q := ν(t)

a.e. on I, and ν ∈ Lq(I). Let (vnk)k≥1 be any subsequence of V . Then, as at
step (c), (wnk)k≥1 has a weakly convergent subsequence in Lq(I;E), say to w.
Owing to Lemma 4.4 the corresponding subsequence of (S(wnk))k≥1 = (vnk)k≥1

converges to S(w) in Lp(I;E). Hence V is relatively compact. Now Mazur’s
Lemma guarantees conv({0} ∪ V ) is compact and so C = M is compact too.
Thus (H2) also holds and Theorem 4.1 applies. �

Remark 4.2 The following condition is sufficient for (SG) to hold:

(S3) S is affine, i.e.

S(λw1 + (1− λ)w2) = λS(w1) + (1− λ)S(w2)

for all w1, w2 ∈ Lq(I;E), or for all w0, w1, w2 ∈ Lq(I;E), the relation
S(w1) = S(w2) implies

S(1[0,λ]w1 + 1[λ,T ]w0) = S(1[0,λ]w2 + 1[λ,T ]w0)

for every λ ∈ I. Here 1[a,b] is the characteristic function of the interval
[a, b].

Indeed, let u ∈ K and v0 ∈ SG(u). Then v0 = S(w0) for some w0 ∈ G(u).
Define H : [0, 1]× SG(u)→ SG(u),

H(λ, v) = S(1[0,(1−λ)T ]w + 1[(1−λ)T,T ]w0)

where w ∈ G(u) and v = S(w). According to (S3), the definition of H(λ, v)
does not depend on the choice of w. Clearly,

H(0, v) = v and H(1, v) = v0.

It remains to prove the continuity of H. Let λn → λ and vn → v with vn =
S(wn) and wn ∈ G(u). As at step (c) in the Proof of Theorem 4.2, we show that
a subsequence of (wn) converges weakly in Lq(I;E) to some w, and w ∈ G(u).
Finally, by Lemma 4.4 we obtain

S(1[0,(1−λn)T ]wn + 1[(1−λn)T,T ]w0)→ S(1[0,(1−λ)T ]w + 1[(1−λ)T,T ]w0)
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in Lp(I;E). Hence H(λn, vn) → H(λ, v). Thus SG(u) is contractible and so
acyclic for every u ∈ K.

Note that (S3) holds whenever S is one-to-one. An open problem is to find
weaker conditions to guarantee (SG) in order to extend the applicability of
Theorems 4.1-4.2. For example, we may think to find conditions such that the
values of SG are Rδ-sets. Such conditions are known for particular classes of
problems (see [2]).

Remark 4.3 A sufficient condition for (H3) is

|S(0)|p + (|a|q + bRp/q)||k(t, .)|r|p ≤ R (4.16)

if p <∞ and respectively,

|S(0)|∞ + |a|q||k(t, .)|r|∞ ≤ R

if p =∞.

Indeed, if u ∈ BR is any solution of u ∈ λSG(u) for some λ ∈]0, 1[ and
u = λS(w) with w ∈ G(u), then for almost every t ∈ [0, T ], we have

|u(t)| = λ|S(w)(t)| ≤ λ|S(0)(t)|+ λ

∫
I

k(t, s)(a(s) + b|u(s)|p/q)ds

≤ λ|S(0)(t)|+ λ|k(t, .)|r|a+ b|u|p/q|q
≤ λ[|S(0)(t)|+ |k(t, .)|r(|a|q + b|u|p/qp )].

This and (4.16) yield

|u|p ≤ λ[|S(0)|p + ||k(t, .)|r|p(|a|q + b|u|p/qp )]

≤ λ[|S(0)|p + ||k(t, .)|r|p(|a|q + bRp/q)] < R.

Hence (H3) is satisfied.

