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ON A PARABOLIC-HYPERBOLIC PENROSE-FIFE
PHASE-FIELD SYSTEM

PIERLUIGI COLLI, MAURIZIO GRASSELLI, & AKIO ITO

ABSTRACT. The initial and boundary value problem is studied for a non-
conserved phase-field system derived from the Penrose-Fife model for the kinet-
ics of phase transitions. Here the evolution of the order parameter is governed
by a nonlinear hyperbolic equation which is characterized by the presence of
an inertial term with small positive coefficient. This feature is a consequence
of the assumption that the response of the phase variable to the generalized
force which drives the system toward equilibrium states is not instantaneous
but delayed. The resulting model consists of a nonlinear parabolic equation for
the absolute temperature coupled with the hyperbolic equation for the phase.
Existence of a weak solution is obtained as well as the convergence of any
family of weak solutions of the parabolic-hyperbolic model to the weak solu-
tion of the standard Penrose-Fife phase-field model as the inertial coefficient
goes to zero. In addition, continuous dependence estimates are proved for the
parabolic-hyperbolic system as well as for the standard model.

1. INTRODUCTION

Penrose and Fife [23, 24, 7] proposed a thermodynamically consistent model to
describe the kinetics of phase transitions. In this framework, one is led to formulate
a system of nonlinear partial differential equations that governs the evolution of the
absolute temperature 6 : Qr := Q x (0,7) — R and of the order parameter X :
Qr — R. Here T > 0 is a reference time and Q ¢ RY, N < 3, is a bounded domain
with a smooth boundary I'. When X is non-conserved, in absence of mechanical
stresses and/or convective motions, the Penrose-Fife system has the following form
23]

O+20) —A(=07Y) = f (1.1)
WXy — VAX + g(X) + N (X)o7 =0 (1.2)

in Qr. Here X is a smooth function which may have quadratic growth so that
second-order phase transitions can be taken into account (see, e.g., [2, Sec. 4.4]).
In addition, the datum f : @7 — R represents the heat supply and function g is
a third-degree polynomial function with positive leading coefficient: a well-known
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example of g comes from the derivative of an oriented double-well potential and
reads g(r) =3 —r — 0.1, r € R, where 6. > 0 is the critical temperature around
which the phase transition occurs. Moreover, w > 0 is a time relaxation parameter
and v > 0 is a correlation length.

A typical initial and boundary value problem that can be associated with (1.1)-
(1.2) consists of the usual initial conditions

6(0) =6y, X(0) =Xoq (1.3)

in 2, along with the boundary conditions
(=07 a ="' =h, (1.4)
Xn=20 (1.5)

on I'r :=T x (0,T) (see [16] and particularly [6, Introduction and Remark 4.8]
for an in-depth discussion on condition (1.4)). Here the subscript n stands for the
derivative with respect to the outward normal n to I', v is a positive constant, and
h:Tp — (—00,0) is a known function. More precisely, h has the form 7(—9;1), Or
being the outside temperature at the boundary.

We thus obtain an initial and boundary value problem, namely (1.1)-(1.5), which
has been widely investigated in the last decade (see, among others, [5, 6, 14, 15,
16, 17, 18, 19, 28, 29)).

System (1.1)-(1.2) reflects the balance equations of energy and momentum in
terms of thermodynamic state variables and it is derived from a free energy func-
tional F (6, X) in compliance with the basic laws of Thermodynamics. In particular,
the phase-field equation (1.2) originates from the phenomenological assumption

10F
- 22 1.
Xt X (1.6)

which is consistent with the second principle. Here, F/6X denotes the functional
derivative of F with respect to X and has the form

% = —UAX + g(X) + N (X)0~ L. (1.7)

This quantity may be considered as a generalized force which arises as a consequence
of the tendency of the free energy to decay toward a minimum. Relationship (1.6)
amounts to say that the response of X to the generalized force is instantaneous.
However, it has been recently supposed that in some situations the response of X to
the generalized force is subject to a delay expressed by a suitable time dependent
relaxation kernel k (see [25, 26], cf. also [8, 10, 13, 21]). This means that (1.6) can
be replaced by
t
X¢ = 7/ k(t — 5)6—}-(5) ds. (1.8)
oo 0X

The simplest natural choice for the relaxation kernel is

1
E(t)= —e " t>0
wit
for some p > 0 sufficiently small. Notice that as g — 0, then k(t) — §(¢)/w, where
0 is the Dirac mass at zero, so that (1.8) formally reduces to (1.6). Differentiating
equation (1.8) with respect to time, with k& as above, we deduce

16F
Xt + X+ — = =0
uXe + t+w(5X
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Hence, setting for simplicity w = v = 1, and recalling (1.7), we deduce the hyperbolic
version of (1.2)

X+ Xp — AX +g(X) + N ()0 =0 in Qr. (1.9)

It is interesting to point out that the presence of the inertial term pduX is also
discussed in the analysis of dynamical phenomena around the critical region of
the phase transition (see [22, Ch. 7]). In fact, even though one forgets about the
interpretation of (1.9) as a special case of law (1.8), we underline that (1.9) may
be actually considered as a direct time relaxation of (1.2), and thus worth to be
investigated.

On account of our previous considerations, we can formally introduce the initial
and boundary value problem

Problem P,,. Find a solution (6,X) to the system
O+ =A== f inQr
pXar + Xe — AX +g(X) + X (X)0 ' =0 in Qr
that satisfies the initial and boundary conditions
0(0) =6y, X(0)=Xp, Xi(0)=X; in €,
(—9_1)n —v9"t=h, Xn=0 onTr.

The mathematical analysis of P, is the main goal of this paper.

Note that, by linearizing the term =1 around the critical value 6!, we obtain
a simplest version of P, which has already been analyzed in some detail [9, 11, 12].
Here, our goal is to study problem P, which look considerably more difficult due
to the presence of the nonlinearity 6~'. The main result is the existence of a
weak solution in the case when A has a quadratic growth. Then, we show any
family of solutions (6,,X,,) to P, converges, as p | 0, to the weak solution to the
corresponding initial and boundary value problem Py, associated with the standard
Penrose-Fife system (1.1)-(1.2).

Our further results are concerned with continuous dependence estimates and u-
niqueness. We first obtain a (conditional) continuous dependence estimate which
entails uniqueness for N = 1. Then, we show that P, has a unique solution which
continuously depends on the data provided that A is linear. Finally, we report a
continuous dependence estimate for Py whose proof is inspired by some contracting
arguments developed in [15].

2. WEAK FORMULATION AND STATEMENTS OF THE RESULTS

Before introducing the assumptions on A, g, and on the data along with the weak
formulation of P, we need some notation.
We set

H:=1%(Q), V:=HY(Q).

Consequently, we let V' be the dual space of V. As usual, we identify H with its
dual space H' and we recall the continuous and dense embeddings

Ve H=H <V
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Moreover, we indicate by (-,-) and (-, -)r the usual scalar products in H or HV and
in L2(I), respectively. Accordingly, the related norms will be indicated by || - || and
I - I We will use the following scalar product in V

((Ul,vg)) = (Vvl,va) +’Y(U1,’U2)F Vo, vg € V.

However, just for the sake of convenience, the norms || - ||y and || - ||y will be the
usual ones instead of those associated with the scalar product defined above. The
duality pairing between V'’ and V will be denoted by (-,-). We shall also use the
notation (1 * a) fo s) ds for vector-valued functions a summable in (0, 7).

Our structural assumptlons on A\ and g read

(H1) X € C*(R)

(H2) X' e L*(R)

(H3) g € CY(R)

(H4) There exist 71,72 > 0 such that |g(r)] < 71|r|> + 72 for all r € R

(H5) lim, 4o g(r) = to0.

Remark 2.1. On account of (H3)-(H5), it turns out that g is allowed to be the
derivative of a multiple-well potential.

Note that, by virtue of (H3)-(H5), there exists a primitive § of g such that
0<g(r)<mlr|*+74 VreR (2.1)

for some positive constants 73 and 74. For instance, one can take

g(r)=C, +/ g(s)ds VreR (2.2)
o

where o € R is a fixed zero of g and C; € R is chosen accordingly.

As far as the data are concerned, we assume

(H6) f e L*(0,T;LP())

(H7) he L*(T'r)

(H8) h <0 a.e. onI'p

(H9) 6y € LP(Q2), 6p > 0 a.e. in Q
(H10) In6y € L' (2)
(H11) Xo €V

(H12) X; € H.
Here p € (£,3]. We observe that if f € L?(0,T;L4(Q2)) and 6y € L(f2) for some
q > 3/2, then (H6) and (H9) still hold.
We can now introduce the weak formulation of P,,.

