On periodic solutions of superquadratic Hamiltonian systems *

Guihua Fei

Abstract

We study the existence of periodic solutions for some Hamiltonian systems $\dot{z}=J H_{z}(t, z)$ under new superquadratic conditions which cover the case $H(t, z)=|z|^{2}\left(\ln \left(1+|z|^{p}\right)\right)^{q}$ with $p, q>1$. By using the linking theorem, we obtain some new results.

1 Introduction

We consider the superquadratic Hamiltonian system

$$
\begin{equation*}
\dot{z}=J H_{z}(t, z) \tag{1.1}
\end{equation*}
$$

where $H \in C^{1}\left([0,1] \times \mathbb{R}^{2 N}, \mathbb{R}\right)$ is a 1-periodic function in $t, J=\left(\begin{array}{cc}0 & -I_{N} \\ I_{N} & 0\end{array}\right)$ is the standard $2 N \times 2 N$ symplectic matrix, and

$$
\begin{equation*}
\frac{H(t, z)}{|z|^{2}} \rightarrow+\infty \text { as }|z| \rightarrow+\infty \text { uniformly in } t \tag{1.2}
\end{equation*}
$$

We assume H satisfies the following conditions.
(H1) $H(t, z) \geq 0$, for all $(t, z) \in[0,1] \times \mathbb{R}^{2 N}$.
(H2) $H(t, z)=o\left(|z|^{2}\right)$ as $|z| \rightarrow 0$ uniformly in t.
In [12], Rabinowitz established the existence of periodic solutions for (1.1) under the following superquadratic condition: there exist $\mu>0$ and $r_{1}>0$ such that for all $|z| \geq r_{1}$ and $t \in[0,1]$

$$
\begin{equation*}
0<\mu H(t, z) \leq z \cdot H_{z}(t, z) \tag{1.3}
\end{equation*}
$$

Since then, the condition (1.3) has been used extensively in the literature; see [1-14] and the references therein.

[^0]It is easy to see that (1.3) does not include some superquadratic nonlinearity like

$$
\begin{equation*}
H(t, z)=|z|^{2}\left(\ln \left(1+|z|^{p}\right)\right)^{q}, \quad p, q>1 \tag{1.4}
\end{equation*}
$$

In this paper, we shall study the periodic solutions of (1.1) under some superquadratic conditons which cover the cases like (1.4). We assume H satisfies the following condition.
(H3) There exist constants $\beta>1,1<\lambda<1+\frac{\beta-1}{\beta}, c_{1}, c_{2}>0$ and $L>0$ such that

$$
\begin{gathered}
z \cdot H_{z}(t, z)-2 H(t, z) \geq c_{1}|z|^{\beta}, \quad \forall|z| \geq L, \quad \forall t \in[0,1] ; \\
\left|H_{z}(t, z)\right| \leq c_{2}|z|^{\lambda}, \quad \forall|z| \geq L, \forall t \in[0,1] .
\end{gathered}
$$

Theorem 1.1 Suppose $H \in C^{1}\left([0,1] \times \mathbb{R}^{2 N}, \mathbb{R}\right)$ is 1-periodic in t and satisfies (1.2), (H1)-(H3). Then (1.1) possesses a nonconstant 1-periodic solution.

A straightforward computation shows that if H satisfies (1.4), for any $T>0$, the system (1.1) has a nonconstant T-periodic solution with minimal period T. One can see Remark 2.2 and Corollary 2.3 for more examples.

For the second order Hamiltonian system

$$
\begin{gather*}
\ddot{u}(t)+V^{\prime}(t, u(t))=0, \\
u(0)-u(1)=\dot{u}(0)-\dot{u}(1)=0 \tag{1.5}
\end{gather*}
$$

we have a similar result.
Theorem 1.2 Suppose $V \in C^{1}\left([0,1] \times \mathbb{R}^{N}, \mathbb{R}\right)$ is 1-periodic in t and satisfies
(V1) $V(t, x) \geq 0$, for all $(t, x) \in[0,1] \times \mathbb{R}^{N}$
(V2) $V(t, x)=o\left(|x|^{2}\right)$ as $|x| \rightarrow 0$ uniformly in t
(V3) $V(t, x) /|x|^{2} \rightarrow+\infty$ as $|x| \rightarrow+\infty$ uniformly in t
(V4) There exist constants $1<\lambda \leq \beta, d_{1}, d_{2}>0$ and $L>0$ such that

$$
\begin{gather*}
x \cdot V^{\prime}(t, x)-2 V(t, x) \geq d_{1}|x|^{\beta}, \quad \forall|x| \geq L, \quad \forall t \in[0,1] ; \\
\left|V^{\prime}(t, x)\right| \leq d_{2}|x|^{\lambda}, \quad \forall|x| \geq L, \forall t \in[0,1] . \tag{1.6}\\
\left(\text { or } V(t, x) \leq d_{2}|x|^{\lambda+1}, \quad \forall|x| \geq L, \forall t \in[0,1]\right) . \tag{1.7}
\end{gather*}
$$

Then (1.5) possesses a nonconstant 1-periodic solution.
We shall use the linking theorem [13, Theorem 5.29] to prove our results. The idea comes from $[11,12,13]$. Theorem 1.1 is proved in Section 2 while the proof of Theorem 1.2 is carried out in Section 3.

