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On periodic solutions of superquadratic
Hamiltonian systems *

Guihua Fei

Abstract

We study the existence of periodic solutions for some Hamiltonian
systems z = JH(t,z) under new superquadratic conditions which cover
the case H(t,z) = |z|*(In(1 + |2|?))? with p,q > 1. By using the linking
theorem, we obtain some new results.

1 Introduction

We consider the superquadratic Hamiltonian system

i = JH,(t,z) (L.1)

where H € C'([0,1] x RN R) is a 1-periodic function in ¢, J = (IO _éN> is
N

the standard 2N x 2N symplectic matrix, and

H(t,z)
|22

— 400 as |z| — +oo uniformly in ¢. (1.2)

We assume H satisfies the following conditions.
(H1) H(t,z) >0, for all (¢,2) € [0,1] x R?V,
(H2) H(t,2) = o(|z|?) as |2| — O uniformly in ¢.

In [12], Rabinowitz established the existence of periodic solutions for (1.1) under
the following superquadratic condition: there exist u > 0 and r; > 0 such that
for all |z| > 7 and ¢ € [0, 1]

0 < pH(t, z) <z H,(t z). (1.3)

Since then, the condition (1.3) has been used extensively in the literature; see
[1-14] and the references therein.
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It is easy to see that (1.3) does not include some superquadratic nonlinearity
like
H(t,2) = |z*(In(1 + |2|)?, p,q> 1. (1.4)

In this paper, we shall study the periodic solutions of (1.1) under some
superquadratic conditons which cover the cases like (1.4). We assume H satisfies
the following condition.

(H3) There exist constants 8> 1, 1 < A <1+ %7 c1,¢0 >0 and L > 0 such
that

z-H,(t,z) —2H(t,2) > c1]2|°, V|z| > L, Vt € [0,1];
|H.(t,2)] < ca|2|*, V|2| > L, YVt €[0,1].

Theorem 1.1 Suppose H € C*([0,1] x R?N R) is I-periodic in t and satisfies
(1.2), (H1)-(H3). Then (1.1) possesses a nonconstant 1-periodic solution.

A straightforward computation shows that if H satisfies (1.4), for any T > 0,
the system (1.1) has a nonconstant T-periodic solution with minimal period 7'
One can see Remark 2.2 and Corollary 2.3 for more examples.

For the second order Hamiltonian system

i(t) + V'(t,u(t)) =0,

u(0) —u(1) = 0(0) — (1) =0 (1.5)

we have a similar result.

Theorem 1.2 Suppose V € C1([0,1] x RN, R) is 1-periodic in t and satisfies
(V1) V(t,z) >0, for all (t,z) € [0,1] x RV

(V2) V(t,z) = o(|x|?) as |x| — O uniformly in t

(V3) V(t,x)/|z|* — +oc0 as |z| — 400 uniformly in t

(V4) There exist constants 1 < A < 3, d1,d2 > 0 and L > 0 such that

x-V/'(t,x) = 2V(t,x) > di|z|®, V|z| > L, vt €0,1];
V'(t,2)| < do|z|*, V]z| > L, vt €0,1]. (1.6)
(orV(t,x) < dglz*, V2| > L, Vt €[0,1]). (1.7)

Then (1.5) possesses a nonconstant 1-periodic solution.
We shall use the linking theorem [13, Theorem 5.29] to prove our results.

The idea comes from [11, 12, 13]. Theorem 1.1 is proved in Section 2 while the
proof of Theorem 1.2 is carried out in Section 3.
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2 First order Hamiltonian system

Let S' = R/(27Z) and E = W1/22(S1 R?N). Then FE is a Hilbert space with

norm || - || and inner product (-,-). We define
1
(g = [ (Tby)at ey e B (2.)
0
1 1
f(z) = §<Az,z> —/ H(t,z)dt, VzeE. (2.2)
0

Then A is a bounded selfadjoint operator and ker A = R*N. (H1)-(H3) imply
that
|H(t,2)] < a1+ ag\z|>‘+l, Vz e RV,

This implies that f € C1(E,R) and looking for the solutions of (1.1) is equivalent
to looking for the critical points of f [12, 13]. Let E° = ker(A), E* = positive
definite subspace of A, and F~ = negative definite subspace of A. Then F =
E'® E- @ E*.

