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On periodic solutions of superquadratic

Hamiltonian systems ∗

Guihua Fei

Abstract

We study the existence of periodic solutions for some Hamiltonian
systems ż = JHz(t, z) under new superquadratic conditions which cover
the case H(t, z) = |z|2(ln(1 + |z|p))q with p, q > 1. By using the linking
theorem, we obtain some new results.

1 Introduction

We consider the superquadratic Hamiltonian system

ż = JHz(t, z) (1.1)

where H ∈ C1([0, 1]×R2N ,R) is a 1-periodic function in t, J =
(

0 −IN
IN 0

)
is

the standard 2N × 2N symplectic matrix, and

H(t, z)
|z|2

→ +∞ as |z| → +∞ uniformly in t. (1.2)

We assume H satisfies the following conditions.

(H1) H(t, z) ≥ 0, for all (t, z) ∈ [0, 1]× R2N .

(H2) H(t, z) = o(|z|2) as |z| → 0 uniformly in t.

In [12], Rabinowitz established the existence of periodic solutions for (1.1) under
the following superquadratic condition: there exist µ > 0 and r1 > 0 such that
for all |z| ≥ r1 and t ∈ [0, 1]

0 < µH(t, z) ≤ z ·Hz(t, z). (1.3)

Since then, the condition (1.3) has been used extensively in the literature; see
[1-14] and the references therein.
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It is easy to see that (1.3) does not include some superquadratic nonlinearity
like

H(t, z) = |z|2(ln(1 + |z|p))q, p, q > 1. (1.4)

In this paper, we shall study the periodic solutions of (1.1) under some
superquadratic conditons which cover the cases like (1.4). We assume H satisfies
the following condition.

(H3) There exist constants β > 1, 1 < λ < 1 + β−1
β , c1, c2 > 0 and L > 0 such

that

z ·Hz(t, z)− 2H(t, z) ≥ c1|z|β , ∀|z| ≥ L, ∀t ∈ [0, 1];

|Hz(t, z)| ≤ c2|z|λ, ∀|z| ≥ L, ∀t ∈ [0, 1].

Theorem 1.1 Suppose H ∈ C1([0, 1]× R2N ,R) is 1-periodic in t and satisfies
(1.2), (H1)–(H3). Then (1.1) possesses a nonconstant 1-periodic solution.

A straightforward computation shows that if H satisfies (1.4), for any T > 0,
the system (1.1) has a nonconstant T-periodic solution with minimal period T .
One can see Remark 2.2 and Corollary 2.3 for more examples.

For the second order Hamiltonian system

ü(t) + V ′(t, u(t)) = 0,
u(0)− u(1) = u̇(0)− u̇(1) = 0

(1.5)

we have a similar result.

Theorem 1.2 Suppose V ∈ C1([0, 1]× RN ,R) is 1-periodic in t and satisfies

(V1) V (t, x) ≥ 0, for all (t, x) ∈ [0, 1]× RN

(V2) V (t, x) = o(|x|2) as |x| → 0 uniformly in t

(V3) V (t, x)/|x|2 → +∞ as |x| → +∞ uniformly in t

(V4) There exist constants 1 < λ ≤ β, d1, d2 > 0 and L > 0 such that

x · V ′(t, x)− 2V (t, x) ≥ d1|x|β , ∀|x| ≥ L, ∀t ∈ [0, 1];

|V ′(t, x)| ≤ d2|x|λ, ∀|x| ≥ L, ∀t ∈ [0, 1]. (1.6)

( or V (t, x) ≤ d2|x|λ+1, ∀|x| ≥ L, ∀t ∈ [0, 1]). (1.7)

Then (1.5) possesses a nonconstant 1-periodic solution.

We shall use the linking theorem [13, Theorem 5.29] to prove our results.
The idea comes from [11, 12, 13]. Theorem 1.1 is proved in Section 2 while the
proof of Theorem 1.2 is carried out in Section 3.
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2 First order Hamiltonian system

Let S1 = R/(2πZ) and E = W 1/2,2(S1,R2N ). Then E is a Hilbert space with
norm ‖ · ‖ and inner product 〈·, ·〉. We define

〈Ax, y〉 =
∫ 1

0

(−Jẋ, y) dt, ∀x, y ∈ E; (2.1)

f(z) =
1
2
〈Az, z〉 −

∫ 1

0

H(t, z) dt, ∀z ∈ E. (2.2)

Then A is a bounded selfadjoint operator and kerA = R
2N . (H1)–(H3) imply

that
|H(t, z)| ≤ a1 + a2|z|λ+1, ∀z ∈ R2N .

