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Nonlocal quasilinear damped differential

inclusions ∗

Mouffak Benchohra, Efrosini P. Gatsori & Sotiris K. Ntouyas

Abstract

In this paper we investigate the existence of mild solutions to second
order initial value problems for a class of damped differential inclusions
with nonlocal conditions. By using suitable fixed point theorems, we study
the case when the multivalued map has convex and nonconvex values.

1 Introduction

The study of the dynamical buckling of the hinged extensible beam which is
either stretched or compressed by axial force in a Hilbert space, can be modelled
by the hyperbolic equation

∂2u

∂t2
+
∂4u

∂x4
−
(
α+ β

∫ L

0

∣∣∂u
∂t

(ξ, t)
∣∣2dξ)∂2u

∂x2
+ g

(
∂u

∂t

)
= 0, (1.1)

where α, β, L > 0, u(t, x) is the deflection of the point x of the beam at the time
t, g is a nondecreasing numerical function, and L is the length of the beam.

Equation (1.1) has its analogue in Rn and can be included in a general
mathematical model

u′′ +A2u+M(‖A1/2u‖2H)Au+ g(u′) = 0, (1.2)

where A is a linear operator in a Hilbert space H and M , g are real functions.
Equation (1.1) was studied by Patcheu [19] and (1.2) was studied by Matos and
Pereira [15]. These equations are special cases of the following second order
damped nonlinear differential equation in an abstract space

u′′ +Au+Bu′ = f(t, u),
u(0) = u0, u′(0) = u1,

where A and B are linear operators.
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In this paper, we study the existence of mild solutions, defined on a com-
pact real interval J , for second order Initial Value Problems (IVP), for damped
differential inclusions, with nonlocal conditions, of the form

y′′ −Ay ∈ By′ + F (t, y), t ∈ J := [0, b], (1.3)
y(0) + f(y) = y0, y′(0) = η, (1.4)

where F : J × E → P(E) is a multivalued map, f ∈ C(C(J,E), E), A is the
infinitesimal generator of a strongly continuous cosine family {C(t) : t ∈ R} in a
Banach space E = (E, ‖ ·‖), B is a bounded linear operator on E and y0, η ∈ E.

The study of IVP with nonlocal conditions is of significance since they have
applications in problems in physics and other areas of applied mathematics.
Some authors have paid attention to the research of IVP with nonlocal con-
ditions, in the few past years. We refer to Balachandran and Chandrasekaran
[1], Byszewski [3], [4], Ntouyas [18], and Ntouyas and Tsamatos [16], [17]. IVP
,for second order semilinear equations with nonlocal conditions, was studied by
Ntouyas and Tsamatos [17], and Ntouyas [18].

Here, we study existence results on compact intervals, when the multivalued
F has convex or nonconvex values. In the first case, a fixed point theorem due
to Martelli [14] is used and, in the later, a fixed point theorem for contraction
multivalued maps due to Covitz and Nadler [6] is applied.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from
multivalued analysis which are used throughout this paper.

C(J,E) is the Banach space of continuous functions from J into E normed
by

‖y‖∞ = sup{‖y(t)‖ : t ∈ J},

and B(E) denotes the Banach space of bounded linear operators from E into
E.

A measurable function y : J → E is Bochner integrable if and only if ‖y‖ is
Lebesgue integrable. (For properties of the Bochner integral see Yosida [22]).

L1(J,E) denotes the linear space of equivalence classes of measurable func-
tions y : J → E such that

∫ b
0
‖y(s)‖ ds <∞.

Let (X, ‖ · ‖) be a Banach space. A multivalued map G : X → P(E) is
convex (closed) valued if G(x) is convex (closed) for all x ∈ X. G is bounded on
bounded sets if G(B) = ∪x∈BG(x) is bounded in X for any bounded set B of
X (i.e. supx∈B{sup{‖y‖ : y ∈ G(x)}} <∞).