Problem P,. Find § € H'(0,T;V’') N L*>(0,T; L*(Q)) and X € C*([0,T); H) N
C°([0,T); V) such that

0>0 ae. in@ (2.3)
0~ e L*(0,T;V) (2.4)
(0 + X)), v) + (=071 0) = (f,v) + (h,v)r YveV, ae in (0,T) (2.5

(X4, ) + (Xg,0) + (VX, V) + (g(X) =N (X0 0) =0 Yo eV, ae. in (0,7)
(2.6)

0(0) = 0o, X(0)=Xo, X.(0)=X; ae. in €. (2.7)
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Remark 2.2. As LP(Q2) — V' because N < 3, the right hand side of (2.5) makes
sense and the first initial condition in (2.7) holds almost everywhere in €2, due to
the weak continuity of ¢ — 6(¢) from [0,7] to LP(Q). Moreover, we point out
that the regularity property X € C°([0,77]; L%(2)) entails (cf. (H4) and (H2), (2.4))
g(X) € L>(0,T;H) and N (X)§~! € L?(0,T;L*(Q)), whence, by comparison in
(2.6), it follows that Xy € CO([0,T]; V') + L*(0,T; H).

The main result is as follows.
Theorem 2.3. Let (H1)-(H12) hold. Then, for any p > 0, problem P, has a
solution (O, X").

Consider now the formal limit problem, which corresponds to the standard
Penrose-Fife model (1.1)-(1.2). Note that the regularity prescription on X is dif-
ferent from the above, and it refers instead to the usual requirement for parabolic
phase field models [6, 15].

Problem Pgy. Find 6 and X satisfying

0 H'(0,T;V') N L>=(0,T; LP(S)) (2.8)

0>0 ae. in Qr (2.9)

0=t e L*0,T;V) (2.10)

X € HY0,T; H)NL*(0,T; H*(Q)) — C°([0,T]; V) (2.11)

(0 4+ X)), v) + (=0 v) = (f,v) + (h,v)r Yv eV, ae. in (0,7) (2.12)
X; — AX+g(X) + N (X)) =0 ae. in Qr (2.13)

Xn=0 ae. on I'r (2.14)

0(0) =6y, X(0)=Xp a.e. in . (2.15)

In the body of our arguments, we will check, in particular, existence and unique-
ness of the solution to Pgy. In a first step, we prove the following theorem.

Theorem 2.4. Let (H1)-(H12) hold and let p € (0, o), po > 0 being fizred. Then
there exists a positive constant K, independent of u, such that, for any solution
(6", X*) to P,,, there holds

||9H||H1(o,T;V’)mLOQ(O,T;LP(Q)) + Hl/GHHL?(O,T;V)
+ VEIXE [ Lo 0,10y + IIXE | 20,750y + IXF | o0,y < K. (2.16)
Consider now a sequence {(6*,X")} ¢ (0,0, Where (6#,X") denotes an arbitrary

solution to P,. Then, the whole sequence {(6*,X*)} weakly converges to the pair
(6, X), which solves problem Py, in the sense that as p \, 0 the following holds:

0" — 6 weakly star in L>(0,T; LP(Q)) and weakly in H(0,T;V")

0" — 0 strongly in C°([0,T]; V")

1 1

or 0
uXy — 0 strongly in L>(0,T; H)
X" — X weakly star in L>°(0,7;V) and weakly in H'(0,T; H)

X" — X strongly in C°([0, T]; L*(2)).

weakly in L?(0,T;V)
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Remark 2.5. Note that Theorem 2.4 yields, as a by-product, an existence result for
Problem Py, in which the solution is found as the asymptotic limit of the sequence
{(0*,x*)}. The uniqueness of (6, X) follows from Theorem 2.10 below (cf. Remark
2.12 for a comparison with existing results).

A conditional continuous dependence estimate is given by the following theorem.

Theorem 2.6. Let (H1)-(H5) hold. Suppose moreover that

(H13) X € L=(R) if N = 2,3

(H14) for some positive constant c¢1 and all r € R, |g'(r)] < e1(1+ |r|?).
Consider two sets of data {0o;,Xo;,X1j, f,h;}, 7 = 1,2, satisfying assumptions
(H6)-(H12) and denote by (6;,X;) a corresponding solution to problem P,,. Assume
that

. —1 2 . T OO s
— 0" € L2(0,T; L¥(Q), j=1,2 (2.17)

and let My be a positive constant such that

max {[|X1 < (0.7:v) X2llzoeo.2:v)s [ llzz0.7:2 @), [u2llz2omiL=@) } < Mi.
Then

106 1/2 // CJu e 1/2
d d d)
// 1+|91\2+\92|2 ‘9 T+ [+ Jug]

HI1* (w1 — w2)l| L0,y + 1(X1 = X2)ell Lo 0,7:0) + X1 = Xzl Lo 0,75v)

(2.18)
SC'1<||901 — Ovzllv: + (| f1 = fellz20,05v) + 1h1 — P2l 20y

+ |[Xo1 — Xoz|lv + [|X11 — X12||)

for some positive constant C1 = C1(My) also depending on T, Q, v, p, A\, and cy.
In particular, if N = 1, then problem P, has a unique solution.

Remark 2.7. Note that the first integral on the left hand side makes sense though
it is not clear whether 6; € L?(Qr), j = 1,2. Indeed, as §; € L>(0,T; LP()) it
turns out that (cf. also (2.4))

01 — 02
| 1 2| < (91—92)(U1—UQ)

0<—1—~ 2
T L0+ 162 T

which is in L}(Qr). Referring now to (2.17), we underline that the existence result
in Theorem 2.3 ensures the regularity u; € L*(0,7; L>°(Q)) if N = 1 only. More-
over, in the one-dimensional case X1, Xo € L>®(Qr) (see the condition on M;) so
that if N =1 (H2) (and (H13)) are no longer needed in Theorem 2.6.

In the case of a special class of A\, we have the following statement.
Theorem 2.8. Let (H3)-(H5) and (H14) hold. In addition, suppose that
(H15) A(r) =7 for allr € R.

onsider two sets of data {60, Xoj, X154, fi, R}, J = 1,2, satisfying assumptions
Consider two sets of data {6o;,Xo;,X1;, f;,h;}, 5 = 1,2, satisfyi ti
(H6)-(H12) and denote by (6;,X;) a corresponding solution to problem P,. Set
u; = —49;1 and let My be a positive constant such that

max {[|[X1 |z 0,73v), XellLoe0,m3v) } < Mo.
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Then there exists a positive constant Cy = Co(Ms), also depending on T, Q, v, u,
and c1, such that

|91 — 02|2 1/2 / / |U1 — ’lL2| 1/2
dx ds da ds)
// T+ 012 + |02 T+ [un] + Jug]

H1* (w1 — u2)llLe0,13v) + ||(X1 Xo) ¢l Loo (0,107
X1 = Xal| oo (o,737) + 11 % (X1 — X2)| oo (0,731 (2.19)

§C2<H901 —bozllv: + |1 f1 = fellz2o, vy + 1ha = P2l 2 (ry)
+ [[Xo1 — Xoz|| + [[X11 — X12||V’>-

Remark 2.9. Observe that (H15) is basically equivalent to assuming that X is
affine.

Finally, the following theorem implies uniqueness for the solution to Py.

Theorem 2.10. Let (H1)-(H5), (H14) hold and let {0o;, Xoj, fj, 1}, 7 = 1,2,
be two sets of data satisfying assumptions (H6)-(H11). Denote by (8;,X;) a pair
fulfilling (2.8)-(2.15) and set u; = —9;1. Let My be as in Theorem 2.8 and let M3
specify a positive constant such that

max {||u1llr20,m;v), lu2llzzo,rv)} < Ms.

Then there exists a positive constant C3 = C3(Ms, M3), also depending on T, €,
v, A, and c1, such that

T 2 2
6, — 0 1/2 _ 1/2
U mmes) ™ (], =)
0 Jo 1+ 101> + [02] L+ fug |? + |ug|

+ 11 % (w1 — w2)llzee0,13v) + ||X1 — Xal| poo (0,131 + [IX1 = Xa|l 20,731y

< C3(||€01 — eozllv/ + [[Xo1 — Xozll + | f1 = fellz2(0,3v ) + 11 — h2||L2(FT))
(2.20)
where eg; = bo; + A(Xo;), 7 = 1,2. If in place of (H14) the following condition
holds
(H16) (g(r1) — g(r2))(r1 —1r2) > —calry — ro|? for all ri,72 €R

for some nonnegative constant co, then C3 depends on Ms, T, Q, v, A, co only.