2 First order Hamiltonian system

Let $S^{1}=\mathbb{R} /(2 \pi \mathbb{Z})$ and $E=W^{1 / 2,2}\left(S^{1}, \mathbb{R}^{2 N}\right)$. Then E is a Hilbert space with norm $\|\cdot\|$ and inner product $\langle\cdot, \cdot\rangle$. We define

$$
\begin{gather*}
\langle A x, y\rangle=\int_{0}^{1}(-J \dot{x}, y) d t, \quad \forall x, y \in E \tag{2.1}\\
f(z)=\frac{1}{2}\langle A z, z\rangle-\int_{0}^{1} H(t, z) d t, \quad \forall z \in E \tag{2.2}
\end{gather*}
$$

Then A is a bounded selfadjoint operator and $\operatorname{ker} A=\mathbb{R}^{2 N}$. (H1)-(H3) imply that

$$
|H(t, z)| \leq a_{1}+a_{2}|z|^{\lambda+1}, \quad \forall z \in \mathbb{R}^{2 N}
$$

This implies that $f \in C^{1}(E, \mathbb{R})$ and looking for the solutions of (1.1) is equivalent to looking for the critical points of $f[12,13]$. Let $E^{0}=\operatorname{ker}(A), E^{+}=$positive definite subspace of A, and $E^{-}=$negative definite subspace of A. Then $E=$ $E^{0} \oplus E^{-} \oplus E^{+}$.

Lemma 2.1 Under the conditions of Theorem 1.1, f satisfies the (PS) condition.

Proof. Let $\left\{z_{m}\right\}$ be a (PS)-sequence, i.e.,

$$
\left|f\left(z_{m}\right)\right| \leq M ; \quad f^{\prime}\left(z_{m}\right) \rightarrow 0 \quad \text { as } \quad m \rightarrow \infty
$$

We want to show that $\left\{z_{m}\right\}$ is bounded. Then by a standard argument, $\left\{z_{m}\right\}$ has a convergent subsequence [13]. Suppose $\left\{z_{m}\right\}$ is not bounded, then passing to a subsequence if necessary, $\left\|z_{m}\right\| \rightarrow+\infty$ as $m \rightarrow+\infty$. By (H3), there exists $C_{3}>0$ such that for all $z \in \mathbb{R}^{2 N}, t \in[0,1]$

$$
z \cdot H_{z}(t, z)-2 H(t, z) \geq C_{1}|z|^{\beta}-C_{3} .
$$

Therefore, we have

$$
\begin{aligned}
2 f\left(z_{m}\right)-\left\langle f^{\prime}\left(z_{m}\right), z_{m}\right\rangle & =\int_{0}^{1}\left[z_{m} \cdot H_{z}\left(t, z_{m}\right)-2 H\left(t, z_{m}\right)\right] d t \\
& \geq \int_{0}^{1}\left[C_{1}\left|z_{m}\right|^{\beta}-C_{3}\right] d t=C_{1} \int_{0}^{1}\left|z_{m}\right|^{\beta} d t-C_{3}
\end{aligned}
$$

This implies

$$
\begin{equation*}
\frac{\int_{0}^{1}\left|z_{m}\right|^{\beta} d t}{\left\|z_{m}\right\|} \rightarrow 0 \quad \text { as } m \rightarrow \infty \tag{2.3}
\end{equation*}
$$

Note that from (H3), $1<\lambda<1+\frac{\beta-1}{\beta}$. Let $\alpha=\frac{\beta-1}{\beta(\lambda-1)}$. Then

$$
\begin{equation*}
\alpha>1, \quad \alpha \lambda-1=\alpha-\frac{1}{\beta} . \tag{2.4}
\end{equation*}
$$

By (H3), there exists $C_{4}>0$ such that

$$
\begin{equation*}
\left|H_{z}(t, z)\right|^{\alpha} \leq C_{2}^{\alpha}|z|^{\lambda \alpha}+C_{4}, \quad \forall(t, z) \in[0,1] \times \mathbb{R}^{2 N} \tag{2.5}
\end{equation*}
$$

Denote $z_{m}=z_{m}^{+}+z_{m}^{-}+z_{m}^{0} \in E^{+} \oplus E^{-} \oplus E^{0}$. We have

$$
\begin{align*}
\left\langle f^{\prime}\left(z_{m}\right), z_{m}^{+}\right\rangle & =\left\langle A z_{m}^{+}, z_{m}^{+}\right\rangle-\int_{0}^{1}\left[H_{z}\left(t, z_{m}\right) \cdot z_{m}^{+}\right] d t \\
& \geq\left\langle A z_{m}^{+}, z_{m}^{+}\right\rangle-\int_{0}^{1}\left|H_{z}\left(t, z_{m}\right)\right|\left|z_{m}^{+}\right| d t \tag{2.6}\\
& \geq\left\langle A z_{m}^{+}, z_{m}^{+}\right\rangle-\left(\int_{0}^{1}\left|H_{z}\left(t, z_{m}\right)\right|^{\alpha}\right)^{\frac{1}{\alpha}} \cdot C_{\alpha}\left\|z_{m}^{+}\right\|,
\end{align*}
$$

where $C_{\alpha}>0$ is a constant independent of m. By (2.5),

$$
\begin{aligned}
\int_{0}^{1}\left|H_{z}\left(t, z_{m}\right)\right|^{\alpha} d t & \leq \int_{0}^{1}\left(C_{2}^{\alpha}\left|z_{m}\right|^{\lambda \alpha}+C_{4}\right) d t \\
& \leq C_{5}\left(\int_{0}^{1}\left|z_{m}\right|^{\beta} d t\right)^{1 / \beta}\left(\int_{0}^{1}\left|z_{m}\right|^{(\alpha \lambda-1) \cdot \frac{\beta}{\beta-1}} d t\right)^{1-\frac{1}{\beta}}+C_{4} \\
& \leq C_{6}\left(\int_{0}^{1}\left|z_{m}\right|^{\beta}\right)^{1 / \beta}\left\|z_{m}\right\|^{(\alpha \lambda-1)}+C_{4}
\end{aligned}
$$