G is called upper semicontinuous (u.s.c.) on X if for each x0 ∈ X the
set G(x0) is a nonempty, closed subset of X, and if for each open set B of X
containing G(x0), there exists an open neighbourhood U of x0 such that G(U) ⊆
B. G is said to be completely semicontinuous if G(B) is relatively compact
for every bounded subset B ⊆ X. If the multivalued map G is completely
semicontinuous with nonempty compact values, then G is u.s.c. if and only if
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G has a closed graph (i.e. xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)).
G has a fixed point if there is x ∈ X such that x ∈ G(x).

P (X) = {Y ∈ P(X) : Y 6= ∅}, Pcl(X) = {Y ∈ P (X) : Y closed},
Pb(X) = {Y ∈ P (X) : Y bounded}, Pc(X) = {Y ∈ P (X) : Y convex}.

A multivalued map G : J → Pcl(X) is said to be measurable if for each x ∈ X
the function Y : J → R, defined by

Y (t) = d(x,G(t)) = inf{|x− z| : z ∈ G(t)},

is measurable. Other equivalent definitions of the measurability for multivalued
maps can be found in [12]. For more details on multivalued maps and for the
proofs of the known results cited in this section we refer the interesting reader
to the books of Deimling [7] and Hu and Papageorgiou [12].

An upper semicontinuous map G : X → P(E) is said to be condensing
if for any subset B ⊆ X with α(B) 6= 0, we have α(G(B)) < α(B), where
α denotes the Kuratowski measure of noncompacteness. For properties of the
Kuratowski measure, we refer to the book of Banas and Goebel [2]. We remark
that a completely semicontinuous multivalued map is the easiest example of a
condensing map. For more details on multivalued maps we refer to the books
of Deimling [7], Gorniewicz [10] and Hu and Papageorgiou [12].

We say that a family {C(t) : t ∈ R} of operators in B(E) is a strongly
continuous cosine family if:

(i) C(0) = I (I is the identity operator in E)

(ii) C(t+ s) + C(t− s) = 2C(t)C(s) for all s, t ∈ R

(iii) the map t 7→ C(t)y is strongly continuous for each y ∈ E

The strongly continuous sine family {S(t) : t ∈ R}, associated to the given
strongly continuous cosine family {C(t) : t ∈ R}, is defined by

S(t)y =
∫ t

0

C(s)yds, y ∈ E, t ∈ R.

The infinitesimal generator A : E → E of a cosine family {C(t) : t ∈ R} is
defined by

Ay =
d2

dt2
C(t)y

∣∣∣
t=0

.

It is known [21] that if A is the infinitesimal generator of a strongly continuous
cosine family C(t), t ∈ R, of bounded linear operators, then there exist constants
M ≥ 1 and ω ≥ 0 such that

‖C(t)‖ ≤Meω|t|, t ∈ R and ‖S(t1)− S(t2)‖ ≤M
∣∣∣∣∫ t1

t2

eω|s| ds

∣∣∣∣ , t1, t2 ∈ R.
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For a strongly continuous cosine family if X = {x ∈ E : C(t)x is once continu-
ously differentiable on R}, then S(t)E ⊂ X for t ∈ R, S(t)X ⊂ D(A) for t ∈ R,
(d/dt)C(t)x = AS(t)x for x ∈ X and t ∈ R, and (d2/dt2)C(t)x = AC(t)x =
C(t)Ax for x ∈ D(A) and t ∈ R.

For more details on strongly continuous cosine and sine families, we refer
the reader to the book of Goldstein [9], Heikkila and Lakshmikantham [11],
Fattorini [8], and to the papers of Travis and Webb [20], [21].

3 Existence result: The convex case

Assume in this section that F : J ×E → P(E) is a bounded, closed and convex
valued multivalued map.