Remark 2.11. Note that the sample choice g(r) = 3 —r — 671, r € R, cor-

responding to a double-well potential in the free energy, satisfies both (H14) and
(H16).

Remark 2.12. If one uses the enthalpy variables e; = 6; + A(X;), j = 1,2, in
Remark 2.9 and Theorem 2.10, then the norm ||e; — ey HLOC(O,TJ//) can be estlmated
in terms of the right hand side of (2.19) and (2.20), respectively. Indeed, it suffices
to integrate the difference of equations (2.12) written for e;, u;, i = 1, 2, with respect
to time and compare the resulting terms. However, we point out that an estimate
like (2.20) referred to the enthalpy has been already proved in [15, Theorem 3.1],
where a problem more general than Py is considered. There, the enthalpy depends
nonlinearly on 6 and equation (2.13) also contains a maximal monotone graph with
bounded domain: this constraint forces X to be necessarily bounded, which is rather
helpful in the mathematical analysis.
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3. PROOF OF THEOREM 2.3

The proof is split into several steps. First, we construct a suitable sequence of
approximating problems P}, n € N, and the related sequence of solutions 0™, xm),
the index p being omitted for the sake of brevity. Then, a series of a priori estimates
on the sequence (6™,X") will allow us to get a solution to P, by passing to the
limit as n — +o0.

Approximating P,. Let us introduce approximations of A and g first. For n € N,
we set

A=n)+ N(=n)(r+n) ifr<-n
(r) if —n<r<n (3.1)
(n) +XN(n)(r—n) ifr>n

An(r) =< A
A
and observe that

A, € CYY(R), N

oAn e L®(R), A\, — A ae. inR. (3.2)
Also, by (H1)-(H2) and the mean value theorem we easily infer
IAL(M)] <ex(T+]|r]) VreR (3.3)

where ¢y is a positive constant only depending on A. Then, for any integer n € N,
we consider an approximation g, of § (cf. (2.1)) such that

0<gn(r)<g(r) VreR (3.4)
and, letting g, = g,
gn € C"'(R), g, —g ae inR. (3.5)

For instance, recalling (2.2), we can find two sequences {s,} and {r,} such that

Sy < g < Tn (3.6)
g(sn) =—n, g(rn)=n (3.7)
gr)<—m Vr<s,, gr)>n Vr>r, (3.8)
and set
-n ifr<s,
gn(r):=qg(r) ifs,<r<mr, (3.9)
n ifr>r,.
Note that
g(r) < gn(r) ifr<s,, gr)>gn(r) ifr>ry; (3.10)
gn(r) = C, —|—/ gn(s)ds, 1 eER, (3.11)
ag

satisfies (3.4).
To introduce a suitable approximation of the remaining nonlinearity, we set

p(u) == (—u)™' Yu<0 (3.12)

1
n = — 1), b,:=— N 1
a (n+1) 1 Vn e (3.13)
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and define, for any n € N,

p(by) ifu>b,
pn(u) =< pu) ifa, <u<b, (3.14)
play) ifu<ap,.

We approximate the initial datum 6y as well. Define the measurable and negative
function (cf. (H9))

Ug ‘= —(00)71 (315)
and, consequently, for any n € N, the approximating data
90n = pn(uo), Uon = —(9071)_1. (316)

Note that wugy, 0on € L°(§2). Moreover, it can be proved

0o, < 0p+1 a.e. inQ (3.17)
an < ug, < b, a.e. in (3.18)
Oon — 0p a.e. in Q@ andin LP(Q), as n — +oo (3.19)

by virtue of (H9) and the Lebesgue dominated convergence theorem. Also, setting
Up = (14+n?)"! (3.20)

for any n € N, we can infer
Vnlluon||? < C (3.21)

where henceforth C' denotes a positive constant independent of n and u, but depend-
ingon T, Q, T, v, p, A, and g, at most. Observe, in particular, that (3.20)-(3.21)
entail

Vpllon — 0 in H, as n — +oo. (3.22)

For the sake of simplicity, we also approximate the source term f with a sequence
{fa} € L*(0,T; H) such that

fn— f in L*(0,T;LP(Q)), as n — +oo. (3.23)

We can now formulate the approximating problem for any n € N.
Problem Pj.. Find v™ € C°([0,T]; H) N L*(0,T;V) and X € W»>(0,T; V') N
CL([0,T]; H)y N C°([0,T]; V) such that

((wnu™ + pn (") + An (X))t 0) + (", 0)) = (fn,v) + (b, 0)r

Vv eV, ae. in (0,T) (3.24)

(uXFsv) + (X, 0) + (VX Vo) + (92(X7) + X, (X)) (pa(u™)) 7 0) = 0
Vo eV, ae in (0,T) (3.25)
u"(O) = UQn,, Xn(()) = Xo, X?(O) = Xl a.e. in Q. (326)

Existence and uniqueness for Pj;. We can apply a fixed-point argument based
on the Contraction Principle. Define the Banach space

Xp = L*0,T; H) x C°([0,T); H)
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and let (@",X") € Xr. Then, consider the Cauchy problem
(X v) 4+ (X2, 0) + (VX™, Vo) + (X, 0) = (G(@™, X"),v) YveV, ae. in (0,T)
X"(0) =Xo, X7(0)=X; ae in Q

(3.27)

where
n

G, X") = X" = gn(X") = X, (X" ) (pn (@) ™" € L=(0, T; H).
As (3.27) is a linear hyperbolic problem, it turns out that (cf. [1, Theorem 3.3])
there is a unique solution

X" e W2(0,T;V')nC*([0,T); H) N C°([0, T]; V)
to (3.27) (one may also see [30, pp. 74-79]). Moreover, the usual energy estimate

I N Eqo.0:m) + IXENE 20,081y T IX G0 (0,65

t
<l + ol + [ 166X ()] ds)
holds for any ¢ € [0, T]. Next, it is not difficult to realize that (see, for instance, [5,
Lemma 3.4]) there exists a unique solution ™ € C°([0,T]; H) N L?(0,T;V) to
((nu™ 4 pn(u™))e, v) + (U v)) = =((An(X™)), = fr,v) + (B v)r
Vo eV, ae in (0,T) (3.28)
u™(0) = ug,, a.e. in Q. (3.29)
We have thus constructed a mapping S from X7 into itself by setting S(a™, %n) =
(u™,X™), with the property that
(u",x™) € [C°([0,T]; H) N L*(0,T; V)] x [CY([0,T]; H) N C°([0, T]; V)] .

Consider now (ﬂ?,%?) € Xr, j = 1,2, and the corresponding (u},X7). Observe
that, integrating with respect to time the equation (3.28) written for the difference

ul — uf, we obtain (cf. also (3.29))
(vn(ui’ —ug) + pn(ur) = pn(ug),v) + (1* (uf — uz),v)
= —(A(XT) = M (X3),v) YveV,in (0,T).

Then, taking v = u}’ — uj and recalling (3.1)-(3.2), (3.14), it is not difficult to
deduce the estimate

lut = usl 220,00y < AnlXT = X501 2200,0) VT €[0,7T]

where A,, denotes a positive constant blowing up as n goes to +oo.
On the other hand, the energy estimate related to the difference X} — X% (of
solutions to the respective problems (3.27)) yields

t
X5 = X3 (2o qpo,11:) < C/O IG@@ (5), X1 (5)) — G(U5 (5), X5 (5)) ]| ds.

Combining the last two estimates and recalling the definition of G along with (H1)-
(H3), (3.1)-(3.2), (3.9), and (3.14), we eventually deduce

luf — ubl 220,00y + IXT = X5 &0 0,450

t
<o [ (1 = Ty + IR = T3 o) ds
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for any ¢t € (0,7]. Thus, for any fixed n € N, we can find an integer m = m(n) such
that S™ is a contraction of Xp into itself. Therefore S has a unique fixed-point in
Xr; that is, Pj; has a unique solution.