Combining this inequality with (2.3) and (2.4) yields that

$$
\frac{\left(\int_{0}^{1}\left|H_{z}\left(t, z_{m}\right)\right|^{\alpha} d t\right)^{\frac{1}{\alpha}}}{\left\|z_{m}\right\|} \leq\left[\frac{C_{6}\left(\int_{0}^{1}\left|z_{m}\right|^{\beta} d t\right)^{1 / \beta}}{\left\|z_{m}\right\|^{1 / \beta}} \cdot \frac{\left\|z_{m}\right\|^{(\alpha \lambda-1)}}{\left\|z_{m}\right\|^{\alpha-\frac{1}{\beta}}}+\frac{C_{4}}{\left\|z_{m}\right\|^{\alpha}}\right]^{\frac{1}{\alpha}} \rightarrow 0
$$

as $m \rightarrow \infty$. By (2.6) we have

$$
\frac{\left\langle A z_{m}^{+}, z_{m}^{+}\right\rangle}{\left\|z_{m}\right\|\left\|z_{m}^{+}\right\|} \leq \frac{\left\|f^{\prime}\left(z_{m}\right)\right\|\left\|z_{m}^{+}\right\|}{\left\|z_{m}\right\|\left\|z_{m}^{+}\right\|}+\frac{\left(\int_{0}^{1}\left|H_{z}\left(t, z_{m}\right)\right|^{\alpha} d t\right)^{\frac{1}{\alpha}}}{\left\|z_{m}\right\|} \cdot \frac{C_{\alpha}\left\|z_{m}^{+}\right\|}{\left\|z_{m}^{+}\right\|} \rightarrow 0
$$

as $m \rightarrow \infty$. This implies

$$
\begin{equation*}
\frac{\left\|z_{m}^{+}\right\|}{\left\|z_{m}\right\|} \rightarrow 0 \quad \text { as } m \rightarrow \infty \tag{2.7}
\end{equation*}
$$

Similary, we have

$$
\begin{equation*}
\frac{\left\|z_{m}^{-}\right\|}{\left\|z_{m}\right\|} \rightarrow 0 \quad \text { as } m \rightarrow \infty \tag{2.8}
\end{equation*}
$$

By (H3) there exist $C_{7}, C_{8}>0$ such that

$$
z \cdot H_{z}\left(t, z_{m}\right)-2 H(t, z) \geq C_{7}|z|-C_{8}, \quad \forall(t, z) \in[0,1] \times \mathbb{R}^{2 N}
$$

This implies

$$
\begin{aligned}
2 f\left(z_{m}\right)-\left\langle f^{\prime}\left(z_{m}\right), z_{m}\right\rangle & =\int_{0}^{1}\left[z_{m} \cdot H_{z}\left(t, z_{m}\right)-2 H\left(t, z_{m}\right)\right] d t \geq \int_{0}^{1}\left[C_{7}\left|z_{m}\right|-C_{8}\right] d t \\
& \geq \int_{0}^{1}\left[C_{7}\left|z_{m}^{0}\right|-C_{7}\left|z_{m}^{+}\right|-C_{7}\left|z_{m}^{-}\right|-C_{8}\right] d t \\
& \geq C_{9}\left\|z_{m}^{0}\right\|-C_{10}\left(\left\|z_{m}^{+}\right\|+\left\|z_{m}^{-}\right\|+1\right) .
\end{aligned}
$$

Therefore, by (2.7) and (2.8)

$$
\frac{\left\|z_{m}^{0}\right\|}{\left\|z_{m}\right\|} \rightarrow 0 \quad \text { as } m \rightarrow \infty
$$

Combine this with (2.7) and (2.8), we get

$$
1=\frac{\left\|z_{m}\right\|}{\left\|z_{m}\right\|} \leq \frac{\left\|z_{m}^{+}\right\|+\left\|z_{m}^{-}\right\|+\left\|z_{m}^{0}\right\|}{\left\|z_{m}\right\|} \rightarrow 0 \quad \text { as } m \rightarrow \infty
$$

a contradiction. Therefore, $\left\{z_{m}\right\}$ must be bounded.
Proof of Theorem 1.1 We prove that f satisfies the conditions of Theorem 5.29 in [13].

Step 1: By (H1)-(H3), we have

$$
H(t, z) \leq a_{1}+a_{2}|z|^{\lambda+1}, \quad \forall(t, z) \in[0,1] \times \mathbb{R}^{2 N}
$$

By (H2), for any $\varepsilon>0$, there exists $\delta>0$ such that

$$
H(t, z) \leq \varepsilon|z|^{2}, \quad \forall t \in[0,1],|z| \leq \delta
$$

Therefore, there exists $M=M(\varepsilon)>0$ such that

$$
H(t, z) \leq \varepsilon|z|^{2}+M|z|^{\lambda+1}, \quad \forall(t, z) \in[0,1] \times \mathbb{R}^{2 N}
$$

Note that $\lambda+1>2$. By the same arguements as in [13, Lemma 6.16], there exist $\rho>0$ and $\tilde{a}>0$, such that for $z \in E_{1}=E^{+}$

$$
f(z) \geq \tilde{a} \quad \text { if }\|z\|=\rho,
$$

i.e., f satisfies $\left(I_{7}\right)(i)$ in [13, Theorem 5.29] with $S=\partial B_{\rho} \cap E_{1}$.