Lemma 2.1 Under the conditions of Theorem 1.1, [ satisfies the (PS) condi-
tion.

Proof. Let {z,,} be a (PS)-sequence, i.e.,
lfGzm)| < M5 f'(zm) =0 as m — .

We want to show that {z,,} is bounded. Then by a standard argument, {z,,}
has a convergent subsequence [13]. Suppose {z;,} is not bounded, then passing
to a subsequence if necessary, ||z, || — +o0 as m — 4o00. By (H3), there exists
C3 > 0 such that for all z € R*V, ¢ € [0,1]

2+ H(t,2) = 2H(t, 2) > Co|s| = Cs.

Therefore, we have
1
2f(zm) — {f' (zm), 2m) = /0 [2m - Ho(t, 20m) — 2H (t, 2,,)]dt

1 1
z/ [C’1|zm|ﬁ—03]dt:Cl/ |zm|Pdt — Cs.
0 0

This implies

1 5d
Zm |7 dt
f0”|2—|”—>0 as m — 0o. (2.3)
Note that from (H3), 1 <A< 1+ % Let a = % Then
1
a>1l, aA—-l=a——. (2.4)

B
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By (H3), there exists Cy > 0 such that
\H.(t,2)|* < CS|z + Cu, ¥(t,2) € [0,1] x RV,
Denote z, = 2, + 2, + 20, € ET @ E~ & E°. We have
1
() = (Ashy ) = [ [t ) 2
0
1
> Az g = [ 1Lzl
0

1
> (Azf,5h) — ( / L (1, 2)| ) - G|t

where C,, > 0 is a constant independent of m. By (2.5),

1 1
/ |Hz(t7zm)|o‘dt§/ (OS2 | + Cy)dt
0 0

(2.5)

1 1
< 05(/ |Zm‘ﬁdt)1/ﬁ(/ |Zm|(o¢)\—1)~%dt)1_§ e
0 0

1
<Cal [ Leml?) P en @2 + G
0

Combining this inequality with (2.3) and (2.4) yields that

1 a 1 1 al—
(Jo [H=(t, 2m)[dt) = _ (CsUy [2ml?dt) /0 lzn|©2D - Cy

Q=

Foml =Tl R s Teml®

as m — 00. By (2.6) we have

+ o+ / + ! Qg = +
(A ) Gl 2l (Jo [H=(t zm)[*dt)=  Callztll

lzmll lzmll = llzmll [l20] [zl el

as m — o0o. This implies

+
I —0 asm — oo.
[[2ml
Similary, we have
2 —0 asm — oo.
[[2ml

By (H3) there exist C7,Cs > 0 such that

2 H,(t, 2,) — 2H(t, 2) > Cq|z| — Cs, V(t,2) €[0,1] x R?V,

— 0

(2.7)

(2.8)
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This implies
1

1
2 (2) — (F' (2o, 2m) = / o - Ho(t, 2n) — 2H (1, 2]t > / [(Crlzm]| — Csldt
0 0
1
> [ (Crlah] = Crlah| - ol - Culde
0
> Collzm |l = Crolllzf | + 120l + 1)
Therefore, by (2.7) and (2.8)

[
[

Combine this with (2.7) and (2.8), we get

—0 asm — oo.

L=zl lzmll + 2wl + Dz

B lzmll — [E241

— 0 asm — o0,
a contradiction. Therefore, {z,,} must be bounded. O

Proof of Theorem 1.1 We prove that f satisfies the conditions of Theorem
5.29 in [13)].
Step 1: By (H1)-(H3), we have

H(t,z) < a1 +ag|z]MY, Y(t,2) €[0,1] x RZV,
By (H2), for any € > 0, there exists § > 0 such that
H(t,z) <elz]?, Vte[0,1], |2| <.
Therefore, there exists M = M (e) > 0 such that
H(t,z) <elz]> + M|z]*Y, V(t,2) €[0,1] x R#Y,