A priori estimates. Suppose, for the sake of simplicity, u € (0, 1]. Let us set

pir) = [ = (o) s
for all » € R. Note that p; > 0 in R. Moreover, a straightforward computation
gives (cf. (3.12)-(3.14))
* r? 1
orn(r) = §+r+§ Vr € lan, by (3.30)

Then, define

0" = po(u™), w" := (p(u™))! (3.31)
and observe that §" and w™ both belong to C°([0,T]; H) N L?(0,T;V), due to the
Lipschitz continuity of p,, and 1/p,.

Let us point out first that the estimates we are performing on equation (3.24)
are formal since we only know that v,u™ + 6™ € H'(0,T; V"), but we would need
to know that both u™ and 6™ belong to H'(0,T;V’) at least, separately. In order
to make the estimates rigorous, we should better approximate f, h, and ug by
smoother functions f, € H*(0,7; H), h,, € H*(0,T; L*(T)), and g, € V, arguing
then on the regularized version (see also [5, remarks at p. 321] and references
therein).

Consider therefore (3.24) with v = 1 — w™ and note that

(" (0)+ 0" (@)1 = 0" (1) = [ @ (0) +07(0) =0 (1) do. (332

Recalling again (3.12)-(3.14) and the definition of the scalar product in V (cf.
Sec. 2), one can easily check that

(u"(t),1 = w"(®)) = [[Vw" ()]* + (" (t),1 — w"(t)r. (3.33)
On the other hand, we have that
(u"(),1 = w"(t))r = (—w"(t),1 —w"(t))r. (3.34)

Hence, integrating (3.24) with v = 1 — w™(t) with respect to t and using (3.32)-
(3.34), we deduce the estimate

/(unpn< n(1)) + 67(t) — n 0" () de

/ ||Vw” ||2d8+')// ||w ||L2 ds — / Hw"(s)HLl(p) ds

>~ / (an)n (u()n) + Pn (uOn) 111 Pn (uOn))d
Q

(3.35)

+ / (Fa(5) — (a0 (8))er 1 — w"(s)) s + / (h(s),1 — w™(s))r ds.
On account of (3.14) and (3.16), we have
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Recalling (3.18), (3.20) and (3.30), we infer
/Q vnpt (sion) dz < C. (3.37)
Moreover, recalling (H9)-(H10) and using (3.17) and (3.36), we obtain
[ (patuon) =0 puun))de < O+ ool + [bolire— (339)
Therefore, on account of the elementary inequality
r—Inr > %(r+ [Inr]) Vr>0
one sees that (3.35) and (3.37)-(3.38) yield
1
g(Hon(t)”Ll(Q) + 6" (1) 1 ()

t t t
+ / IVar ()| ds + / oo™ ()2 0y ds — ¥ / o™ ()l oy d
0 0

(3.39)
<C+ |16ollr () + I 6ol L1 ()
t t
+/ () — (X7 (5))ss 1 —w”(s))ds—i—/ (h(s), 1 — w"(s))r ds.
0 0
Define now
pulr) = [ (s = 1)ds
for all » € R. Note that, on account of (3.12)-(3.14), we have
N G o
pn(r) = - P (r4+1) Vr € ap,by]. (3.40)
Moreover, it is easy to check that p, > 0 in R. Consider then the identity
n — d ~ n 1 n n
(O + 0" (), 00 =1) = 5 [ (e 0) + 21070 = 07(0)) da
(3.41)

Arguing as for (3.33), we deduce

(™ (), (0™())"~" = 1)) = (=Vw" (), V(0" ()"~ = 1)) +7(u"(2), (9"(15))17_1(; i);)
as well as (cf. (3.34)) -

(W"(1), (0" ()P~ = )p = (—w" (1), (6" (t))""" = Dr. (3.43)
Therefore, (3.42) and (3.43) give

")t -1)

(u™(2), (
> (p = D0 ()27 V6" (1) + v (—w" (£), (0" ()" = Dr. (3.44)
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Set now v = (6™ (t))P~1—1in (3.24) and integrate the resulting identity with respect
to time. On account of (3.41) and (3.44), we can obtain the inequality

~ n 1 n p__ pn Z‘
[ (et @) + 5P = 07()) a
1) / 107 ()21 1 67 (5)] ds + / (—u"(s), (67(s))" — 1) ds

< [ aaluon) + S lpuCwon)l” = o) o

t t
[ ) = Oul ) (0767 = s+ [ (h(s),(6(5))7 " = D,
0 0
(3.45)
Recalling (3.36) and using (3.18), (3.20), and (3.40), we find
Q
Also, owing to (3.17) and (3.36), we get
1
/Q (§|Pn(U0n)|p - Pn(%n)) dr < C(Hﬁollip(m + 0ol (0) +1). (3.46)

Consequently, from (3.45)-(3.46) we derive
1 n n ! n - n
L0l 0y = 10" Ol + (= 1) [ 16T o) ds

+v / (—wm(s), (0"(s))P~! — D)r ds

<Oy + Wollren +1) + [ (Fals) = (X7 () (07 ()" = 1) s
+ [ o). @) = yras
(3.47)
We now set v = u™(t) in (3.24); that is,

e S O + 67 (6, 0" (6) + (@ (2), 0 (1))
= (fal®) = (X" ()1 0" (1) + (B, w" (). (3.48)

Observe that, on account of (3.12)-(3.14), we have
/ PN (s)ds = —Inr V7 € [~by,, —an)
1

where p"V denotes the inverse function of the restriction of p,, to [an,b,]. Hence,

since 0"(t) € [~bn, —ay], by (3.31) we deduce

(00 (1), u" (t)) = —% [ ngn(0) da (3.49)

Then, owing to (3.49), an integration of (3.48) with respect to time yields

Un

Sl OF = [ me@dr+ [ ()0 ) is
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:?”||uon||2—/Q 1n90ndx+/0 (fn(s) = (A (X™(s))s, u™(s)) ds
+ /O (h(s),u" ())r ds

and, recalling (3.21) and (3.38), we obtain the inequality

Un

S @ = [ worde+ [ (s @) as
<Ot ol + [ () = Ol @D @) ds (350)

¢
+/ (h(s),u"(s))r ds.
0
Consider now equation (3.25) and pick formally v = X}* (see Appendix in [4] to

make this argument rigorous). Integrating the resulting identity with respect to
time, we get the estimate

H n 1 n o ' n
SO + 19O + [ n(xada+ [ o)1 as
1 X ' n n
<B4 51V + [ uo)ds = [ (a0 @) () ds. (351
Let us add (3.39) and (3.51). This gives

1 Y n
§(||9 L2y + 1™ (8) || 1)

t t t
+ / [Vur(s)|? ds + 4 / oo™ ()12 0y ds — 7 / 0" (8) 2y ds

M n 1 n ~ t n
+S X + S IVX ()12 +/ gn(Xn(t))der/ X2 (s)[|* ds
2 2 Q 0
) 1 (3.52)
<C+ ||6ollr ) + 6oz (o) + 5||X1||2 + §||VX0||2

s [ea-urenas— [ [ e asas
+/0 (h(s),l—w”(s))pds—i-/ gn(Xo)dx.

In view of (3.3) and (3.26), by Young and Hélder inequalities we have that
// AL (XMXT dx ds
ot [ i)+ [ peePas
t
<O(U4 Nl + [ N2y ) +5 [ NI .
Then, recalling (H1)-(H2), (H11), (2.1), and (3.4), from (3.52) we deduce

1 n n
g(Ho Ol + 1™ ()21 o)
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t t

+ / IVan(s)[2 ds + / " (s)2 ds

:u n 2 1 n 2 1 K n 2
e+ e+ 2 [ e )P ds

2 2 2 J

t

<O(1+ f0llze e + 1B llzagey + P 2 + ol + / X2 0,01 )

+ 1 fnllez 0,150 @) (1 + lwall 20 .00 () + 1BIL2 @0z (1 + 1w (s)] 22 (ry))

where we have assumed p € (0, 1] for the sake of simplicity. Hence, the injection
Ve LY (©2) and Young and Gronwall inequalities allow us to obtain the bound

t t
107(8) 2y + 11007 (0)]| sy + / IV (s)[2 ds + 4 / ™ (s) 2 ds

t
+ plXF @I + VX ()12 +/O IXZ(s)||* ds (3.53)
< C(1+ 6ol L) + 1ol 1oy + XL + [ Xoll3
+ 1 fall 70,000y + 10172 0n))

for any t € [0,T]. Going back to (3.50), we easily see that

Un

2 ey + / (" (5), u"(5)) ds
<O+ (0Bl ey + [ 100 (8) [ 12 ey + / (fals), u™(5)) ds (3.54)

+ / (h(s), u"(s))r ds — / (N, (X ()X0(5), u"(5)) dis

from which, on account of (3.3) and (H1)-(H2), using Young and Holder inequalities,
we derive

allu ()2 + 10" 0
< O(1+ 1M ollacey + 0" Ol + 1alZeoizianay + Il

[ OO lar) DO 106 v ).