Definition 3.1 A function y ∈ C(J,E) is called a mild solution of (1.3)–(1.4)
if there exists a function v ∈ L1(J,E) such that v(t) ∈ F (t, y(t)) a.e. on J,
y(0) + f(y) = y0, y

′(0) = η and

y(t) = (C(t)− S(t)B)(y0 − f(y)) + S(t)η

+
∫ t

0

C(t− s)By(s)ds+
∫ t

0

S(t− s)v(s)ds.

We will need the following assumptions:

(H1) A is the infinitesimal generator of a given strongly continuous and bounded
cosine family {C(t) : t ∈ J}, and M = sup{‖C(t)‖; t ∈ J};

(H2) F : J ×E → BCC(E); (t, y) 7→ F (t, y) is measurable with respect to t for
each y ∈ E, u.s.c. with respect to y for each t ∈ J , and for each fixed
y ∈ C(J,E) the set

SF,y =
{
g ∈ L1(J,E) : g(t) ∈ F (t, y(t)) for a.e. t ∈ J

}
is nonempty;

(H3) there exists a constant Q, with QM(1 + b‖B‖) < 1, such that

‖f(y)‖ ≤ Q‖y‖ for each y ∈ C(J,E);

(H4) ‖F (t, y)‖ := sup{‖v‖ ∈ F (t, y)} ≤ p(t)ψ(‖y‖) for almost all t ∈ J and
all y ∈ E, where p ∈ L1(J,R+) and ψ : R+ → (0,∞) is continuous and
increasing with ∫ b

0

m̂(s)ds <
∫ ∞
c

ds

s+ ψ(s)
,

where

c =
1

1−QM(1 + b‖B‖)
[M(1 + b‖B‖)‖y0‖+ bM‖η‖]

and m̂(t) = max{M‖B‖, bMp(t)};
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(H5) for each bounded set B ⊂ C(J,E) and t ∈ J the set

{
(C(t)− S(t)B)(y0 − f(y)) + S(t)η +

∫ t

0

C(t− s)By(s)ds

+
∫ t

0

S(t− s)g(s)ds : g ∈ SF,B
}

is relatively compact in E, where SF,B = ∪{SF,y : y ∈ B}.

Remark 3.1 (i) If dimE < ∞ then, for each y ∈ C(J,E), SF,y 6= ∅ (see
Lasota and Opial [13]).

(ii) If dimE =∞ then SF,y is nonempty if and only if the function Y : J → R,
defined by

Y (t) := inf{‖v‖ : v ∈ F (t, y)},

belongs to L1(J,R) (see Hu and Papageorgiou [12]).
Also, if dimE =∞, in order to get meausurable selections for the multi-
function t 7→ F (t, y(t)), we can suppose that F is measurable with respect
to L⊗B, where L and B are the Lebesque and Borel σ-fields on J and E
respectively.

(iii) Assumption (H4) is satisfied for example if F satisfies the standard dom-
ination

‖F (t, y)‖ ≤ p(t)(1 + ‖y‖), p ∈ L1, t ∈ J, y ∈ E.

(iv) If we assume that C(t), t ∈ J is completely continuous then (H5) is
satisfied.

The following lemmas are crucial in the proof of our main theorem.

Lemma 3.1 ([13]) Let I be a compact real interval and X be a Banach space.
Moreover, let F be a multivalued map satisfying (H2) and let Γ be a linear
continuous mapping from L1(I,X) to C(I,X). Then the operator

Γ ◦ SF : C(I,X)→ BCC(C(I,X)), y 7→ (Γ ◦ SF )(y) := Γ(SF,y),

is a closed graph operator in C(I,X)× C(I,X).

Lemma 3.2 ([14]) Let X be a Banach space and N : X → BCC(X) be an
upper semicontinuous and condensing map. If the set

Ω := {y ∈ X : λy ∈ N(y) for some λ > 1}

is bounded, then N has a fixed point.

The following theorem is our main result in this article.