Note that A + 1 > 2. By the same arguements as in [13, Lemma 6.16], there
exist p > 0 and a > 0, such that for z € F; = BT

f(z) = a izl = p,
i.e., f satisfies (I7)(4) in [13, Theorem 5.29] with S = 0B, N E;.
Step 2: Let e € ET with |le|| =1 and E = E~ & E° @ span{e}. We denote

(Az™,z7)|, ~= (H)u;

K={z€E:|z|=1}, X\ = e

inf
2€E~ |z~ ||=1

For z € K, we write z = 2~ + 20 + 2+ € E.
i) If |27 || > ~llzT + 2%, by (H1) we have, for any r > 0,

1 1 !
f(rz) = 3 < Arz" rz7) + §<A7°z+,7°z+> — /0 H(t,z)dt

1 1
< A 4 5[4l <o,
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i) If |27 || < ~vllz + 29|, we have
L=z = 711 + Iz + 2°12 < (1 +92)ll=F + 2°)1%,
ie.
2+ + 202 > %72 > 0. (2.9)

Denote K = {z € K : ||l27|| < yleT +2°}.
Claim: There exists €; > 0 such that, Vu € K,

meas{t € [0,1] : |u(t)| > e1} > ;1. (2.10)

For otherwise, Vk > 0, Jui € K such that
1 1
meas{t € [0,1] : |ug(t)] > E} < (2.11)

Write uy = u;, + u) + u € E. Notice that dim(E° @ span{e}) < +oo and
|u 4w || < 1. In the sense of subsequence, we have

uf) +uf — uf +uf € E° @ span{e} ask — +oo.

Then (2.9) implies that

1
>0 (2.12)

Note that ||u, || <1, in the sense of subsequence u, — u, € E~ as k — 4o00.
Thus in the sense of subsequences,

up — up = uy +u +uf  as k — +oo.

This means that uy — g in L?, i.e.,
1
/ lup, — uo|?dt — 0 as k — +oc. (2.13)
0

By (2.12) we know that ||ug| > 0. Therefore, fol |ug|?dt > 0. Then there exist
61 > 0, § > 0 such that

meas{t € [0,1] : |ug(t)| > d1} > 2. (2.14)
Otherwise, for all n > 0, we must have
1 . 1
meas{t € [0,1] : |ug(t)| > E} =0, ie., meas{te[0,1]: |up(t)| < E} =1;

Lo 1
0< lupl“dt < — -1 —0 asn — +oo.
0 n
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We get a contradiction. Thus (2.14) holds. Let Qo = {t € [0,1] : |uo(t)| > o1},
Q= {t €1[0,1] : Jur(t)] < 1/k}, and Q3 = [0,1]\Q. By (2.11), we have

meas (€2, N Q) = meas(Q — Qo N QL) > meas(g) — meas(Qo N QL) > 5 — l

(2.15)

Let k be large enough such that d, — % > %52 and 01 — + > %61. Then we have

1
k

1 1
lug (t) — uo(t)|* > (61 — E)Q > (561)2, Vi e QN Q.

This implies that

1
1
/ lug — ug|*dt > / |ty — uo|?dt > (=61)? - meas(£y, N Q)
0 QLN 2

> (07 (B2 = 1) = (500)%(50) > 0.

This is a contradiction to (2.13). Therefore the claim is true and (2.10) holds.
For z=2"+2+2F € K,let Q, = {t € [0,1] : |2(t)| > &1}. By (1.2), for
M = @ > 0, there exists Ly > 0 such that
1

H(t,z) > M|z|*, V|| > L;, uniformly in t.
Choose r; > L1 /ey. For r > rq,
H(t,rz(t)) > Mrz(t)|* > Mr?c?, VteQ,.