Then, using the injection V < L%(Q) and the bound (3.53), an application of
Gronwall lemma yields

vl @) + ™ 32 0,y <C(1+ 100l a @) + 1 Boll sy + [Xa 2
3.55
4 2 2 ( )
+ Xollv + 1 fallz2 0,700 ) + 1A 200
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for any ¢ € [0,T]. At this point, in the light of (3.30) and (H8), from (3.47) we can
infer

1
—|0m ()17,
16" (0 e

< C(l + ||90||Z£p(g) + 1 fallzr@py + IRl o) + ||(wn)27pHL1(rt)> (3.56)

! n p—1 s — ’ l n(g n(g n(g p—1 _ s
+/O (fu(5), (0" ()P 1) d /wa (S)X(s), (B7(s)P " — 1) ds.

Recalling (H1)-(H2), (3.3), (3.53) and using Young and Holder inequalities, we have
t
/ (X, (0 ())X2(s), (67 (5))P "1 — 1) ds
(/ IV (X (5))X™ (s |de+/ (0™ (s —1\P'dx)ds
( (L4 X 22 ) I+ 167 [y +1) s (357)
(||><" ()2 + 10 (5)1 5y + 1) ds

971 Q)+ )d

I/\
\\\\

where C denotes a positive constant having the same dependencies as C' and addi-
tionally depending on the quantities on the right hand side of (3.53). We have also
used the fact that p € (2, 3] and the continuous embedding V — L#/(=p)(Q).

Combining (3.56) with (3.57), taking (3.53) into account, and making use of
Hélder inequality and Gronwall lemma, we obtain that for any ¢ € [0, 77,

16" (D171 0y < CL+ 116001170 ) + 1 Full (010 (3.58)
(«) (2

Collecting (3.53), (3.55), and (3.58), owing to (3.23), we eventually deduce the a
priori bounds
Vn U™ | Lee 0,7,y + 0" | 200,751
6™ Lo 0,710 (02)) + 100" Lo (0,730 (0)) + W[ L2(0,75v) (3.59)
FVENXE Lo 0,7:m) + X |20,y + X 2o (0,7v) < K
with the constant K depending only on data and being independent of u (cf. The-
orem 2.4). In addition, recalling (H1)-(H2), (H4), (3.1), (3.3)-(3.5), and (3.31), on

account of (3.59) and by comparison in (3.24) and (3.25), we can infer the further
bounds

[vnu™ + 6" 0,7y + plIXE 220,17y < K. (3.60)
Passage to the limit as n — +o00. In this subsection, all the convergences have

to be understood for suitable subsequences. From (3.59) we deduce the existence
of a pair (#,X) such that as n — +oo,

0" — 0 weakly star in L°°(0,T; LP(Q2)) (3.61)
w™ — w  weakly in L2(0,T;V) (3.62)
u" — u  weakly in L*(0,T;V) (3.63)
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vpu™ — 0 strongly in C°([0,T]; H) (3.64)
X" — X weakly star in W'°(0,T; H) N L>(0,T;V) (3.65)
X, — Xy weakly in L?(0,T; V). (3.66)

Note that (3.59) and (3.60) entail

[vnu™ 4+ 0™ 10, 7v )L (0.17:L0 () < K (3.67)

and, due to the compact injection LP(Q) — V' and (3.64), we have (see, e.g., [27,
Corollary 8])

0" — 6 strongly in C°([0,T]; V") (3.68)
as n — 4o00. Also, by (3.65) we infer that, as n — +o0,
X" — X strongly in C°([0, T]; L*(9)). (3.69)

We now have all the ingredients to pass to the limit as n goes to +oo in PJ;.
First of all, let us analyze the nonlinearities. Observe that, for any v € L?(0,T; H)
such that p(v) € L?(0,T; H), it turns out that

pn(v) — p(v) strongly in L2(0,T; H)

as n — +o0. Hence, recalling (3.31), (3.63) and (3.68), in view of the monotonicity
of p, and the maximal monotonicity of the graph induced by p on R x R and
L?(Q1) x L*(Qr), taking the limit in

T
/ /(Gn — pn(0)(uy, — v) dxdt
0 Ja
we obtain (cf., e.g., [3, Definition 2.2, p. 22])

u<0, 6=p(u) (3.70)

almost everywhere in Q.
On the other hand, on account of (H1)-(H2), (3.1), (3.2), (3.59) and (3.69), one
easily proves that, as n goes to 400,

N (X™) — N(X) strongly in C°([0, T); L*(2)). (3.71)
Therefore, combining (3.65) with (3.71), we get
A (XMXP — N (X)X, weakly in L2(0,T; L*3(Q)). (3.72)

Since g, uniformly converges to g on compact subsets of R and (cf. (3.69))
X, — X a.e. in Qr
at least for a subsequence, as n goes to +0o0 we have that
gn(X") — g(X) a.e. in Qr. (3.73)

Also, using the injection V — L%(Q), we infer

/OT/S2 |gn (X" (2, 1)) 2ddt < /OT/Q lg(X"(, 1)) |*dadt

T
S// (T3|Xn($,t)|3+7'4)2dl'dt
0 JQ

< (I W oz +1) -
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Thus we get

{g,(X™)} is bounded in L*(0,T;L*(9)). (3.74)
From (3.73) and (3.74) we deduce (see, e.g., [20, p. 13])

gn(X™) — g(X) weakly in L*(0,T; H). (3.75)

Recalling (3.31) and owing to the maximal monotonicity of the inverse graph of p, by
(3.62), (3.68), and [3, Prop. 2.5, p. 27] we infer that —w = —6~! and consequently

1 1
= Lz
o 0
Thus, (3.71) and (3.76) give

AL(X™M) M (X
—

o 0

Summing up, the convergences (3.19), (3.23), (3.61)-(3.66), (3.72) (3.75), (3.77),

along with (3.16), (3.70), allow us to pass to the limit in (3.24)-(3.26). There-

fore, (0,X) happens to be a solution to P,. We recall that the regularity X €

CH[0,T); HYNC([0,T); V) follows from a standard argument for linear hyperbolic
equations (see, for instance, [30, Lemma 4.1, p. 76]).

weakly in L2(0,T; V). (3.76)

weakly in L2(0,T; H). (3.77)

4. PROOF OF THEOREM 2.4

We know that the solution (6#,X*) to P, we have obtained from the limit
procedure in our approximation scheme certainly satisfies the a priori bound (2.16),
due to (3.59) and (3.60). Indeed, any bounding constant which appears in the
previous proof does not depend on p.

As a matter of fact, we now prove that any solution (6*,Xx*) to Problem P,
necessarily satisfies estimate (2.16). Indeed, on account of (H1)-(H4) and (2.1)-
(2.2) we observe that

g(xX*) € HY(0,T; L1 () and (§(X*)); = g(X*)X¥ a.e. in Q (4.1)
N(xm) (M)~ e L?(0,T; H)
F, = (N (X)) = N (X*)XE € L2(0,T; L¥/%(Q)). (4.3)

Referring to the previous proof, we take a sequence {F,} C L?(0,T; H) such that
F, — F, in L*0,T;L%*(Q)) (4.4)
and we consider the Cauchy problem (cf. (3.24) and (3.26))

((Vpu" + pr(u™))e,v) + (W, 0) = (fn — Fn,v) + (hyv)r Yo €V, ae. in (0,7T)
(4.5)

u™(0) = ug,, a.e. in .
Then, it is not difficult to realize that there exists a unique u™ € C°([0,T]; H) N

L?(0,T; V) which solves (4.5)-(4.6). Moreover, with the same positions as in (3.31),
the estimates (3.39), (3.47), and (3.50) still hold with F,, in place of (A, (X™));.
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Therefore, multiplying (3.39) by 6 and adding it to (3.47) and (3.50), we deduce

1
];||9n(t)||ip(g) 10" (O llLr @) + (10" ()| L1 (0

t

+6 [ (w(s),w™(s)) ds — 6y / ()l ey ds

t
-

<C

O\O\

(w"(s), (0" ()P~ )r ds + %"IIU"(t)IIZ +/O (u"(s),u"(s))) ds

L+ 80l ) + 11 Boll 22y + 160112, ) (47

/(fn()* ()1 — w <s>>ds+6/0 (h(s),1 - w"(s))r ds

—~

+ / (fa(5) — Fuls), (67()) " — 1) ds + / (h(s), (6"(s)P~* — D)r ds
+ / (Fa(s) — Fu(s), u"(s)) ds + / (h(s), u™ (5))r ds.