Theorem 3.1 Let f be a continuous and convex function. Assume that (H1)-
(H5) hold. Then the IVP (1.3)-(1.4) has at least one mild solution.
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Proof. We transform (1.3)-(1.4) into a fixed point problem. Consider the
multivalued map N : C(J,E)→ P(C(J,E)), defined by

N(y) :=
{
h ∈ C(J,E) : h(t) = (C(t)− S(t)B)(y0 − f(y)) + S(t)η

+
∫ t

0

C(t− s)By(s)ds+
∫ t

0

S(t− s)g(s)ds g ∈ SF,y
}
,

where SF,y =
{
g ∈ L1(J,E) : g(t) ∈ F (t, y(t)) for a.e. t ∈ J

}
.

Remark 3.2 It is clear that the fixed points of N are mild solutions to IVP
(1.3)-(1.4).

We shall show that N is completely semicontinuous with bounded, closed,
convex values and it is upper semicontinuous. The proof will be given in several
steps.

Step 1: N(y) is convex for each y ∈ C(J,E).
Indeed, if h1, h2 belong to Ny then there exist g1, g2 ∈ SF,y such that, for each
t ∈ J , we have

hi(t) = (C(t)− S(t)B)(y0 − f(y)) + S(t)η

+
∫ t

0

C(t− s)By(s)ds+
∫ t

0

S(t− s)gi(s)ds, i = 1, 2.

Let 0 ≤ α ≤ 1. Then for each t ∈ J we have

(αh1 + (1− α)h2)(t)

= (C(t)− S(t)B)(y0 − f(y)) + S(t)η +
∫ t

0

C(t− s)By(s)ds

+
∫ t

0

S(t− s)[αg1(s) + (1− α)g2(s)]ds.

Since SF,y is convex (because F has convex values) it follows that αh1 + (1 −
α)h2 ∈ N(y).

Step 2: N is bounded on bounded sets of C(J,E).
Indeed, it is enough to show that for each r > 0 there exists a positive constant
` such that for each h ∈ Ny, y ∈ Br := {y ∈ C(J,E) : ‖y‖∞ ≤ r}, one has
‖h‖∞ ≤ `. If h ∈ N(y) then there exists g ∈ SF,y such that, for each t ∈ J , we
have

h(t) = (C(t)− S(t)B)(y0 − f(y)) + S(t)η

+
∫ t

0

C(t− s)By(s)ds+
∫ t

0

S(t− s)g(s)ds.
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By (H3) and (H4), we have, for each t ∈ J , that

‖h(t)‖ ≤ (‖C(t)‖+ ‖S(t)‖‖B‖)(‖y0‖+Q‖y(t)‖) + ‖S(t)‖‖η‖

+
∫ t

0

‖C(t− s)‖‖B‖‖y(s)‖ds+
∫ t

0

‖S(t− s)g(s)‖ds

≤ (M + bM‖B‖)(‖y0‖+Qr) + bM‖η‖

+M‖B‖br + bM · sup
y∈[0,r]

ψ(y)
(∫ t

0

p(s)ds
)
.

Then for each h ∈ N(Br) we have

‖h‖∞ ≤ (M + ‖bM‖B‖)(‖y0‖+Qr) + bM‖η‖

+M‖B‖br + bM sup
t∈J

(∫ t

0

p(s)ds
)

max
y∈Br

sup
y∈[0,r]

ψ(y) := `.

Step 3: N sends bounded sets of C(J,E) into equicontinuous sets.
Let t1, t2 ∈ J, t1 < t2 and Br be as before. For each y ∈ Br and h ∈ Ny, there
exists g ∈ SF,y such that

h(t) = (C(t)− S(t)B)(y0 − f(y)) + S(t)η

+
∫ t

0

C(t− s)By(s)ds+
∫ t

0

S(t− s)g(s)ds.