This implies that f ∈ C1(E,R) and looking for the solutions of (1.1) is equivalent
to looking for the critical points of f [12, 13]. Let E0 = ker(A), E+ = positive
definite subspace of A, and E− = negative definite subspace of A. Then E =
E0 ⊕ E− ⊕ E+.

Lemma 2.1 Under the conditions of Theorem 1.1, f satisfies the (PS) condi-
tion.

Proof. Let {zm} be a (PS)-sequence, i.e.,

|f(zm)| ≤M ; f ′(zm)→ 0 as m→∞.

We want to show that {zm} is bounded. Then by a standard argument, {zm}
has a convergent subsequence [13]. Suppose {zm} is not bounded, then passing
to a subsequence if necessary, ‖zm‖ → +∞ as m→ +∞. By (H3), there exists
C3 > 0 such that for all z ∈ R2N , t ∈ [0, 1]

z ·Hz(t, z)− 2H(t, z) ≥ C1|z|β − C3.

Therefore, we have

2f(zm)− 〈f ′(zm), zm〉 =
∫ 1

0

[zm ·Hz(t, zm)− 2H(t, zm)]dt

≥
∫ 1

0

[C1|zm|β − C3]dt = C1

∫ 1

0

|zm|βdt− C3.

This implies ∫ 1

0
|zm|βdt
‖ zm ‖

→ 0 as m→∞. (2.3)

Note that from (H3), 1 < λ < 1 + β−1
β . Let α = β−1

β(λ−1) . Then

α > 1, αλ− 1 = α− 1
β
. (2.4)
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By (H3), there exists C4 > 0 such that

|Hz(t, z)|α ≤ Cα2 |z|λα + C4, ∀(t, z) ∈ [0, 1]× R2N . (2.5)

Denote zm = z+
m + z−m + z0

m ∈ E+ ⊕ E− ⊕ E0. We have

〈f ′(zm), z+
m〉 = 〈Az+

m, z
+
m〉 −

∫ 1

0

[Hz(t, zm) · z+
m]dt

≥ 〈Az+
m, z

+
m〉 −

∫ 1

0

|Hz(t, zm)||z+
m|dt

≥ 〈Az+
m, z

+
m〉 − (

∫ 1

0

|Hz(t, zm)|α)
1
α · Cα‖z+

m‖,

(2.6)

where Cα > 0 is a constant independent of m. By (2.5),∫ 1

0

|Hz(t, zm)|αdt ≤
∫ 1

0

(Cα2 |zm|λα + C4)dt

≤ C5(
∫ 1

0

|zm|βdt)1/β(
∫ 1

0

|zm|(αλ−1)· β
β−1 dt)1− 1

β + C4

≤ C6(
∫ 1

0

|zm|β)1/β‖zm‖(αλ−1) + C4.

Combining this inequality with (2.3) and (2.4) yields that

(
∫ 1

0
|Hz(t, zm)|αdt) 1

α

‖zm‖
≤ [

C6(
∫ 1

0
|zm|βdt)1/β

‖zm‖1/β
· ‖zm‖

(αλ−1)

‖zm‖α−
1
β

+
C4

‖zm‖α
]

1
α → 0

as m→∞. By (2.6) we have

〈Az+
m, z

+
m〉

‖zm‖ ‖z+
m‖
≤ ‖f

′(zm)‖ ‖z+
m‖

‖zm‖ ‖z+
m‖

+
(
∫ 1

0
|Hz(t, zm)|αdt) 1

α

‖zm‖
· Cα‖z

+
m‖

‖z+
m‖

→ 0

as m→∞. This implies

‖z+
m‖
‖zm‖

→ 0 as m→∞. (2.7)

Similary, we have
‖z−m‖
‖zm‖

→ 0 as m→∞. (2.8)

By (H3) there exist C7, C8 > 0 such that

z ·Hz(t, zm)− 2H(t, z) ≥ C7|z| − C8, ∀(t, z) ∈ [0, 1]× R2N .
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This implies

2f(zm)− 〈f ′(zm), zm〉 =
∫ 1

0

[zm ·Hz(t, zm)− 2H(t, zm)]dt ≥
∫ 1

0

[C7|zm| − C8]dt

≥
∫ 1

0

[C7|z0
m| − C7|z+

m| − C7|z−m| − C8]dt

≥ C9‖z0
m‖ − C10(‖z+

m‖+ ‖z−m‖+ 1).