0
Then, thanks to (H8) and (3.31) we infer

18Ol )+ 16" )220y + 18O
6 / (" (s), w"(s)) s+ 22 (1) + / (" (s), u"(5)) ds
<67/ e0™() 1 d8+7/ (™ (5))2 P | o o dis
+C(1+ 100l 1) + (b0l L) + ||90\|Lp(g))
6 / (Fa(5) — Fu(s),1 — w"(s)) ds — 6 / (h(s), w(s))r ds
—|—/0 (fn(s)—Fn(s)7(9n(3))p—1_1)ds—|—5/0 ||h(s)HL1(p)ds
+ / (fu(5) — Fa(s), u"(s)) ds + / (h(s), u™(s))r ds.

Using now Young inequality, from the above inequality we get (cf. also (3.31))
1O Ol ) + 16" Ollxiey + 106" (O)l120)
K ny—1 n\— 2 1 K un s un s s
+/0 ((6")71(), (") ) ds + 2 1) +2/0 (" (s),u"(s))) d
<C (14 160115y + I Boll sy + Il (rr ) (4.8)
5 / 1£a(5) = Fu(3)ll 13y ds — 6 / (fals) = Fa(s), (67(5))"1(5)) ds
+ / (fa(5) — Fu(s), (67())P~Y) ds + / (fa(5) — Fu(s), u(s)) ds.

Applying Young inequality once more, we have



20 P. COLLI7 M. GRASSELLI, & A.ITO EJDE*QOOQ/IOO
t
/ (Fuls) — Fuls), (0" (s))P) ds
0

t
<0 [ (1) = Buls) gy + 107 (5) ey ) ds. - (49)
0
Then, on account of (4.9), from (4.8) we easily deduce

187 (% 0y + 167 B3 ) + (110 67 (1)1
t t
+ / 16™) " ()13 ds + vallu™ (8)]2 + / lun(s)|13 ds
C(1+ 100115y + B0l 22 @) + NI e

t
4 [ 1As) = Fuls) gy s+ / 167 ()12, s
! 1
+ [ 1) = Bl (16 Ol + " ()l )ds)
and, recalling the embedding LP(Q2) — V' and using Young inequality, we obtain
10" (O 0 ey + 10" )l L2 () + 10" (#)] L2 (0

/||0“ 2 ds + v lu” ()] + /nu )12 ds

< C(1+1180]1 gy + 1 B0l 220y + N3y

[ 156 = Fa gyt [ 1076y

An application of Gronwall lemma to (4.10) yields the bound (cf. also (3.23) and

(4.4))

Vv U Lo 0,50y + 1™ 20,750y + 107 ([ oo 0,73 10 (2))
+ 10" | Lo, r,01(0)) + 10™) " Hlzzo,mv) < Kpue (4.11)
Here, K, denotes a generic positive constant which does depend on the quantity
1 Fyll L2(0,m;13/2(02)), but it is independent of n. Consequently, by comparison in
(4.5), we also have

(4.10)

lvnu"™ + 0" || g0, msvry < Ky (4.12)
Then, arguing as in the last subsection of the existence proof, we obtain
0" — 0" weakly star in L*°(0,T; LP(f2)) (4.13)
0" — 0" strongly in C°([0,T]; V") (4.14)
u™ — —(0")"' weakly in L*(0,T; V) (4.15)
(0™t — (™)' weakly in L?(0,T;V) (4.16)
vpu™ — 0 strongly in C°([0,T7; H) (4.17)

where the limit 6# should solve the Cauchy problem (cf. (4.5) and (4.6))

0 vy + (—(0")" 1 v) = (f = Fu,v) + (h,v)r Yv eV, ae. in (0,7)
0"(0) =0y a.e. in Q
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and therefore (cf. (4.3)) coincide with the first component of the solution (6%, X*)
to P, fixed at the beginning of this section. Indeed, the above Cauchy problem
admits a unique (positive) solution. Uniqueness can be checked by a contradiction
argument (see, e.g., the proof of Theorem 2.6 below).

Observe now that, owing to (4.14), we have, for any ¢ € [0, 7],

6" (t) — 6*(t) in V' (4.18)
On the other hand, since t — 6" (¢) is weakly continuous from [0,T] to LP(€2) and
{6™} is bounded in L*>(0,T; LP(§2)) (cf. (4.11)), it follows that, for any ¢ € [0, T,
there exists a subsequence {#™*(¢)} and some element n* € L?({2) such that

0™ (t) — n'  weakly in LP(Q). (4.19)

Hence, combining (4.18) with (4.19) and exploiting the uniqueness of the first limit,
we deduce

0" (t) — 0" (t) weakly in LP(Q). (4.20)

Then, since (3.39) holds with w™, (A, (X™)); replaced by (0")~', F,, respectively,
by (H8) and Holder and Young inequalities we have

1, b SO
L (t)||L1(sz)+/0 V(6") 1||2d‘9‘f‘§/O 16™) " ()12 (r) ds
< C(1+ [16ollzr (@) + 1ol () + IAll72(rp) (4.21)
t t
+/0 [fn(s) = Fu(s)llL1 (o) ds_/o (fa(s) = Fu(s), (6™) 7 (s)) ds.

On account of (3.23) and (4.4), using (4.16), (4.20) and the (weak) lower semicon-
tinuity of the norm, we deduce from (4.21) the following inequality

1 t B 'V t B
10Ol ey + / V(67 ds + / 101512 ds
< C(1+ 100l @) + 10 b0l 2@y + 1Al (4.22)
t t
+ / 1£(5) = Fu(s)lor ey ds — / ((5) = Fu(s), (0" \(s)) ds.

Observe now that our fixed X,, satisfies equation (2.6) and related initial condi-
tions in (2.7). Hence, we can formally take v = X}'(¢) in (2.6) and integrate with
respect to time over (0,¢). In view of (4.1) and (4.3), we get the energy identity

SO + IV + [ a0da+ [ )P ds
I o 1 2 - ‘ uy—1
= Bl 519l + [ a0 = [ (0.0 @) @) ds. (429

We recall that the above argument can be made rigorous by using a suitable regu-
larization of X4 (t) (see [4, Appendix]).
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Adding (4.22) and (4.23) and arguing as we did in the previous proof to obtain
(3.53), we deduce the estimate

\|9“(t)HL1<sz>+/0 IIV(G“)”(S)HQdSJr’Y/0 1(6") = ()T ds

+pllXg @17 + VX" (@) +/0 X2 ()] ds (4.24)

< C(1+ ollaey + M B 20 + X1 + %ol

+ 1132 z:mca + 1AIZ2cer) )

for any ¢ € [0,7]. In the light of the definition (4.3) of F),, it turns out that (4.24)
yields a fortiori a bound for ||Fy||12(0,7;15/2(q)) independent of y. Hence, from
(4.11) and (4.13) we conclude that

10| oo (0,70 (2)) < K. (4.25)
Moreover, a comparison in (2.5) entails
105 1| 20,707y < K. (4.26)

Finally, (4.24)-(4.26) enable us to deduce (2.16).
Thanks to (2.16), there exist a sequence {u,} that converges to 0 and a pair
(0, X) such that

6*» — 0  weakly star in L>°(0,T; L*(Q)) (4.27)
0" — 0 weakly in H*(0,T;V") (4.28)
0" — @ strongly in C°([0,T]; V) (4.29)
ein — % weakly in L?(0,7;V) (4.30)
pn Xt — 0 strongly in C°([0, T; H) (4.31)
XHn — X weakly star in L>(0,T;V) (4.32)
Xt — X weakly in H'(0,T; H) (4.33)
XHn — X strongly in C°([0,T]; L*(Q2)) (4.34)

as n — 400 (cf. also the last subsection of the existence proof).
Integrating equation (2.6) with respect to time over (0,t¢) and taking initial
conditions into account, we obtain
(uXE™ +XH" 0) + (VLX) Vo) + (1 (g(X) + N (X)) (0") 1) [ 0)
= (unX1 + Xo,v) Yo €V, ae. in (0,7). (4.35)
Then, thanks to (4.27)-(4.34), we can pass to the limit as n — 400 in (2.5) and

(4.35), arguing as above for the nonlinearities, and we can deduce that (0, X) satisfies
the equations

(O +XX))g,v) + (=07 0) = (f,v) + (h,v)r Yo €V, ae. in (0,T) (4.36)
(X,0) + (T(1X), Vo) + (L (90) + X (087, ) = (Xo.v)

Vv eV, ae in (0,T) (4.37)

0(0) =0, in V' (4.38)
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On the other hand, owing to (H1)-(H4), (H11) and (4.30), (4.32)-(4.34), from (4.37)

we can infer
(X¢,v) + (VX, Vo) + (g(X) + N(X)0~",0) =0 Vv eV, ae in (0,7) (4.39)
X(0) =X, a.e. in Q. (4.40)

Moreover, since

g(X)+ N (X))o~ —x, € L*(0,T; H)
we deduce from (4.39) and the standard elliptic regularity theory that X satisfies
(2.11) and (2.14). Hence, the pair (¢, X) fulfills (2.8)-(2.15) and solves problem P,
Consequently, the uniqueness of solutions to Py (cf. Theorem 2.10) implies that
the whole family {(6#,X*)} converges to (6, X) according to (4.27)-(4.34) as p \, 0,
and Theorem 2.4 is completely proved.