Thus

‖h(t2)− h(t1)‖
≤ ‖C(t2)− C(t1)‖‖y0 − f(y)‖+ ‖S(t2)B − S(t1)B‖‖y0 − f(y)‖

+‖S(t2)− S(t1)‖‖η‖+
∥∥∥∫ t1

0

[C(t2 − s)By(s)− C(t1 − s)By(s)]ds
∥∥∥

+
∥∥∥∫ t2

t1

C(t2 − s)By(s)ds
∥∥∥+

∥∥∥∫ t1

0

[S(t2 − s)− S(t1 − s)]g(s)ds
∥∥∥

+
∥∥∥∫ t2

t1

S(t2 − s)g(s)ds
∥∥∥

≤ ‖C(t2)− C(t1)‖‖y0 − f(y)‖+ ‖S(t2)B − S(t1)B‖‖y0 − f(y)‖

+‖S(t2)− S(t1)‖‖η‖+
∥∥∥∫ t1

0

[C(t2 − s)By(s)− C(t1 − s)By(s)]ds
∥∥∥

+
∥∥∥∫ t2

t1

C(t2 − s)By(s)ds
∥∥∥

+ sup
t∈J

p(t) sup
y∈[0,r]

ψ(y)
∥∥∥∫ t1

0

[S(t2 − s)− S(t1 − s)]g(s)ds
∥∥∥

+Mb(t2 − t1) sup
y∈[0,r]

ψ(y)
(∫ t

0

p(s)ds
)
.
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The right-hand side tends to zero as t2 − t1 → 0. As a consequence of Step 2,
Step 3 and (H5), together with the Ascoli-Arzelá theorem, we conclude that N
is completely continuous and, therefore, a condensing map.

Step 4: N has a closed graph.
Let yn → y∗, hn ∈ Nyn, and hn → h∗. We shall prove that h∗ ∈ Ny∗. The
formula hn ∈ N(yn) means that there exists gn ∈ SF,yn such that

hn(t) = (C(t)− S(t)B)(y0 − f(yn)) + S(t)η

+
∫ t

0

C(t− s)Byn(s)ds+
∫ t

0

S(t− s)gn(s)ds.

We have to prove that there exists g∗ ∈ SF,y∗ such that

h∗(t) = (C(t)− S(t)B)(y0 − f(y∗)) + S(t)η

+
∫ t

0

C(t− s)By∗(s)ds+
∫ t

0

S(t− s)g∗(s)ds.

Consider the linear bounded operator Γ : L1(J,E)→ C(J,E), defined by

(Γg)(t) :=
∫ t

0

S(t− s)g(s)ds.

Clearly we have that∥∥∥(hn − [C(t)− S(t)B](y0 − f(yn)− S(t)η)−
∫ t

0

C(t− s)Byn(s)
)

(
h∗ − [C(t)− S(t)B](y0 − f(y∗)− S(t)η)−

∫ t

0

C(t− s)By∗(s)
)∥∥∥→ 0,

as n→∞. From Lemma 3.1, it follows that Γ ◦ SF is a closed graph operator.
Since yn → y∗, it follows, from Lemma 3.1, that

h∗ − [C(t)− S(t)B](y0 − f(y∗)− S(t)η)−
∫ t

0

C(t− s)By∗(s)

=
∫ t

0

S(t− s)g∗(s)ds

for some g∗ ∈ SF,y∗ .