Step 2: Let $e \in E^{+}$with $\|e\|=1$ and $\tilde{E}=E^{-} \oplus E^{0} \oplus \operatorname{span}\{e\}$. We denote

$$
K=\{z \in \tilde{E}:\|z\|=1\}, \quad \lambda^{-}=\inf _{z \in E^{-},\left\|z^{-}\right\|=1}\left|\left\langle A z^{-}, z^{-}\right\rangle\right|, \quad \gamma=\left(\frac{\|A\|}{\lambda^{-}}\right)^{1 / 2} .
$$

For $z \in K$, we write $z=z^{-}+z^{0}+z^{+} \in \tilde{E}$.
i) If $\left\|z^{-}\right\|>\gamma\left\|z^{+}+z^{0}\right\|$, by (H1) we have, for any $r>0$,

$$
\begin{aligned}
f(r z) & =\frac{1}{2}\left\langle A r z^{-}, r z^{-}\right\rangle+\frac{1}{2}\left\langle A r z^{+}, r z^{+}\right\rangle-\int_{0}^{1} H(t, z) d t \\
& \leq-\frac{1}{2} \lambda^{-} r^{2}\left\|z^{-}\right\|^{2}+\frac{1}{2}\|A\| r^{2}\left\|z^{+}\right\|^{2} \leq 0
\end{aligned}
$$

ii) If $\left\|z^{-}\right\| \leq \gamma\left\|z^{+}+z^{0}\right\|$, we have

$$
1=\|z\|^{2}=\left\|z^{-}\right\|^{2}+\left\|z^{+}+z^{0}\right\|^{2} \leq\left(1+\gamma^{2}\right)\left\|z^{+}+z^{0}\right\|^{2}
$$

i.e.,

$$
\begin{equation*}
\left\|z^{+}+z^{0}\right\|^{2} \geq \frac{1}{1+\gamma^{2}}>0 \tag{2.9}
\end{equation*}
$$

Denote $\tilde{K}=\left\{z \in K:\left\|z^{-}\right\| \leq \gamma\left\|z^{+}+z^{0}\right\|\right\}$.
Claim: There exists $\varepsilon_{1}>0$ such that, $\forall u \in \tilde{K}$,

$$
\begin{equation*}
\operatorname{meas}\left\{t \in[0,1]:|u(t)| \geq \varepsilon_{1}\right\} \geq \varepsilon_{1} \tag{2.10}
\end{equation*}
$$

For otherwise, $\forall k>0, \exists u_{k} \in \tilde{K}$ such that

$$
\begin{equation*}
\operatorname{meas}\left\{t \in[0,1]:\left|u_{k}(t)\right| \geq \frac{1}{k}\right\}<\frac{1}{k} . \tag{2.11}
\end{equation*}
$$

Write $u_{k}=u_{k}^{-}+u_{k}^{0}+u_{k}^{+} \in \tilde{E}$. Notice that $\operatorname{dim}\left(E^{0} \oplus \operatorname{span}\{e\}\right)<+\infty$ and $\left\|u_{k}^{0}+u_{k}^{+}\right\| \leq 1$. In the sense of subsequence, we have

$$
u_{k}^{0}+u_{k}^{+} \rightarrow u_{0}^{0}+u_{0}^{+} \in E^{0} \oplus \operatorname{span}\{e\} \quad \text { as } k \rightarrow+\infty .
$$

Then (2.9) implies that

$$
\begin{equation*}
\left\|u_{0}^{0}+u_{0}^{+}\right\|^{2} \geq \frac{1}{\gamma^{2}+1}>0 \tag{2.12}
\end{equation*}
$$

Note that $\left\|u_{k}^{-}\right\| \leq 1$, in the sense of subsequence $u_{k}^{-} \rightharpoonup u_{0}^{-} \in E^{-}$as $k \rightarrow+\infty$. Thus in the sense of subsequences,

$$
u_{k} \rightharpoonup u_{0}=u_{0}^{-}+u_{0}^{0}+u_{0}^{+} \quad \text { as } k \rightarrow+\infty .
$$

This means that $u_{k} \rightarrow u_{0}$ in L^{2}, i.e.,

$$
\begin{equation*}
\int_{0}^{1}\left|u_{k}-u_{0}\right|^{2} d t \rightarrow 0 \quad \text { as } k \rightarrow+\infty \tag{2.13}
\end{equation*}
$$

By (2.12) we know that $\left\|u_{0}\right\|>0$. Therefore, $\int_{0}^{1}\left|u_{0}\right|^{2} d t>0$. Then there exist $\delta_{1}>0, \delta_{2}>0$ such that

$$
\begin{equation*}
\operatorname{meas}\left\{t \in[0,1]:\left|u_{0}(t)\right| \geq \delta_{1}\right\} \geq \delta_{2} \tag{2.14}
\end{equation*}
$$

Otherwise, for all $n>0$, we must have

$$
\begin{gathered}
\operatorname{meas}\left\{t \in[0,1]:\left|u_{0}(t)\right| \geq \frac{1}{n}\right\}=0, \quad \text { i.e., } \operatorname{meas}\left\{t \in[0,1]:\left|u_{0}(t)\right|<\frac{1}{n}\right\}=1 ; \\
0<\int_{0}^{1}\left|u_{0}\right|^{2} d t<\frac{1}{n^{2}} \cdot 1 \rightarrow 0 \quad \text { as } n \rightarrow+\infty
\end{gathered}
$$