Corollary 4.5 Assume q ≤ p and (S1)-(S2), (g1)-(g4), (SG) and (H3) hold.
In addition suppose

(g5*) For every separable closed subspace E0 of E, there exists a function δ ∈
Lpq/(p−q)(I) such that for almost every t ∈ I,

βE0(g(t,M) ∩ E0) ≤ δ(t)βE0(M) (4.17)

for every subset M ⊂ E0 satisfying

|M | ≤ |S(0)(t)|+ (|a|q + bRp/q)|k(t, .)|r ,

if p <∞, respectively

|M | ≤ |S(0)(t)|+ |a|q|k(t, .)|r
if p =∞, and

|δ|pq/(p−q)||k(t, .)|r|p < 1. (4.18)

Then (4.1) has at least one solution u in K ⊂ Lp(I;E) with |u|p ≤ R. Here
pq/(p− q) = q if p =∞ and pq/(p− q) =∞ if p = q.
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Proof Let ϕ ∈ Lp(I;R+) be a solution of (4.3) with ω(t, s) = δ(t)s. From
(4.17) via Hölder’s inequality we obtain

ϕ(t) ≤ |k(t, .)|r|δ|pq/(p−q)|ϕ|p.

It follows
|ϕ|p ≤ |δ|pq/(p−q)||k(t, .)|r|p|ϕ|p.

This together with (4.18) implies |ϕ|p = 0 and so ϕ = 0, Thus (g5) also holds
and Theorem 4.2 applies. �

We say that (4.1) is in the Volterra case if the function k in (S1) satisfies
k(t, s) = 0 for t < s.

Corollary 4.6 Assume (4.1) is in the Volterra case. In addition suppose that
all the assumptions of Corollary 4.5 except (4.18) are satisfied. Then (4.1) has
at least one solution u ∈ K ⊂ Lp(I;E) with |u|p ≤ R.

Proof In the Volterra case, from (4.3) we obtain

ϕ(τ) ≤
∫ τ

0

k(τ, s)δ(s)ϕ(s)ds ≤ |k(τ, .)|r|δ|pq/(p−q)
( ∫ τ

0

ϕ(s)pds
)1/p

.

Then ∫ t

0

ϕ(τ)pdτ ≤ C
∫ t

0

(|k(τ, .)|pr
∫ τ

0

ϕ(s)pds)dτ.

Now Gronwall’s inequality implies
∫ t

0
ϕ(τ)pdτ = 0 for all t ∈ I. So ϕ = 0. Thus

(g5) holds without (4.18). �

Remark 4.4 In particular, if K = C(I;E), q = 1, p =∞ and

(g5**) there exists a function δ ∈ L1(I) such that for every bounded subset
M ⊂ E and almost every t ∈ I one has

β(g(t,M)) ≤ δ(t)β(M),

the result in Corollary 4.6 was established in [5] by showing that the operator
SG is condensing with respect to a suitable measure of non-compactness on
C(I;E) and using the continuation principle for condensing operators.

Corollary 4.7 Assume (4.1) is in the Volterra case. Let 1 ≤ q = p < ∞ and
(S1), (S2), (g1)-(g4) and (SG) hold. Suppose that for the function k in (S1)
there exists r′ > r such that k(t, .) ∈ Lr

′
[0, T ] for a.a. t ∈ I and the map

t 7→ k(t, .) belongs to Lp(I;Lr
′
(I)). In addition suppose that for every separable

closed subspace E0 of E, there exists a function δ ∈ L∞(I) such that for almost
every t ∈ I,

βE0(g(t,M) ∩ E0) ≤ δ(t)βE0(M) (4.19)

for every subset M ⊂ E0 satisfying

|M | ≤ |S(0)(t)|+ (|a|p + bR)|k(t, .)|r .

Then (4.1) has at least one solution u in K.
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Proof We apply Theorem 4.1 to U = {u ∈ K : ‖u‖ < R}, for any R > |S(0)|p
and a suitable equivalent norm ‖ · ‖ on Lp(I;E).

According to the proof of Theorem 4.2 and of Corollary 4.6, the assumptions
(H1)-(H2) are fulfilled. It remains to guarantee (H3). Let u ∈ K be any solution
of u ∈ λSG(u) for some λ ∈]0, 1[. Then, for any θ > 0, we have

|u(t)| ≤ λ|S(0)(t)|+ λ

∫ t

0

k(t, s)eθs(|a(s)|+ b|u(s)|e−θs)ds.

Define an equivalent norm on Lp(I;E), by

‖u‖ = |u(t)e−θt|p.

Then, since 1/r′ + (r′ − r)/(rr′) + 1/p = 1, Hölder’s inequality guarantees

|u(t)| ≤ λ|S(0)(t)|+ λ|k(t, .)|r′(|a|p + b ‖u‖)(
∫ t

0

eθrr
′/(r′−r)sds)(r′−r)/(rr′)

≤ λ|S(0)(t)|+ λ|k(t, .)|r′(|a|p + b ‖u‖)(r
′ − r
θrr′

)(r′−r)/(rr′)eθt.