Step 5: The set Ω := {y ∈ C(J,E) : λy ∈ N(y), for some λ > 1} is bounded.
Let y ∈ Ω. Then λy ∈ N(y) for some λ > 1. Thus, there exists g ∈ SF,y such
that

y(t) = λ−1(C(t)− S(t)B)(y0 − f(y)) + λ−1S(t)η

+λ−1

∫ t

0

C(t− s)By(s)ds+ λ−1

∫ t

0

S(t− s)g(s)ds, t ∈ J.
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The above formula implies (by (H3) and (H4)) that, for each t ∈ J , we have

‖y(t)‖ ≤ (M + bM‖B‖)(‖y0‖+Q‖y(t)‖) + bM‖η‖

+M‖B‖
∫ t

0

‖y(s)‖ds+Mb

∫ t

0

p(s)ψ(‖y(s)‖)ds,

or

[1−QM(1 + b‖B‖)]‖y(t)‖ ≤ (M + bM‖B‖)‖y0‖+ bM‖η‖

+M‖B‖
∫ t

0

‖y(s)‖ds+Mb

∫ t

0

p(s)ψ(‖y(s)‖)ds,

and

‖y(t)‖ ≤ 1
1−QM(1 + b‖B‖)

{
(M + bM‖B‖)‖y0‖+ bM‖η‖

+M‖B‖
∫ t

0

‖y(s)‖ds+Mb

∫ t

0

p(s)ψ(‖y(s)‖)ds
}
, t ∈ J.

Let us denote the right-hand side of the above inequality as v(t). Then we have

v(0) =
1

1−QM(1 + b‖B‖)
[M(1 + b‖B‖)‖y0‖+ bM‖η‖],

‖y(t)‖ ≤ v(t), t ∈ J,

and v′(t) = M‖B‖‖y(t)‖+ bMp(t)ψ(‖y(t)‖), t ∈ J . Using the increasing char-
acter of ψ we get

v′(t) ≤M‖B‖v(t) + bMp(t)ψ(v(t)) ≤ m̂(t)[v(t) + ψ(v(t))], t ∈ J.

The above inequality implies, for each t ∈ J , that∫ v(t)

v(0)

ds

s+ ψ(s)
≤
∫ b

0

m̂(s)ds <
∫ ∞
v(0)

ds

s+ ψ(s)
.

Consequently, there exists a constant d such that v(t) ≤ d, t ∈ J , and hence
‖y‖∞ ≤ d, where d depends only on the functions p and ψ. This shows that Ω
is bounded.

Set X := C(J,E). As a consequence of Lemma 3.2 we deduce that N has a
fixed point which is a mild solution of (1.3)-(1.4). ♦

4 Existence Result: The nonconvex case

In this section we consider problem (1.3)-(1.4) with a nonconvex valued right
hand side.

Let (X, d) be a metric space induced from the normed space (X, ‖ · ‖). Con-
sider Hd : P (X)× P (X)→ R+ ∪ {∞}, given by

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
,
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where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b). Then (Pb,cl(X),Hd) is
a metric space and (Pcl(X),Hd) is a generalized metric space.

Definition 4.1 A multivalued operator N : X → Pcl(X) is called:

a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y) for each x, y ∈ X,

b) contraction if and only if it is γ-Lipschitz with γ < 1.

Moreover, N has a fixed point if there is x ∈ X such that x ∈ N(x). The fixed
point set of the multivalued operator N will be denoted by FixN .

Our considerations are based on the following fixed point theorem for con-
traction multivalued operators, given by Covitz and Nadler in 1970 [6] (see also
Deimling [7, Thm. 11.1]).

Lemma 4.1 Let (X, d) be a complete metric space. If N : X → Pcl(X) is a
contraction, then FixN 6= ∅.

Theorem 4.1 Assume that:

(A1) A is an infinitesimal generator of a given strongly continuous and bounded
cosine family {C(t) : t ∈ J} with ‖C(t)‖B(E) ≤M ;

(A2) F : J ×E → Pcl(E) has the property that F (·, u) : J → Pcl(E) is measur-
able for each u ∈ E;

(A3) there exists l ∈ L1(J,R) such that

Hd(F (t, u), F (t, u)) ≤ l(t)‖u− u‖, for ea t ∈ J and u, u ∈ E,

and
d(0, F (t, 0)) ≤ l(t), for almost each t ∈ J.