We get a contradiction. Thus (2.14) holds. Let $\Omega_{0}=\left\{t \in[0,1]:\left|u_{0}(t)\right| \geq \delta_{1}\right\}$, $\Omega_{k}=\left\{t \in[0,1]:\left|u_{k}(t)\right|<1 / k\right\}$, and $\Omega_{k}^{\perp}=[0,1] \backslash \Omega_{k}$. By (2.11), we have
$\operatorname{meas}\left(\Omega_{k} \cap \Omega_{0}\right)=\operatorname{meas}\left(\Omega_{0}-\Omega_{0} \cap \Omega_{k}^{\perp}\right) \geq \operatorname{meas}\left(\Omega_{0}\right)-\operatorname{meas}\left(\Omega_{0} \cap \Omega_{k}^{\perp}\right) \geq \delta_{2}-\frac{1}{k}$.
Let k be large enough such that $\delta_{2}-\frac{1}{k} \geq \frac{1}{2} \delta_{2}$ and $\delta_{1}-\frac{1}{k} \geq \frac{1}{2} \delta_{1}$. Then we have

$$
\left|u_{k}(t)-u_{0}(t)\right|^{2} \geq\left(\delta_{1}-\frac{1}{k}\right)^{2} \geq\left(\frac{1}{2} \delta_{1}\right)^{2}, \quad \forall t \in \Omega_{k} \cap \Omega_{0}
$$

This implies that

$$
\begin{aligned}
\int_{0}^{1}\left|u_{k}-u_{0}\right|^{2} d t & \geq \int_{\Omega_{k} \cap \Omega_{0}}\left|u_{u}-u_{0}\right|^{2} d t \geq\left(\frac{1}{2} \delta_{1}\right)^{2} \cdot \operatorname{meas}\left(\Omega_{k} \cap \Omega_{0}\right) \\
& \geq\left(\frac{1}{2} \delta_{1}\right)^{2} \cdot\left(\delta_{2}-\frac{1}{k}\right) \geq\left(\frac{1}{2} \delta_{1}\right)^{2}\left(\frac{1}{2} \delta_{2}\right)>0
\end{aligned}
$$

This is a contradiction to (2.13). Therefore the claim is true and (2.10) holds.
For $z=z^{-}+z^{0}+z^{+} \in \tilde{K}$, let $\Omega_{z}=\left\{t \in[0,1]:|z(t)| \geq \varepsilon_{1}\right\}$. By (1.2), for $M=\frac{\|A\|}{\varepsilon_{1}^{3}}>0$, there exists $L_{1}>0$ such that

$$
H(t, x) \geq M|x|^{2}, \quad \forall|x| \geq L_{1}, \text { uniformly in } t
$$

Choose $r_{1} \geq L_{1} / \varepsilon_{1}$. For $r \geq r_{1}$,

$$
H(t, r z(t)) \geq M|r z(t)|^{2} \geq M r^{2} \varepsilon_{1}^{2}, \quad \forall t \in \Omega_{z}
$$

By (H1), for $r \geq r_{1}$

$$
\begin{aligned}
f(r z) & =\frac{1}{2} r^{2}\left\langle A z^{+}, z^{+}\right\rangle+\frac{1}{2} r^{2}\left\langle A z^{-}, z^{-}\right\rangle-\int_{0}^{1} H(t, r z) d t \\
& \leq \frac{1}{2}\|A\| r^{2}-\int_{\Omega_{z}} H(t, r z) d t \leq \frac{1}{2}\|A\| r^{2}-M r^{2} \varepsilon_{1}^{2} \cdot \operatorname{meas}\left(\Omega_{z}\right) \\
& \leq \frac{1}{2}\|A\| r^{2}-M \varepsilon_{1}^{3} r^{2}=-\frac{1}{2}\|A\| r^{2}<0 .
\end{aligned}
$$

Therefore, we have proved that

$$
\begin{equation*}
f(r z) \leq 0, \quad \text { for any } z \in K \text { and } r \geq r_{1} \tag{2.16}
\end{equation*}
$$

Let $E_{2}=E^{-} \oplus E^{0}, Q=\left\{r e: 0 \leq r \leq 2 r_{1}\right\} \oplus\left\{z \in E_{2}:\|z\| \leq 2 r_{1}\right\}$. By (H1) and (2.16) we have $\left.f\right|_{\partial Q} \leq 0$, i.e., f satisfies $\left(I_{7}\right)(i i)$ in [13, Theorem 5.29].
Step 3: By Lemma 2.1, f satisfies the (PS) condition. Similar to the proof of [13, Theorem 6.10], by the linking theorem [13, Theorem 5.29], there exists a critical point $z^{*} \in E$ of f such that $f\left(z^{*}\right) \geq \tilde{a}>0$. Moreover, z^{*} is a classical solution of (1.1) and z^{*} is nonconstant by (H1).