Consequently

‖u‖ ≤ λ[|S(0)|p + (|a|p + b ‖u‖)(r
′ − r
θrr′

)(r′−r)/(rr′)||k(t, .)|r′ |p]. (4.20)

Now we choose θ > 0 so large that

|S(0)|p + (|a|p + bR)(
r′ − r
θrr′

)(r′−r)/(rr′)||k(t, .)|r′ |p ≤ R.

Then, since λ < 1, from (4.20) we have ‖u‖ < R, so (H3) holds. �

5 Examples

The aim of this section is to show the wide field of applications of our abstract
existence principles. Roughly speaking, our theory yields existence results for
perturbed problems by a multivalued state-depending term, when the unper-
turbed original problem has a unique solution and the solution operator satisfies
(S1), (S2) and the condition of acyclicity. Thus, our theory gives applications
whenever a univoque operator S with the above required properties is detected.

First we note that if S is any operator from L1(I;E) to C(I;E) such that for
every compact, convex subset C of E, the operator S is sequentially continuous
from L1

w(I;C) to C(I;E) (this being condition (a2) in [5] and [6]), then S
satisfies our condition (S2) for every p ∈ [1,∞], q ∈ [1,∞[ and K = Lp(I;E).
Also note that condition (a1) in [5], [6] guarantees (S1). This remark shows
that all the examples of an operator S given in [6] can be used in our more
general framework. In particular, by applying Corollary 4.6 and Corollary 4.7
we obtain extensions of a lot of classical results on the Cauchy problem for
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semilinear evolution inclusions (see [14] and [20]). The extension comes from
the generality of our compactness condition for the perturbation term g and
also, in case of Corollary 4.6, from the localization of solutions in a given ball
of Lp(I;E). New existence results for evolution problems with Osgood type
perturbations (see [4]) will be presented in a forthcoming paper.

Another new feature in this paper, contrary to [5] and [6], is that the theory
is achieved in a such way that the case of Fredholm type inclusions be included.
For Hammerstein integral inclusions involving linear operators of the form

S(w)(t) =
∫
I

k(t, s)w(s)ds,

this was realized in [18]. A source of such operators are the boundary value
problems for second order abstract linear ordinary differential equations, when
k is the corresponding Green function.

Nonlinear operators of Fredholm type arise from the theory of boundary
value problems for second order nonlinear differential equations in abstract
spaces. For example, let us consider the following boundary-value problem

u′′(t) ∈ Au(t) + g(t, u(t)) a.e. on I

u(0) = u(T ) = 0.
(5.1)

From [3] (Corollary 5.2.1) if follows that if E is a real Hilbert space and A is
a maximal monotone set in E × E, then for each w ∈ L2(I;E) there exists a
unique solution u ∈ H2(I;E) of the problem

u′′(t) ∈ Au(t) + w(t) a.e. on I

u(0) = u(T ) = 0.
(5.2)

Let us consider the solution operator S : L2(I;E)→ C(I;E), given by S(w) =
u, where u is the unique solution of (5.2). Assume 0 ∈ A0.

Proposition 5.1 The above operator S satisfies (S1) and (S2).

Proof First we show that S satisfies (S1). For this, let w1, w2 ∈ L2(I;E).
Denote ui = S(wi), i = 1, 2. We have u′′i = pi + wi, where pi(t) ∈ Aui(t) a.e.
on I. Then

(u1 − u2)′′(t) = p1(t)− p2(t) + w1(t)− w2(t).

Multiplying by u1(t)− u2(t) and using the monotonicity of A, we obtain

1
2

(|u1(t)− u2(t)|2)′′ − |u′1(t)− u′2(t)|2 ≥ (w1(t)− w2(t), u1(t)− u2(t)).