By (H1), for r > rq

1
f(rz) = %7’2<Az+,z+> + %7‘2<Az7,z7> —/ H(t,rz)dt
0

1 1
< §|\A||r2 f/ H(t,rz)dt < §HA||1"2 — Mr?e? - meas(.)
Q
1 2 3.2 1 2
< —|JA||r* = Mejr® = —=||Al|r* < 0.
2 2
Therefore, we have proved that
f(rz) <0, forany ze€ K and r > ry. (2.16)
Let By = E-®EY, Q={re:0<r<2r}d{z€ FEy:|z|| <2r} By (H1)
and (2.16) we have flag <0, i.e., f satisfies (I7)(i%) in [13, Theorem 5.29].
Step 3: By Lemma 2.1, f satisfies the (PS) condition. Similar to the proof
of [13, Theorem 6.10], by the linking theorem [13, Theorem 5.29], there exists a

critical point z* € E of f such that f(z*) > a > 0. Moreover, z* is a classical
solution of (1.1) and z* is nonconstant by (H1). O
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Remark 2.2 i) Suppose H(t,z) = +(B(t)z,z) + H(t,z) with B(t) being a
2N x 2N matrix, continuous and 1-periodic in ¢ and H(t, z) satisfies (1.2) and
(H1)-(H3). We have the same conclusion as Theorem 1.1. The proof is similar
and we omit it.

ii) Suppose H(t,z) = H(z) is independent on ¢, i.e., (1.1) is an autonomous
Hamiltonian system. Then under similar conditions as (1.2) and (H1)-(H3), for
any T > 0, the system (1.1) has a nonconstant T-periodic solution. Moreover, if
H(z) € C%(R?" R) and satisfies some strictly convex conditions such as H” ()
is positive defininte for x # 0, then for any 7" > 0, (1.1) has a nonconstant
T-periodic solution with minimal period 7. We omit the proof which is similar
to the one in [4, 5].

iii) Suppose (1.4) holds, i.e.,

H(t,z) = H(z) = |2)?(n(1 + |2|P))9, V(t,2) € [0,1] x R*Y,
where p > 1 and ¢ > 1. Obviously, (1.2), (H1) and (H2) hold. Note that

g—1 p‘z|p > ‘Z|2pq(ln2)q_1
p =

V|z| > 1.

plz|?
L+ |z

[H(2)] < 2(In(1 + [2[7))7|2] + g(In(1+ [2[P)7 2] < 2021, V2| > I,

for L being large enough. This implies (H3). By directly computation, H”(z) is
positive definite for z # 0. Therefore, for any T' > 0, (1.1) possesses a T-periodic
solution with minimal period T

iv) There are many examples which satisfy (H1)-(H3) and (1.2) but do not
satisfy (1.3). For example

H(t,z) = |z]*In(1 + |2*) In(1 + 2|2?).

Corollary 2.3 Suppose H(t,z) = |z|>h(t, z) with h € C*([0,1] x R2N R) being
1-periodic in t and satisfies
(HU') h(t,z) >0, for all (t,z) € [0,1] x R2V.
(H2') h(t,z) — 0 as |z| = 0; h(t,z) — 400 as |z| — +o0.
(H3') There exist 0 <6 <1, L >0, g9 >0 and M > 0 such that

|z|5hz(t,z) ~z>e0, |zl|ha(t,2)| < Mh, V|z| > L;
h(t, z)
|2]

—0 as|z| = oo for any v > 0.

Then system (1.1) possesses a nonconstant 1-periodic solution.
Proof Obviously, (H1') — (H3') imply (1.2), (H1) and (H2).
z-H,(t,2) — 2H(t,2) = |2?|ho(t, 2) - 2 > €0]2[*7%,  V|z| > L;
[H.(t,2)| < [2h(t, 2)l|2] + |2 |ha (2, 2)]
< (24 M)|z|h(t,2) < (2+ M)|z|*T, V]|z| > L.
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Let f=2—-d0and A=1+ with0 <~ < (1—-40)/(2—0). Then (H3) holds.
By Theorem 1.1 we get the conclusion. (]

3 Second order Hamiltonian System

Let E = W12(S RY) with the norm || - || and inner product (-,-). Then
E C C(S",RY) and ||ul|? = [ ([[? + [u]?)dt. Define

1
<Kx,y>=/ r-ydt, Va,y€ b
0

| =

f(z)==((id— K)z,z) — /0 V(t,z)dt, VzeE.