Therefore, by (2.7) and (2.8)

‖z0
m‖
‖zm‖

→ 0 as m→∞.

Combine this with (2.7) and (2.8), we get

1 =
‖zm‖
‖zm‖

≤ ‖z
+
m‖+ ‖z−m‖+ ‖z0

m‖
‖zm‖

→ 0 as m→∞,

a contradiction. Therefore, {zm} must be bounded. �

Proof of Theorem 1.1 We prove that f satisfies the conditions of Theorem
5.29 in [13].
Step 1: By (H1)–(H3), we have

H(t, z) ≤ a1 + a2|z|λ+1, ∀(t, z) ∈ [0, 1]× R2N .

By (H2), for any ε > 0, there exists δ > 0 such that

H(t, z) ≤ ε|z|2, ∀t ∈ [0, 1], |z| ≤ δ.

Therefore, there exists M = M(ε) > 0 such that

H(t, z) ≤ ε|z|2 +M |z|λ+1, ∀(t, z) ∈ [0, 1]× R2N .

Note that λ + 1 > 2. By the same arguements as in [13, Lemma 6.16], there
exist ρ > 0 and ã > 0, such that for z ∈ E1 = E+

f(z) ≥ ã if ‖z‖ = ρ,

i.e., f satisfies (I7)(i) in [13, Theorem 5.29] with S = ∂Bρ ∩ E1.
Step 2: Let e ∈ E+ with ‖e‖ = 1 and Ẽ = E− ⊕ E0 ⊕ span{e}. We denote

K =
{
z ∈ Ẽ : ‖z‖ = 1

}
, λ− = inf

z∈E−,‖z−‖=1
|〈Az−, z−〉|, γ = (

‖A‖
λ−

)1/2.

For z ∈ K, we write z = z− + z0 + z+ ∈ Ẽ.
i) If ‖z−‖ > γ‖z+ + z0‖, by (H1) we have, for any r > 0,

f(rz) =
1
2
< Arz−, rz−〉+

1
2
〈Arz+, rz+〉 −

∫ 1

0

H(t, z)dt

≤ −1
2
λ−r2‖z−‖2 +

1
2
‖A‖r2‖z+‖2 ≤ 0.
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ii) If ‖z−‖ ≤ γ‖z+ + z0‖, we have

1 = ‖z‖2 = ‖z−‖2 + ‖z+ + z0‖2 ≤ (1 + γ2)‖z+ + z0‖2,

i.e.,

‖z+ + z0‖2 ≥ 1
1 + γ2

> 0. (2.9)

Denote K̃ = {z ∈ K : ‖z−‖ ≤ γ‖z+ + z0‖}.
Claim: There exists ε1 > 0 such that, ∀u ∈ K̃,

meas{t ∈ [0, 1] : |u(t)| ≥ ε1} ≥ ε1. (2.10)

For otherwise, ∀k > 0, ∃uk ∈ K̃ such that

meas{t ∈ [0, 1] : |uk(t)| ≥ 1
k
} < 1

k
. (2.11)

Write uk = u−k + u0
k + u+

k ∈ Ẽ. Notice that dim(E0 ⊕ span{e}) < +∞ and
‖u0

k + u+
k ‖ ≤ 1. In the sense of subsequence, we have

u0
k + u+

k → u0
0 + u+

0 ∈ E0 ⊕ span{e} as k → +∞.

Then (2.9) implies that

‖u0
0 + u+

0 ‖2 ≥
1

γ2 + 1
> 0. (2.12)

Note that ‖u−k ‖ ≤ 1, in the sense of subsequence u−k ⇀ u−0 ∈ E− as k → +∞.
Thus in the sense of subsequences,

uk ⇀ u0 = u−0 + u0
0 + u+

0 as k → +∞.