5. PROOF OF THEOREM 2.6
Observe that, for j = 1,2, (0;,X;) solves the problem P, with 6y;, f;, hj, Xoj,
X1 in place of 0y, f, h, Xo, X1, respectively, and u; = —0;1. Then, setting
0=0,—0>, u=u; —uz, X=X —Xo
0° =001 — 02, f=fi—fo, h=h1—hy
X0 = Xo1 — Xoz, X'=Xq1 — Xqo
we have
((0 4+ A(X1) = A(X2)t,0) + (w,v) = (f,v) + (h,v)r VveV, ae. in (0,T) (5.1)
(uXee,v) + (Xe,v) + (VX, V) + (g(X1) — g(X2) — N (X1)us + N (X2)uz,v) =0
Vv eV, ae in (0,T) (5.2)
0(0) =6°, Xx(0) =X X;(0)=Xx" ae. in Q. (5.3)

Let us integrate (5.1) with respect to time over (0,t), take v = u(t) and integrate
in time once more. We obtain

| 06w ds+ 51+ w0, (15 0)0)
== [ 000 () = Apxa() u(e) ds

+/ <90+A(X01)—A(XOQ)+(1*f)(s)7u(s)>ds+/ ((Txh)(s),uls))r ds.
0 0

(5.4)
Observe now that

ol 6(s)? 1 ju(s)]? )
(6(s), uls)) = 2/9 T o) 1 1) +2/9 1+|u1<s>2+u2<s>|2‘z5‘5)

Integrations by parts lead to
t
[ M) = M)+ (15 £)(5) () ds
0

:<9°+A(X01)*/\(Xo2)+(1*f)(t)7(1*U)(t)>*/0 (£(s), (1 xu)(s))ds (5.6)
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and

/ ((Lxh)(s),u(s))rds = ((1xh)(t), (L *xu) / (Ixu)(s))rds. (5.7)
0 0

Then recalling (H1) and (H13) and using (5.5)-(5.7) and Young inequality, from
(5.4) we infer

e // P ,
drds + drds+ [|(1*u)(t
//Q 1+|91|2+‘02|2 Q 1+‘U1‘2+"L&2| H( )( )HV
<c( / X fulda ds + / (%)) ds + 16+ X (538)
0JQ 0

@ HOI + 11720220 + 1A+ RO 2y + IIhlliz(rT))

Here and in the sequel of the proof, C' denotes a positive constant depending on
T, Q, v, A\, and g, at most. Note that if N = 1 there is no need of (H13) since
C°([0,T]; V) — C°(@Qy). In this case the constant C' depends on M; as well. We
now have

/ X(8)| u)] do

20 L+ Jui(s)]? + uz(s)[?[X(s)| do
e VT P TP 5.9
1 |U( )|2 2 1 w1 (s 2 Uo(s 2 s 2 .
S2/91+|u1<s>|2+|u2<s>|2d *2/9(“' 1) + [ua(s)[2) [X(s)[? d
so that we deduce
1 Ju(s)|? . ()2
/Q|X(s)||U(s)|dx§ 2/Q 1+|u1(s)|2+|u2(8)|2d + CA(s)||X(3)]| (5.10)
where
A(t) =1+ [Jur ()7 () + luz(®) [T () for aa. te(0,7). (5.11)

Note that A € L'(0,T), due to (2.17). Then, a combination of (5.8) with (5.10)
gives

/7 S U — dd+// P s (1w @)
xr ds X as u
oo 1+101]> + 162 T+ Jua | + [ug| v
< C(I6° + Xl + 1132020 + Ibl3ecer) (5.12)

[l ds+ [ AR ).

Take now v = X; in (5.2) and integrate over (0,¢). Thus, we obtain

SO+ [ 1@l s+ ZIvxe P
= BIE+ SIVCP = [ o) - gta(s), ) ds (513)
+ [0 ) = X))+ X (a(s)ul). () ds.
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We notice once more that this argument is formal since X;(t) does not belong to
V'; however, it can be made rigorous using, for instance, [4, Appendix].

Observe that, thanks to (H14), Holder inequality and the injection V «— L5(Q),
we have

lg(X1(s)) = g(Xa(s)I?
<c? [ (1 PGP + el P P ds
Q
< C (14 10(8) a0y + IXa(3) sy ) X3 ocey

< C (14 Xalim o) + Xl o,y ) X

On the other hand, due to (H1)-(H2), (2.17), and (5.11) we deduce that

(5.14)

/|A (01 ()) — X (Xa(8)] s ()1 (3)] de < CA(s) /|>< ) (s dz.  (5.15)

Moreover, thanks to (H13), we have (cf. (5.10))

/ [N (Xa(s))u(s)X¢(s)| da <C/ |u(s)X(s)| dx

1 ju(s)]? e
<3, T e & A

(5.16)
Collecting (5.13)-(5.16) and using Holder inequality, we obtain
[ ! 1
LIl + [ (@) ds+ IV
0
u 1 !

< IR+ IV € [ AG) (IXG)IE + X)) ds

0 (5.17)

t
+€ (14 Palteora + Palieory) [ IXG)IE ds
0

W
dx ds.
// 1+ Jua |2 + [ug]?

Hence, a combination of (5.12) with (5.17) gives

t 2 2

o eE // I
drds+ - dxd
L e T fun? o+ Jug]
HI(L ) @) + §\|Xt(t)||2 +/0 X5 ()| ds + §||VX(15)||2
< C(||90||%// + XN + sl + 1122 0,z + 1P 220

t t

+/0 1L+ w) ()% d8+/0 As) (IX()IZ + IXs(3)]17) ds

t
+ (1 + ||X1H%oo(o,T;v) + ||X2||ioo(o,T;v)) /0 IX(s)[I3 dS)

and eventually an application of Gronwall lemma yields (2.18).
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6. PROOF OF THEOREM 2.8

Referring to the previous proof, observe that, owing to (H15), (5.4) becomes
/ (0(s),u(s)) ds+ 2((1 < )0), (1 0)(0)
_ —/Ot (X(s),u(s))ds—/otwo X0 4 (1% £)(s), u(s)) ds (6.1)
+ [ (e, u)r s

On the other hand, integrating by parts with respect to time yields

/0 ((s), u(s)) ds = (X(s), (1% u)(s)) — / (), (Lxu)(s)ds.  (62)

Therefore, recalling (5.5)-(5.7), the analog of (5.8) reads

v e Jul? ,
/0/ T 10,2+ (0.2 dwd”// TH TP+ Jug @ H 10+ 0Ol
< O(KEIA@ )y -+ [ 6 s+ [ 10wl ds

167 + X7+ (L= YOI + 120,70 + 1A * D)0 T2y + ||h||2L2(FT))'

Here and in the sequel of this proof, C' stands for a positive constant that depends
on T, Q, v, u, and ¢;, at most. Other possible dependencies will be pointed out
explicitly.