Then K is compact, ker(id — K) = RY, and the negative definite subspace of
id —K, M—(id —K) = {0}, i.e., E = E° @ E*+ where E° = ker(id — K) and E+
is the positive definite subspace of id — K. Note that (V1)-(V4) imply

V(t,z) < dg|z| M + ds. (3.1)

This implies that f € C*(E,R) and critical points of f are 1-periodic solutions
of (1.5) [11].

Lemma 3.1 Suppose (V1)-(V4) hold. Then f satisfies the (PS) condition.

Proof Let {z,,,} be a (PS) sequence. Suppose {z,,} is not bounded. Passing to
a subsequence if necessary, ||zp,| — 400 as m — co. Then by (V4)

2f(zm)—<f'(zm),zm>=/0 [zm-V’(t,zm)—2V(t,zm)]dtzdl/o | Pdt — dy.

This implies
f 01 |2m |5dt

—0 asm — +oo.
[2m|

If (1.6) holds, we have
1
() ) = (i = Kz ) = [V 20) -
0
1
> ((id = Kzl 23~ Il [ V620
0

1
> ((id - K)zh, 25) — ds |l ( / et + ds).
0

Since A < 3, we have

[E24]

[

—0 as m— +oo. (3.2)
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If (1.7) holds, we have

1 1
flzm) = §<(zd — K)zﬁ;,z;w —/ V(t, zm )dt
0
1 1
> {(id — K)o, =) — ds / |zl A — dy
0
1
> ((id — K)zt, 25 — ds|lzm] / oMt — d.
0

Since A < 3, we obtain (3.2). On the other hand, (V1)-(V4) imply
x-V'(t,x) = 2V(t,z) > dg|x| — dip, Vt e S' xRV,

1
2 (zon) — (' (2n) 2m) = / (o - V(b 2m) — 2V (8, 230t
> dg/o |2m|dt — d1o

1 1

zdg/ |zg|dt—d9/ |2:h |dt — dio
0 0

> do |29, || = dar ||z || = dao-

This implies

0
HZWH —0 asm — +oo. (3.3)
Zm
By (3.2) and (3.3), we get a contradiction. Therefore {z,,} is bounded. By a
standard argument, {z,,} has a convergent subsequence [11]. O

Proof of Theorem 1.2 As in Step 1 of the proof of Theorem 1.1, by (V2)
and (3.1), there exist @ > 0, p > 0 such that

f(z)>a, VzeET with ||z]| = p.
Choose e € E* with |le]| = 1. Let E=span{e} ®E*and K = {uc E: |u| =
1}. Note that dim F < +oo. By using similar arguments as in the proof of
(2.10), there exists €1 > 0 such that
meas{t € [0,1] : |u(t)] > e1} > &1, Yue€ K. (3.4)

By (V1), (V3) and similar arguments as in the proof of Theorem 1.1, there
exists r; > 0 such that

floo <0, where Q={re:0<r<2r}@{ze€E:|z|| <2r}.

Now by Lemma 3.1, [13, Theorem 5.29], and (V1), f has a nonconstant critical
point z* such that f(z*) > a > 0. z* is 1-periodic solution of (1.5). O
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Remark 3.2 (i) Suppose V(t,x) = V(z) is independent on ¢ and V(x) satisfies
(V1)=(V4). Then for any T > 0, (1.5) possesses a nonconstant 7T-periodic
solution.

(ii) There are many examples which satisfy (V1)-(V4) but do not satisfy a
condition similar to (1.3). For example,

V(t,x) = [1+ (sin27t)?] - |z[*In(1 + 2|z|*); or
V(t,x) = |z[*In(1 + |2z[*) In(1 + 2|z|*).

By using similar arguments as in the proof of Theorem 1.2, we can prove
the following corollary. Details are omited.

Corollary 3.3 Suppose V (t,x) = |z|?h(t, x) with h € C*(S* x RN R) satisfies
(V') h(t,z) >0, VY(t,z)e St xRN,

(V2') h(t,z) — 0 as |x| — 0; h(t,z) = 400 as |z| — +o0.

(V3') There exist L > 0, A > 0, Cy,Cq > 0 such that for t € S*

Cilz|(W (t,z) - x) > h(t,z), h(t,x) < Cylz|*, V|z|> L.

Then (1.5) possesses a nonconstant 1-periodic solution.
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