(A4) ‖f(y) − f(y)‖ ≤ c‖y − y‖, for each t ∈ J and y, y ∈ C(J,E), where c is
a nonnegative constant.

Then IVP (1.3)-(1.4) has at least one mild solution on J , provided

cM(1 + b‖B‖) +M‖B‖b+
M

τ
< 1.

Proof. Transform (1.3)-(1.4) into a fixed point problem. Consider the multi-
valued operator N : C(J,E)→ P(C(J,E)), defined by

N(y) :=
{
h ∈ C(J,E) : h(t) = [C(t)− S(t)B](y0 − f(y)) + S(t)η

+
∫ t

0

C(t− s)By(s) ds+
∫ t

0

S(t− s)v(s) ds,
}

where v ∈ SF,y =
{
v ∈ L1(J,E) : v(t) ∈ F (t, y(t)) for a.e. t ∈ J

}
.
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Remark 4.1 (i) It is clear that the fixed points of N are solutions to (1.3)-
(1.4).
(ii) For each y ∈ C(J,E), the set SF,y is nonempty since, by (A2), F has a
measurable selection [5, Theorem III.6].

We shall show that N satisfies the assumptions of Lemma 4.1. The proof
will be given in two steps.

Step 1: N(y) ∈ Pcl(C(J,E) for each y ∈ C(J,E).
Indeed, let (yn)n≥0 ∈ N(y) be such that yn → ỹ in C(J,E). Then ỹ ∈ C(J,E)
and

yn(t) ∈ [C(t)− S(t)B](y0 − f(y)) + S(t)η

+
∫ t

0

C(t− s)By(s) ds+
∫ t

0

S(t− s)F (s, y(s)) ds, t ∈ J.

Using the closedness property of the values of F and the second part of (A3) we
can prove that

∫ t
0
C(t− s)By(s) ds+

∫ t
0
S(t− s)F (s, y(s)) ds is closed, for each

t ∈ J. Then yn(t)→ ỹ(t) in

[C(t)−S(t)B](y0−f(y))+S(t)η+
∫ t

0

C(t−s)By(s) ds+
∫ t

0

S(t−s)F (s, y(s)) ds,

t ∈ J . So, ỹ ∈ N(y).

Step 2: Hd(N(y1), N(y2)) ≤ γ‖y1 − y2‖ for each y1, y2 ∈ C(J,E) (where
γ < 1).
Let y1, y2 ∈ C(J,E) and h1 ∈ N(y1). Then, there exists g1(t) ∈ F (t, y1(t)) such
that

h1(t) = [C(t)− S(t)B](y0 − f(y1)) + S(t)η

+
∫ t

0

C(t− s)By1(s) ds+
∫ t

0

S(t− s)g1(s) ds, t ∈ J.

From (A3), it follows that

Hd(F (t, y1(t)), F (t, y2(t))) ≤ l(t)‖y1 − y2‖.

Hence, there is w ∈ F (t, y2(t)) such that ‖g1(t) − w‖ ≤ l(t)‖y1 − y2‖, t ∈ J .
Consider U : J → P(E), given by

U(t) = {w ∈ E : ‖g1(t)− w‖ ≤ l(t)‖y1 − y2‖}.

Since the multivalued operator V (t) = U(t)∩F (t, y2(t)) is measurable [5, Prop.
III.4]), there exists g2(t) a measurable selection for V . So, g2(t) ∈ F (t, y2(t))
and

‖g1(t)− g2(t)‖ ≤ l(t)‖y1 − y2‖ for each t ∈ J.
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Let us define, for each t ∈ J ,

h2(t) = [C(t)− S(t)B](y0 − f(y2)) + S(t)η

+
∫ t

0

C(t− s)By2(s) ds+
∫ t

0

S(t− s)g2(s) ds, t ∈ J.