This means that uk → u0 in L2, i.e.,∫ 1

0

|uk − u0|2dt→ 0 as k → +∞. (2.13)

By (2.12) we know that ‖u0‖ > 0. Therefore,
∫ 1

0
|u0|2dt > 0. Then there exist

δ1 > 0, δ2 > 0 such that

meas{t ∈ [0, 1] : |u0(t)| ≥ δ1} ≥ δ2. (2.14)

Otherwise, for all n > 0, we must have

meas{t ∈ [0, 1] : |u0(t)| ≥ 1
n
} = 0, i.e., meas{t ∈ [0, 1] : |u0(t)| < 1

n
} = 1;

0 <
∫ 1

0

|u0|2dt <
1
n2
· 1→ 0 as n→ +∞.
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We get a contradiction. Thus (2.14) holds. Let Ω0 = {t ∈ [0, 1] : |u0(t)| ≥ δ1},
Ωk = {t ∈ [0, 1] : |uk(t)| < 1/k}, and Ω⊥k = [0, 1]\Ωk. By (2.11), we have

meas(Ωk ∩Ω0) = meas(Ω0 −Ω0 ∩Ω⊥k ) ≥ meas(Ω0)−meas(Ω0 ∩Ω⊥k ) ≥ δ2 −
1
k
.

(2.15)
Let k be large enough such that δ2 − 1

k ≥
1
2δ2 and δ1 − 1

k ≥
1
2δ1. Then we have

|uk(t)− u0(t)|2 ≥ (δ1 −
1
k

)2 ≥ (
1
2
δ1)2, ∀t ∈ Ωk ∩ Ω0.

This implies that∫ 1

0

|uk − u0|2dt ≥
∫

Ωk∩Ω0

|uu − u0|2dt ≥ (
1
2
δ1)2 ·meas(Ωk ∩ Ω0)

≥ (
1
2
δ1)2 · (δ2 −

1
k

) ≥ (
1
2
δ1)2(

1
2
δ2) > 0.

This is a contradiction to (2.13). Therefore the claim is true and (2.10) holds.
For z = z− + z0 + z+ ∈ K̃, let Ωz = {t ∈ [0, 1] : |z(t)| ≥ ε1}. By (1.2), for

M = ‖A‖
ε31

> 0, there exists L1 > 0 such that

H(t, x) ≥M |x|2, ∀|x| ≥ L1, uniformly in t.

Choose r1 ≥ L1/ε1. For r ≥ r1,

H(t, rz(t)) ≥M |rz(t)|2 ≥Mr2ε2
1, ∀t ∈ Ωz.

By (H1), for r ≥ r1

f(rz) =
1
2
r2〈Az+, z+〉+

1
2
r2〈Az−, z−〉 −

∫ 1

0

H(t, rz)dt

≤ 1
2
‖A‖r2 −

∫
Ωz

H(t, rz)dt ≤ 1
2
‖A‖r2 −Mr2ε2

1 ·meas(Ωz)

≤ 1
2
‖A‖r2 −Mε3

1r
2 = −1

2
‖A‖r2 < 0.

Therefore, we have proved that

f(rz) ≤ 0, for any z ∈ K and r ≥ r1. (2.16)

Let E2 = E− ⊕ E0, Q = {re : 0 ≤ r ≤ 2r1} ⊕ {z ∈ E2 : ‖z‖ ≤ 2r1}. By (H1)
and (2.16) we have f |∂Q ≤ 0, i.e., f satisfies (I7)(ii) in [13, Theorem 5.29].
Step 3: By Lemma 2.1, f satisfies the (PS) condition. Similar to the proof
of [13, Theorem 6.10], by the linking theorem [13, Theorem 5.29], there exists a
critical point z∗ ∈ E of f such that f(z∗) ≥ ã > 0. Moreover, z∗ is a classical
solution of (1.1) and z∗ is nonconstant by (H1). �
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Remark 2.2 i) Suppose H(t, z) = 1
2 〈B(t)z, z〉 + H̃(t, z) with B(t) being a

2N × 2N matrix, continuous and 1-periodic in t and H̃(t, z) satisfies (1.2) and
(H1)-(H3). We have the same conclusion as Theorem 1.1. The proof is similar
and we omit it.

ii) Suppose H(t, z) = H(z) is independent on t, i.e., (1.1) is an autonomous
Hamiltonian system. Then under similar conditions as (1.2) and (H1)-(H3), for
any T > 0, the system (1.1) has a nonconstant T -periodic solution. Moreover, if
H(z) ∈ C2(R2N ,R) and satisfies some strictly convex conditions such as H ′′(x)
is positive defininte for x 6= 0, then for any T > 0, (1.1) has a nonconstant
T -periodic solution with minimal period T . We omit the proof which is similar
to the one in [4, 5].