Hence −(|u1 − u2|2)′′ ≤ −2(w1 − w2, u1 − u2) a.e. on I. Consequently

|u1(t)− u2(t)|2 ≤ −2
∫
I

G(t, s)(w1(s)− w2(s), u1(s)− u2(s))ds. (5.3)
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Here G is the Green function of the differential operator −u′′ corresponding to
the boundary conditions u(0) = u(T ) = 0. It follows

|u1(t)− u2(t)|2 ≤ m|u1 − u2|∞
∫
I

|w1(s)− w2(s)|ds

where m = 2 max(t,s)∈I2 G(t, s). As a result, we obtain

|S(w1)(t)− S(w2)(t)| ≤ m
∫
I

|w1(s)− w2(s)|ds. (5.4)

Thus (S1) holds.
Next we prove that for each compact, convex subset C of E, S is sequentially

continuous from L2
w(I;C) to C(I;E). This is achieved in three steps:

(1) First we show that graph (S) is closed in L2
w(I;E) × C(I;E). For this, let

wj → w weakly in L2(I;E) and S(wj)→ u strongly in C(I;E). Then

(wj − w, S(wj)− S(w))→ 0 strongly in L1(I).

Using (5.3) we find that for each t ∈ I, one has

|S(wj)(t)− S(w)(t)|2 → 0 as j →∞.

Hence S(w) = u.
(2) For each positive integer n, we let

Jn = (J + n−1A)−1, An = n(J − Jn)

(J being the identity map of E) and we consider the map Sn : L2(I;E) →
C(I;E), given by Sn(w) = un, where un is the unique solution to

u′′n(t) = Anun(t) + w(t) a.e. on I

un(0) = un(T ) = 0.
(5.5)

Using the well known machinery on approximate solutions (see [3]), we can prove
that for each bounded M ⊂ L2(I;E) and every ε > 0, there exists a positive
integer n0 = n0(M, ε) such that

|Sn0(w)− S(w)|∞ ≤ ε for all w ∈M,

that is Sn0(M) is an ε-net for S(M). We omit here the details.
(3) From (5.4) we see that for each n and any bounded M ⊂ L2(I;E), the set
Sn(M) is bounded in C(I;E). In addition, using

un(t) = −
∫ T

0

G(t, s)[Anun(s) + w(s)]ds

and the Lipschitz property of An, we obtain

|un(t)− un(t′)| ≤
∫ T

0

|G(t, s)−G(t′, s)|[2n|un(s)|+ |w(s)|]ds.
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This implies the equicontinuity of Sn(M).
Now we consider a compact, convex subset C of E and a countable set

M ⊂ L2(I;C), We claim that Sn(M)(t) is relatively compact in E for every
t ∈ I. Indeed, for any w ∈M , the unique solution un = Sn(w) of (5.5) satisfies

−u′′n + nun = nJnun − w a.e. on I.

If we denote by G̃ the Green function of the operator −u′′ + nu corresponding
to the boundary conditions u(0) = u(T ) = 0, then

un(t) =
∫ T

0

G̃(t, s)[nJnun(s)− w(s)]ds. (5.6)

Using a result by Heinz, really a particular case of Lemma 4.3, the nonexpan-
sivity of Jn and the inclusion M(s) ⊂ C a.e. on I, from (5.6), we obtain

β0(Sn(M)(t)) ≤ n
∫ T

0

G̃(t, s)β0(Sn(M)(s))ds. (5.7)

Here β0 is the ball measure of noncompactness corresponding to a suitable
separable closed subspace of E. Let

ϕ(t) = β0(Sn(M)(t)), v(t) =
∫ T

0

G̃(t, s)ϕ(s)ds.

We have
−v′′ + nv = ϕ, v(0) = v(T ) = 0.

According to (5.7), ϕ ≤ nv. Hence −v′′ ≤ 0. This, since v(0) = v(T ) = 0,
implies v ≤ 0 on I. The function v being nonnegative, it follows v ≡ 0. Thus
β0(Sn(M)(t)) = 0 for all t ∈ I, that is Sn(M)(t) is relatively compact in E. As
a result, Sn(M) is relatively compact in C(I;E).

Therefore, we have shown that for each ε > 0, there exists a relatively
compact ε-net of S(M). By Hausdorff’s Theorem, S(M) is relatively compact
in C(I;E). �

Remark 5.1 Proposition 5.1 together with Theorem 4.2 gives new existence
results for the problem (5.1) if the multivalued perturbation g satisfies (g1)–
(g5) and (SG).

Similar results can be obtained for problems of type (5.1) with some other
boundary conditions like those in [1] and [15].
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