Then, we have

‖h1(t)− h2(t)‖

≤ (M + bM‖B‖)‖f(y1)− f(y2)‖+M‖B‖
∫ t

0

‖y1(s)− y2(s))‖ds

+M
∫ t

0

‖g1(s)− g2(s)‖ ds

≤ cM(1 + b‖B‖)‖y1(t)− y2(t)‖+M‖B‖
∫ t

0

‖y1(s)− y2(s)‖ds

+M
∫ t

0

l(s)‖y1(s)− y2(s)‖ds

= cM(1 + b‖B‖)‖y1(t)− y2(t)‖+M‖B‖
∫ t

0

‖y1(s)− y2(s)‖ds

+M
∫ t

0

l(s)e−τL(s)eτL(s)‖y1(s)− y2(s)‖ ds

≤ cM(1 + b‖B‖)eτL(t)‖y1 − y2‖B +M‖B‖beτL(t)‖y1 − y2‖B

+M‖y1 − y2‖B
∫ t

0

l(s)eτL(s)ds

≤ cM(1 + b‖B‖)eτL(t)‖y1 − y2‖B +M‖B‖beτL(t)‖y1 − y2‖B

+M
‖y1 − y2‖B

τ
eτL(t),

where L(t) =
∫ t

0
l(s)ds, τ is a positive constant, and ‖ · ‖B is the Bielecki norm

on C(J,E), defined by

‖y‖B = max
t∈J
{‖y(t)‖e−τL(t)}.

Then
‖h1 − h2‖B ≤

[
cM(1 + b‖B‖) +M‖B‖b+

M

τ

]
‖y1 − y2‖B.

By the analogous relation, obtained by interchanging the roles of y1 and y2, it
follows that

Hd(N(y1), N(y2)) ≤
[
cM(1 + b‖B‖) +M‖B‖b+

M

τ

]
‖y1 − y2‖B.

Since cM(1+b‖B‖)+M‖B‖b+ M
τ < 1, N is a contraction and thus, by Lemma

4.1, it has a fixed point y, which is a mild solution to (1.3)-(1.4). ♦
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BP 89, 22000 Sidi Bel Abbès, Algérie
e-mail: benchohra@yahoo.com
Efrosini P. Gatsori

Department of Mathematics, University of Ioannina
451 10 Ioannina, Greece
e-mail: egatsori@yahoo.gr
Sotiris K. Ntouyas

Department of Mathematics, University of Ioannina
451 10 Ioannina, Greece
e-mail: sntouyas@cc.uoi.gr
http://www.uoi.gr/schools/scmath/math/staff/snt/snt.htm

Addendum: January 28, 2002

The authors would like to thank Prof. P. Ch. Tsamatos for point out the
invalidity of the growth condition imposed on f in conditon (H3). Consecuently,
(H3) must be replaced by
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(H3) There exists a constant Q such that

‖f(y)‖ ≤ Q for each y ∈ C(J,E)

In (H4) the constant c must be replaced by

c = M(1 + b‖B‖)(‖y0‖+Q) + bM‖η‖.

In Step 2 of the proof of Theorem 3.1, ...+Q‖y(t)‖) must be replaced by ..+Q)
and two lines below ...+Qr) must be replaced by ...+Q)

In Step 5 of the proof Theorem 3.1 from ”The above formula....” to 10 lines
below ”‖y(t)‖ ≤ v(t), t ∈ J,” must be replaced by:
The above formula implies (by (H3) and (H4)) that, for each t ∈ J , we have

‖y(t)‖ ≤ (M + bM‖B‖)(‖y0‖+Q) + bM‖η‖

+M‖B‖
∫ t

0

‖y(s)‖ds+Mb

∫ t

0

p(s)ψ(‖y(s)‖)ds.

Let us denote the right-hand side of the above inequality as v(t). Then we have

v(0) = M(1 + b‖B‖)(‖y0‖+Q) + bM‖η‖,
‖y(t)‖ ≤ v(t), t ∈ J,

End of addendum.