iii) Suppose (1.4) holds, i.e.,

H(t, z) = H(z) = |z|2(ln(1 + |z|p))q, ∀(t, z) ∈ [0, 1]× R2N ,

where p > 1 and q > 1. Obviously, (1.2), (H1) and (H2) hold. Note that

z ·Hz(z)− 2H(z) = |z|2q(ln(1 + |z|q))q−1 p|z|p

1 + |z|p
≥ |z|2 pq(ln 2)q−1

2
, ∀|z| ≥ 1.

|Hz(z)| ≤ 2(ln(1 + |z|p))q|z|+ p|z|p

1 + |z|p
q(ln(1 + |z|p))q−1|z| ≤ 2|z| 54 , ∀|z| ≥ L,

for L being large enough. This implies (H3). By directly computation, H ′′(z) is
positive definite for z 6= 0. Therefore, for any T > 0, (1.1) possesses a T -periodic
solution with minimal period T .

iv) There are many examples which satisfy (H1)-(H3) and (1.2) but do not
satisfy (1.3). For example

H(t, z) = |z|2 ln(1 + |z|2) ln(1 + 2|z|3).

Corollary 2.3 Suppose H(t, z) = |z|2h(t, z) with h ∈ C1([0, 1]×R2N ,R) being
1-periodic in t and satisfies

(H1′) h(t, z) ≥ 0, for all (t, z) ∈ [0, 1]× R2N .

(H2′) h(t, z)→ 0 as |z| → 0; h(t, z)→ +∞ as |z| → +∞.

(H3′) There exist 0 ≤ δ < 1, L > 0, ε0 > 0 and M > 0 such that

|z|δhz(t, z) · z ≥ ε0, |z||hz(t, z)| ≤Mh, ∀|z| ≥ L;
h(t, z)
|z|γ

→ 0 as |z| → ∞ for any γ > 0.

Then system (1.1) possesses a nonconstant 1-periodic solution.

Proof Obviously, (H1′)− (H3′) imply (1.2), (H1) and (H2).

z ·Hz(t, z)− 2H(t, z) = |z|2|hz(t, z) · z ≥ ε0|z|2−δ, ∀|z| ≥ L;

|Hz(t, z)| ≤ |2h(t, z)||z|+ |z|2|hz(t, z)|
≤ (2 +M)|z|h(t, z) ≤ (2 +M)|z|1+γ , ∀|z| ≥ L′.
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Let β = 2 − δ and λ = 1 + γ with 0 < γ < (1 − δ)/(2 − δ). Then (H3) holds.
By Theorem 1.1 we get the conclusion. �

3 Second order Hamiltonian System

Let E = W 1,2(S1,RN ) with the norm ‖ · ‖ and inner product 〈·, ·〉. Then
E ⊂ C(S1,RN ) and ‖u‖2 =

∫ 1

0
(|u̇|2 + |u|2)dt. Define

〈Kx, y〉 =
∫ 1

0

x · ydt, ∀x, y ∈ E;

f(z) =
1
2
〈(id−K)z, z〉 −

∫ 1

0

V (t, z)dt, ∀z ∈ E.

Then K is compact, ker(id −K) = R
N , and the negative definite subspace of

id−K, M−(id−K) = {0}, i.e., E = E0 ⊕E+ where E0 = ker(id−K) and E+

is the positive definite subspace of id−K. Note that (V1)–(V4) imply

V (t, x) ≤ d2|x|λ+1 + d3. (3.1)

This implies that f ∈ C1(E,R) and critical points of f are 1-periodic solutions
of (1.5) [11].

Lemma 3.1 Suppose (V1)–(V4) hold. Then f satisfies the (PS) condition.

Proof Let {zm} be a (PS) sequence. Suppose {zm} is not bounded. Passing to
a subsequence if necessary, ‖zm‖ → +∞ as m→∞. Then by (V4)

2f(zm)− 〈f ′(zm), zm〉 =
∫ 1

0

[zm · V ′(t, zm)− 2V (t, zm)]dt ≥ d1

∫ 1

0

|zm|βdt− d4.

This implies ∫ 1

0
|zm|βdt
‖zm‖

→ 0 as m→ +∞.