Using then Young and Holder inequalities, we easily deduce

t 2 2
I // I L 2
d ds + da ds + || (1 % u)(t
L, R T el 1w ®llv
< c(Ix(s)I2 X 2 4 1 2 g (6.3)
< CUIX() I + ; 1Xs(s)llvr ds + ; (1 w) ()5 ds
1015+ IXON2 + 1 0,00y + Hh||2L2(rT))-

Consider now equation (5.2) and integrate it with respect to time. Recalling (H15)
and (5.3), we obtain

(uXe,0) + (X, 0) + (V(1 % X), Vo) + (1 (g(X1) — 9(X2)) — L*u,v)
= (X', v) + (X°,v) Vo eV, ae in (0,T). (6.4)

Pick v = X in (6.4) and integrate with respect to time once again. We get
H 2 ! 2 1 2
5 XN+ ; IX()I" ds + S IV + X))
' 6.5
== [ (0 a00) = g0))(s) = (1 u)0). X)) s (65)

I
+ I+ (X X0, (14 X)(s))
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for ¢t € [0,T]. An integration by parts yields

/O ([1+ (9(X1) = g(X2))](s), X(s)) ds = ([1* (g(X1) — g(X2))](#), (1 + X)(¢))
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- / (90X (5)) — g(Xa(s)), (1% X)(5)) ds.

(6.6)

Observe now that, using (H14), Hélder inequality and the injection V — L5(2),

we have
lg(X1(s)) = g(X2())l Los5 ()

5/6
<orf [ @+PaP + R dr)
Q
1/3 (6.7)
<o | A4 @)+ o)) dr} " IXG)|
< C (14 Doy + el oy ) IXG)].
Hence, on account of (6.7) and Young inequality, from (6.6) we deduce
t
- [ s ta0a) = g0l 1) ds
1
< c/ 9061 (5)) — 9Xa(5)) 5y ds + 1= XA + / 1% X)(3)]2 ds
C(0) / )P ds + 10001 + [ 106 s
(6.8)
Using (6.8) and Young inequality once more, we infer from (6.5)
n
B+ [ X+ IV 00)?
< C(IXCN + P + / 1L % w)(s)]12 ds (6.9)
0

+ [ 19 0@ R ds) + cm) [ xR

Thanks to (6.7) and (6.9), by comparison in equation (6.4) we also derive

i
IO < OO (lP + 1l + [ (1 u)(s) P ds

+/O HX(5)||2d8+/0 ||V(1*X)(8)H2ds)+2||(1*u)(t)||2. (6.10)

Finally, multiplying (6.10) by 1/4, then adding it to (6.3) and (6.9), a subsequent

application of Gronwall lemma leads to (2.19).

7. PROOF OF THEOREM 2.10
In this section, we also set

60 = 80 —+ )\(Xﬂl) — )\(on)
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and let the generic constant C' depend on T', €, v, [|\"[| L (r), and ¢; or ¢z, at most.
We still have (5.4), due to (2.12). On the other hand, observe that (cf. (2.13))

Xe +AX +g(X1) = g(X2) = N (X1)ur — N (X2)uz  ae. in Q. (7.1)

Therefore, multiplying equation (7.1) by X and integrating over space and time,
with the help of Green formula we get

SO+ [ 19X ds = = [ (000(s) = gvals). X(s) s + 5P
+ [ Ve () = X a()a(s). x(0) ds.

(7.2)
Adding (5.4) and (7.2), in view of (5.5)-(5.7) we can infer

1 o Juf?
5// [ERTNEERTA R // T4 P 1 Jua] 4%
+§||<1*u><t>||2v+§||x<t>||2+ IVX(s)]|? ds
0
< (4 (Lx (1), (L u)(6) — / (F(s), (1% u)(s)) ds
) X (7.3)
(L)), (1 w) () — / (h(s), (1 w)(s))r ds + 5K
- / (90X (5)) — g(Xa(s)), X(s)) ds — / (A () — A(Xa(5)), u(s)) ds
0 0

+/ (N (Xa(s))ua(s) = N'(Xa(s))ua(s), X(s)) ds.
0

Let us estimate the last three integrals on the right hand side. Assume that (H14)
holds. Then, owing to (6.7) and Young inequality, we have

- / (9061 (5)) — 9(X2(5)), X(5)) ds
< Cllg(3) ~ 9% (s) ey + 5 | X ds (7.4)

<con) [ NI+ g [ v

Next, owing to (H1)-(H2), Taylor expansion, and Holder inequality, we have
-/ TG () — AC (), u(s)) ds
[ V061 (5) ~ N (el o) X5 s
_ /Ot/Q (M) — A(X1) = N(X1)(Xa — X1)) dar ds
+ /Ot/Q (ug(A(X1) — A(X2) — N (X2) (X1 — X2)) dz ds
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By

<A Lo () /Ot/Q(|u1|+u2)|X|2dxds

<c| " (3l + a8l acen) XXy s

< c/ (L+ laa(5)12 + lua(s)]12) IX(s) 2 ds + = / 19(s)|12 s
<o) [ s g [ v s

virtue of (7.4), the above inequality, and Young inequality, from (7.3) it is

straightforward to deduce (cf. (5.8))

/t/ |9|2 dxds—l—// |u|2 dz ds
o 1+|91\2+|(92|2 1+ |up|? + |usg|

)@ + X)) + / I9X(s)]1>ds
< (Il + 1N + 173 0,y + 1ol )

" / [(Lx u)(s) |2 ds + C(My, M) / IX(3)]? ds.

Then, an application of Gronwall lemma yields (2.20).
Finally, suppose that (H16) holds instead of (H14). Then, in place of (7.4) we
have

- / (90X, () — 9(X2(5)), X(s)) ds < e / IX(5)]2 ds.
0 0

Therefore, the constant C3 appearing in (2.20) does not depend on My and Theo-
rem 2.10 is proved.
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8. ERRATUM: SUBMITTED ON MARCH 31, 2003.

1. [p. 1, last line, and p. 2, first line] We should point out that the well-known
example of g we give, i.e., g(r) = r® —r — 071, r € R, where 6. > 0 is the critical
temperature around which the phase transition occurs, applies for solid-liquid phase
transitions to the simplest case A'(r) =1 for all » € R (cf. also Remark 2.11, p. 7).
In the general case, g can still be a third-degree polinomial with the same leading
term, but with more general first and possibly second-order terms.

2. [p. 15, line +4] This line must be converted into
+ 1 fnllL2 0,150 @) (C + lwnll 12 (0. 1.0 (02)))
+ (C + Ikl z2@m) ™ (8)l| L2y

that yields the correct last two terms on the right hand side of the involved inequal-
ity.
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3. [p. 16] At line +1, (3.31) should be recalled along with (3.30) and (H8). More-
over, in formula (3.58) LP(€2r) must be replaced by LP(Qr).

4. [p. 17, lines from +12 to +21] This part must be changed as follows.
First of all, let us analyze the nonlinearities. Observe that, for any v € L?(0, T} L (Q))
such that p(v) € L(0,T; LP(Q)), it turns out that

pn(v) = p(v) strongly in L*(0,T; LP(Q2))

as n — +00. On the other hand, it is known that p induces a maximal monotone
graph in R x R and, by regarding p as the subdifferential of a proper convex lower
semicontinuous function, one can adapt the arguments in Example 3, pp. 61-63,
of [V. Barbu, Nonlinear semigroups and differential equations in Banach spaces,
Noordhoff, Leyden (1976)] to show that the graph relation

z € p(v) almost everywhere in Qr (%)

between two functions v € L2(0,T; L¥' (Q)) and z € L2(0,T; LP(Q)) yields a maxi-
mal monotone operator in the product space.

Hence, recalling (3.31), (3.61), (3.63) and (3.68), in view of the monotonicity of
pn we can take the limit in

//9 — pn(V)) (U, — v) dzdt

z/ (On (1), un(t))dt — / (000 + pn(v)(uy — v)) dadt
0 Q

Aiéw_ﬁx“—wdmhzo

for all functions v € L2(0,T; L¥ (Q)) and z € L2(0,T; L?(Q)) fulfilling (*). Now,
this implies (cf., e.g., [3, Definition 2.2, p. 22])

and obtain

u<0, 6=p(u) (3.70)

almost everywhere in Q7, where p here denotes the function again.

5. [p. 29, line +4] This line must be deleted so that (7.5) becomes

// B dmds+// B
1+|91\2+|(92|2 1+\u1|2+|u2|

HIA =) @O + X0 +/O IVX(5)| ds

< C (I + X2 + 1132 0.y + I (7.5)

+/0 (1% u)(s)|13 ds

+O(My) / (L4 s ()3 + lua(s)[2) () 2 ds.
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and still one can conclude via Gronwall lemma, with exp(M3) entering the constant
Cs in (2.20). O
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