Remark 2.2 i) Suppose $H(t, z)=\frac{1}{2}\langle B(t) z, z\rangle+\tilde{H}(t, z)$ with $B(t)$ being a $2 N \times 2 N$ matrix, continuous and 1-periodic in t and $\tilde{H}(t, z)$ satisfies (1.2) and (H1)-(H3). We have the same conclusion as Theorem 1.1. The proof is similar and we omit it.
ii) Suppose $H(t, z)=H(z)$ is independent on t, i.e., (1.1) is an autonomous Hamiltonian system. Then under similar conditions as (1.2) and (H1)-(H3), for any $T>0$, the system (1.1) has a nonconstant T-periodic solution. Moreover, if $H(z) \in C^{2}\left(\mathbb{R}^{2 N}, \mathbb{R}\right)$ and satisfies some strictly convex conditions such as $H^{\prime \prime}(x)$ is positive defininte for $x \neq 0$, then for any $T>0$, (1.1) has a nonconstant T-periodic solution with minimal period T. We omit the proof which is similar to the one in $[4,5]$.
iii) Suppose (1.4) holds, i.e.,

$$
H(t, z)=H(z)=|z|^{2}\left(\ln \left(1+|z|^{p}\right)\right)^{q}, \quad \forall(t, z) \in[0,1] \times \mathbb{R}^{2 N}
$$

where $p>1$ and $q>1$. Obviously, (1.2), (H1) and (H2) hold. Note that

$$
\begin{gathered}
z \cdot H_{z}(z)-2 H(z)=|z|^{2} q\left(\ln \left(1+|z|^{q}\right)\right)^{q-1} \frac{p|z|^{p}}{1+|z|^{p}} \geq|z|^{2} \frac{p q(\ln 2)^{q-1}}{2}, \quad \forall|z| \geq 1 \\
\left|H_{z}(z)\right| \leq 2\left(\ln \left(1+|z|^{p}\right)\right)^{q}|z|+\frac{p|z|^{p}}{1+|z|^{p}} q\left(\ln \left(1+|z|^{p}\right)\right)^{q-1}|z| \leq 2|z|^{\frac{5}{4}}, \quad \forall|z| \geq L
\end{gathered}
$$

for L being large enough. This implies (H3). By directly computation, $H^{\prime \prime}(z)$ is positive definite for $z \neq 0$. Therefore, for any $T>0,(1.1)$ possesses a T-periodic solution with minimal period T.
iv) There are many examples which satisfy (H1)-(H3) and (1.2) but do not satisfy (1.3). For example

$$
H(t, z)=|z|^{2} \ln \left(1+|z|^{2}\right) \ln \left(1+2|z|^{3}\right)
$$

Corollary 2.3 Suppose $H(t, z)=|z|^{2} h(t, z)$ with $h \in C^{1}\left([0,1] \times \mathbb{R}^{2 N}, \mathbb{R}\right)$ being 1-periodic in t and satisfies
$\left(H 1^{\prime}\right) h(t, z) \geq 0$, for all $(t, z) \in[0,1] \times \mathbb{R}^{2 N}$.
$\left(H 2^{\prime}\right) h(t, z) \rightarrow 0$ as $|z| \rightarrow 0 ; h(t, z) \rightarrow+\infty$ as $|z| \rightarrow+\infty$.
($H 3^{\prime}$) There exist $0 \leq \delta<1, L>0, \varepsilon_{0}>0$ and $M>0$ such that

$$
\begin{gathered}
|z|^{\delta} h_{z}(t, z) \cdot z \geq \varepsilon_{0}, \quad|z|\left|h_{z}(t, z)\right| \leq M h, \quad \forall|z| \geq L ; \\
\frac{h(t, z)}{|z|^{\gamma}} \rightarrow 0 \quad \text { as }|z| \rightarrow \infty \text { for any } \gamma>0 .
\end{gathered}
$$

Then system (1.1) possesses a nonconstant 1-periodic solution.
Proof Obviously, $\left(H 1^{\prime}\right)-\left(H 3^{\prime}\right)$ imply (1.2), (H1) and (H2).

$$
\begin{aligned}
z \cdot H_{z}(t, z) & -2 H(t, z)=\left.|z|^{2}\left|h_{z}(t, z) \cdot z \geq \varepsilon_{0}\right| z\right|^{2-\delta}, \quad \forall|z| \geq L \\
\left|H_{z}(t, z)\right| & \leq|2 h(t, z)||z|+|z|^{2}\left|h_{z}(t, z)\right| \\
& \leq(2+M)|z| h(t, z) \leq(2+M)|z|^{1+\gamma}, \quad \forall|z| \geq L^{\prime}
\end{aligned}
$$

Let $\beta=2-\delta$ and $\lambda=1+\gamma$ with $0<\gamma<(1-\delta) /(2-\delta)$. Then (H3) holds. By Theorem 1.1 we get the conclusion.

3 Second order Hamiltonian System

Let $E=W^{1,2}\left(S^{1}, \mathbb{R}^{N}\right)$ with the norm $\|\cdot\|$ and inner product $\langle\cdot, \cdot\rangle$. Then $E \subset C\left(S^{1}, \mathbb{R}^{N}\right)$ and $\|u\|^{2}=\int_{0}^{1}\left(|\dot{u}|^{2}+|u|^{2}\right) d t$. Define

$$
\begin{gathered}
\langle K x, y\rangle=\int_{0}^{1} x \cdot y d t, \quad \forall x, y \in E \\
f(z)=\frac{1}{2}\langle(i d-K) z, z\rangle-\int_{0}^{1} V(t, z) d t, \quad \forall z \in E
\end{gathered}
$$

Then K is compact, $\operatorname{ker}(i d-K)=\mathbb{R}^{N}$, and the negative definite subspace of $\mathrm{id}-K, M^{-}(\mathrm{id}-K)=\{0\}$, i.e., $E=E^{0} \oplus E^{+}$where $E^{0}=\operatorname{ker}(i d-K)$ and E^{+} is the positive definite subspace of $i d-K$. Note that (V1)-(V4) imply

$$
\begin{equation*}
V(t, x) \leq d_{2}|x|^{\lambda+1}+d_{3} \tag{3.1}
\end{equation*}
$$

This implies that $f \in C^{1}(E, \mathbb{R})$ and critical points of f are 1-periodic solutions of (1.5) [11].