If (1.6) holds, we have

〈f ′(zm), z+
m〉 = 〈(id−K)z+

m, z
+
m〉 −

∫ 1

0

V ′(t, zm) · z+
mdt

≥ 〈(id−K)z+
m, z

+
m〉 − ‖z+

m‖∞
∫ 1

0

|V ′(t, zm)|dt

≥ 〈(id−K)z+
m, z

+
m〉 − d5‖z+

m‖(
∫ 1

0

|zm|λdt+ d6).

Since λ ≤ β, we have

‖z+
m‖
‖zm‖

→ 0 as m→ +∞. (3.2)
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If (1.7) holds, we have

f(zm) =
1
2
〈(id−K)z+

m, z
+
m〉 −

∫ 1

0

V (t, zm)dt

≥ 1
2
〈(id−K)z+

m, z
+
m〉 − d5

∫ 1

0

|zm|1+λdt− d7

≥ 〈(id−K)z+
m, z

+
m〉 − d8‖zm‖

∫ 1

0

|zm|λdt− d7.

Since λ ≤ β, we obtain (3.2). On the other hand, (V1)–(V4) imply

x · V ′(t, x)− 2V (t, x) ≥ d9|x| − d10, ∀t ∈ S1 × RN .

2f(zm)− 〈f ′(zm), zm〉 =
∫ 1

0

[zm · V ′(t, zm)− 2V (t, zm)]dt

≥ d9

∫ 1

0

|zm|dt− d10

≥ d9

∫ 1

0

|z0
m|dt− d9

∫ 1

0

|z+
m|dt− d10

≥ d9‖z0
m‖ − d11‖z+

m‖ − d10.

This implies
‖z0
m‖
‖zm‖

→ 0 as m→ +∞. (3.3)

By (3.2) and (3.3), we get a contradiction. Therefore {zm} is bounded. By a
standard argument, {zm} has a convergent subsequence [11]. �

Proof of Theorem 1.2 As in Step 1 of the proof of Theorem 1.1, by (V2)
and (3.1), there exist ã > 0, ρ > 0 such that

f(z) ≥ ã, ∀z ∈ E+ with ‖z‖ = ρ.

Choose e ∈ E+ with ‖e‖ = 1. Let Ẽ = span{e} ⊕E0 and K = {u ∈ Ẽ : ‖u‖ =
1}. Note that dim Ẽ < +∞. By using similar arguments as in the proof of
(2.10), there exists ε1 > 0 such that

meas{t ∈ [0, 1] : |u(t)| ≥ ε1} ≥ ε1, ∀u ∈ K. (3.4)

By (V1), (V3) and similar arguments as in the proof of Theorem 1.1, there
exists r1 > 0 such that

f |∂Q ≤ 0, where Q = {re : 0 ≤ r ≤ 2r1} ⊕ {z ∈ E0 : ‖z‖ ≤ 2r1}.

Now by Lemma 3.1, [13, Theorem 5.29], and (V1), f has a nonconstant critical
point z∗ such that f(z∗) ≥ ã > 0. z∗ is 1-periodic solution of (1.5). �
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Remark 3.2 (i) Suppose V (t, x) = V (x) is independent on t and V (x) satisfies
(V1)–(V4). Then for any T > 0, (1.5) possesses a nonconstant T -periodic
solution.

(ii) There are many examples which satisfy (V1)–(V4) but do not satisfy a
condition similar to (1.3). For example,

V (t, x) = [1 + (sin 2πt)2] · |x|2 ln(1 + 2|x|2); or

V (t, x) = |x|2 ln(1 + |x|2) ln(1 + 2|x|4).

By using similar arguments as in the proof of Theorem 1.2, we can prove
the following corollary. Details are omited.

Corollary 3.3 Suppose V (t, x) = |x|2h(t, x) with h ∈ C1(S1 ×RN ,R) satisfies

(V1′) h(t, x) ≥ 0, ∀(t, x) ∈ S1 × RN .

(V2′) h(t, x)→ 0 as |x| → 0; h(t, x)→ +∞ as |x| → +∞.

(V3′) There exist L > 0, λ > 0, C1, C2 > 0 such that for t ∈ S1

C1|x|(h′(t, x) · x) ≥ h(t, x), h(t, x) ≤ C2|x|λ, ∀|x| ≥ L.

Then (1.5) possesses a nonconstant 1-periodic solution.
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