Lemma 3.1 Suppose (V1)-(V4) hold. Then f satisfies the (PS) condition.
Proof Let $\left\{z_{m}\right\}$ be a (PS) sequence. Suppose $\left\{z_{m}\right\}$ is not bounded. Passing to a subsequence if necessary, $\left\|z_{m}\right\| \rightarrow+\infty$ as $m \rightarrow \infty$. Then by (V4)
$2 f\left(z_{m}\right)-\left\langle f^{\prime}\left(z_{m}\right), z_{m}\right\rangle=\int_{0}^{1}\left[z_{m} \cdot V^{\prime}\left(t, z_{m}\right)-2 V\left(t, z_{m}\right)\right] d t \geq d_{1} \int_{0}^{1}\left|z_{m}\right|^{\beta} d t-d_{4}$.
This implies

$$
\frac{\int_{0}^{1}\left|z_{m}\right|^{\beta} d t}{\left\|z_{m}\right\|} \rightarrow 0 \quad \text { as } m \rightarrow+\infty
$$

If (1.6) holds, we have

$$
\begin{aligned}
\left\langle f^{\prime}\left(z_{m}\right), z_{m}^{+}\right\rangle & =\left\langle(i d-K) z_{m}^{+}, z_{m}^{+}\right\rangle-\int_{0}^{1} V^{\prime}\left(t, z_{m}\right) \cdot z_{m}^{+} d t \\
& \geq\left\langle(i d-K) z_{m}^{+}, z_{m}^{+}\right\rangle-\left\|z_{m}^{+}\right\|_{\infty} \int_{0}^{1}\left|V^{\prime}\left(t, z_{m}\right)\right| d t \\
& \geq\left\langle(i d-K) z_{m}^{+}, z_{m}^{+}\right\rangle-d_{5}\left\|z_{m}^{+}\right\|\left(\int_{0}^{1}\left|z_{m}\right|^{\lambda} d t+d_{6}\right)
\end{aligned}
$$

Since $\lambda \leq \beta$, we have

$$
\begin{equation*}
\frac{\left\|z_{m}^{+}\right\|}{\left\|z_{m}\right\|} \rightarrow 0 \quad \text { as } \quad m \rightarrow+\infty \tag{3.2}
\end{equation*}
$$

If (1.7) holds, we have

$$
\begin{aligned}
f\left(z_{m}\right) & =\frac{1}{2}\left\langle(i d-K) z_{m}^{+}, z_{m}^{+}\right\rangle-\int_{0}^{1} V\left(t, z_{m}\right) d t \\
& \geq \frac{1}{2}\left\langle(i d-K) z_{m}^{+}, z_{m}^{+}\right\rangle-d_{5} \int_{0}^{1}\left|z_{m}\right|^{1+\lambda} d t-d_{7} \\
& \geq\left\langle(i d-K) z_{m}^{+}, z_{m}^{+}\right\rangle-d_{8}\left\|z_{m}\right\| \int_{0}^{1}\left|z_{m}\right|^{\lambda} d t-d_{7}
\end{aligned}
$$

Since $\lambda \leq \beta$, we obtain (3.2). On the other hand, (V1)-(V4) imply

$$
\begin{aligned}
x \cdot V^{\prime}(t, x)-2 V(t, x) & \geq d_{9}|x|-d_{10}, \quad \forall t \in S^{1} \times \mathbb{R}^{N} \\
2 f\left(z_{m}\right)-\left\langle f^{\prime}\left(z_{m}\right), z_{m}\right\rangle & =\int_{0}^{1}\left[z_{m} \cdot V^{\prime}\left(t, z_{m}\right)-2 V\left(t, z_{m}\right)\right] d t \\
& \geq d_{9} \int_{0}^{1}\left|z_{m}\right| d t-d_{10} \\
& \geq d_{9} \int_{0}^{1}\left|z_{m}^{0}\right| d t-d_{9} \int_{0}^{1}\left|z_{m}^{+}\right| d t-d_{10} \\
& \geq d_{9}\left\|z_{m}^{0}\right\|-d_{11}\left\|z_{m}^{+}\right\|-d_{10}
\end{aligned}
$$

This implies

$$
\begin{equation*}
\frac{\left\|z_{m}^{0}\right\|}{\left\|z_{m}\right\|} \rightarrow 0 \quad \text { as } m \rightarrow+\infty \tag{3.3}
\end{equation*}
$$

By (3.2) and (3.3), we get a contradiction. Therefore $\left\{z_{m}\right\}$ is bounded. By a standard argument, $\left\{z_{m}\right\}$ has a convergent subsequence [11].

Proof of Theorem 1.2 As in Step 1 of the proof of Theorem 1.1, by (V2) and (3.1), there exist $\tilde{a}>0, \rho>0$ such that

$$
f(z) \geq \tilde{a}, \quad \forall z \in E^{+} \quad \text { with }\|z\|=\rho
$$

Choose $e \in E^{+}$with $\|e\|=1$. Let $\tilde{E}=\operatorname{span}\{e\} \oplus E^{0}$ and $K=\{u \in \tilde{E}:\|u\|=$ 1\}. Note that $\operatorname{dim} \tilde{E}<+\infty$. By using similar arguments as in the proof of (2.10), there exists $\varepsilon_{1}>0$ such that

$$
\begin{equation*}
\operatorname{meas}\left\{t \in[0,1]:|u(t)| \geq \varepsilon_{1}\right\} \geq \varepsilon_{1}, \quad \forall u \in K \tag{3.4}
\end{equation*}
$$

By (V1), (V3) and similar arguments as in the proof of Theorem 1.1, there exists $r_{1}>0$ such that

$$
\left.f\right|_{\partial Q} \leq 0, \quad \text { where } \quad Q=\left\{r e: 0 \leq r \leq 2 r_{1}\right\} \oplus\left\{z \in E^{0}:\|z\| \leq 2 r_{1}\right\}
$$

Now by Lemma 3.1, [13, Theorem 5.29], and (V1), f has a nonconstant critical point z^{*} such that $f\left(z^{*}\right) \geq \tilde{a}>0 . z^{*}$ is 1-periodic solution of (1.5).

Remark 3.2 (i) Suppose $V(t, x)=V(x)$ is independent on t and $V(x)$ satisfies (V1)-(V4). Then for any $T>0$, (1.5) possesses a nonconstant T-periodic solution.
(ii) There are many examples which satisfy (V1)-(V4) but do not satisfy a condition similar to (1.3). For example,

$$
\begin{aligned}
& V(t, x)=\left[1+(\sin 2 \pi t)^{2}\right] \cdot|x|^{2} \ln \left(1+2|x|^{2}\right) ; \quad \text { or } \\
& V(t, x)=|x|^{2} \ln \left(1+|x|^{2}\right) \ln \left(1+2|x|^{4}\right)
\end{aligned}
$$

By using similar arguments as in the proof of Theorem 1.2, we can prove the following corollary. Details are omited.

Corollary 3.3 Suppose $V(t, x)=|x|^{2} h(t, x)$ with $h \in C^{1}\left(S^{1} \times \mathbb{R}^{N}, \mathbb{R}\right)$ satisfies
$\left(V 1^{\prime}\right) h(t, x) \geq 0, \quad \forall(t, x) \in S^{1} \times \mathbb{R}^{N}$.
$\left(V 2^{\prime}\right) h(t, x) \rightarrow 0$ as $|x| \rightarrow 0 ; \quad h(t, x) \rightarrow+\infty$ as $|x| \rightarrow+\infty$.
(V3') There exist $L>0, \lambda>0, C_{1}, C_{2}>0$ such that for $t \in S^{1}$

$$
C_{1}|x|\left(h^{\prime}(t, x) \cdot x\right) \geq h(t, x), \quad h(t, x) \leq C_{2}|x|^{\lambda}, \quad \forall|x| \geq L
$$

Then (1.5) possesses a nonconstant 1-periodic solution.

References

[1] K. C. Chang, Infinite dimensional Morse theory and multiple solution problems, Progress in nonlinear differential equations and their applications, V. 6 (1993).
[2] I. Ekeland, Convexity Method in Hamiltonian Mechanics, Springer-Verlag. Berlin. (1990).
[3] I. Ekeland \& H. Hofer, Periodic solutions with prescribed period for convex autonomous Hamiltonian systems, Invent. Math. 81 (1985), 155-188.
[4] G. Fei \& Q. Qiu, Minimal periodic solutions of nonlinear Hamiltonian systems, Nonlinear Analysis T. M. A. 27 (1996), 821-839.
[5] G. Fei, S. Kim \& T. Wang, Minimal period estimates of periodic solutions for superquadratic Hamiltonian systems, J. Math. Anal. Appl. 238 (1999), 216-233.
[6] G. Fei, S. Kim \& T. Wang, Solutions of minimal period for even classical Hamiltonian systems, Nonlinear Analysis T. M. A. 43 (2001), 363-375.
[7] M. Giradi \& M. Matzeu, Periodic solutions of convex autonomous Hamiltonian systems with a quadratic growth at the origin and superquadratic at infinity, Ann. Mat. pura ed appl. 147 (1987), 21-72.
[8] Y. Long, The minimal period problem of periodic solutions for autonomous superquadratic second order Hamiltonian systems, J. Diff. Eq. 111 (1994), 147-174.
[9] Y. Long, The minimal period problem of classical Hamiltonian systems with even potentials, Ann. IHP. Anal. non Lineaire vol.10, no. 6 (1993), 605-626.
[10] Y. Long, Multiple solutions of perturbed superquadratic second order Hamiltonian systems, Trans. Amer. Math. Soc. 311 (1989), 749-780.
[11] J. Mawhin \& M. Willem, Critical Point Theory and Hamiltonian Systems, Appl. Math. Sci. Springer-Verlag, 74(1989).
[12] P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), 157-184.
[13] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math. no. 65 A.M.S. (1986).
[14] M. Struwe, Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Springer-Verlag, Berlin, 1990.

Guinua Fei
Department of Mathematics and statistics
University of Minnesota
Duluth, MN 55812, USA
e-mail : gfei@d.umn.edu

[^0]: * Mathematics Subject Classifications: 58E05, 58F05, 34C25.

 Key words: periodic solution, Hamiltonian system, linking theorem.
 © 2002 Southwest Texas State University.
 Submitted September 20, 2001. Published Janaury 15, 2002.

