
Electronic Journal of Differential Equations, Vol. 2002(2002), No. 100, pp. 1–30.

ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu

ftp ejde.math.swt.edu (login: ftp)

ON A PARABOLIC-HYPERBOLIC PENROSE-FIFE
PHASE-FIELD SYSTEM

PIERLUIGI COLLI, MAURIZIO GRASSELLI, & AKIO ITO

Abstract. The initial and boundary value problem is studied for a non-

conserved phase-field system derived from the Penrose-Fife model for the kinet-
ics of phase transitions. Here the evolution of the order parameter is governed
by a nonlinear hyperbolic equation which is characterized by the presence of

an inertial term with small positive coefficient. This feature is a consequence

of the assumption that the response of the phase variable to the generalized
force which drives the system toward equilibrium states is not instantaneous

but delayed. The resulting model consists of a nonlinear parabolic equation for
the absolute temperature coupled with the hyperbolic equation for the phase.
Existence of a weak solution is obtained as well as the convergence of any

family of weak solutions of the parabolic-hyperbolic model to the weak solu-
tion of the standard Penrose-Fife phase-field model as the inertial coefficient

goes to zero. In addition, continuous dependence estimates are proved for the

parabolic-hyperbolic system as well as for the standard model.

1. Introduction

Penrose and Fife [23, 24, 7] proposed a thermodynamically consistent model to
describe the kinetics of phase transitions. In this framework, one is led to formulate
a system of nonlinear partial differential equations that governs the evolution of the
absolute temperature θ : QT := Ω × (0, T ) → R and of the order parameter χ :
QT → R. Here T > 0 is a reference time and Ω ⊂ RN , N ≤ 3, is a bounded domain
with a smooth boundary Γ. When χ is non-conserved, in absence of mechanical
stresses and/or convective motions, the Penrose-Fife system has the following form
[23]

(θ + λ(χ))t −∆(−θ−1) = f (1.1)

ωχt − ν∆χ + g(χ) + λ′(χ)θ−1 = 0 (1.2)

in QT . Here λ is a smooth function which may have quadratic growth so that
second-order phase transitions can be taken into account (see, e.g., [2, Sec. 4.4]).
In addition, the datum f : QT → R represents the heat supply and function g is
a third-degree polynomial function with positive leading coefficient: a well-known
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example of g comes from the derivative of an oriented double-well potential and
reads g(r) = r3 − r − θ−1

c , r ∈ R, where θc > 0 is the critical temperature around
which the phase transition occurs. Moreover, ω > 0 is a time relaxation parameter
and ν > 0 is a correlation length.

A typical initial and boundary value problem that can be associated with (1.1)-
(1.2) consists of the usual initial conditions

θ(0) = θ0, χ(0) = χ0 (1.3)

in Ω, along with the boundary conditions

(−θ−1)n − γθ−1 = h, (1.4)
χn = 0 (1.5)

on ΓT := Γ × (0, T ) (see [16] and particularly [6, Introduction and Remark 4.8]
for an in-depth discussion on condition (1.4)). Here the subscript n stands for the
derivative with respect to the outward normal n to Γ, γ is a positive constant, and
h : ΓT → (−∞, 0) is a known function. More precisely, h has the form γ(−θ−1

Γ ), θΓ

being the outside temperature at the boundary.
We thus obtain an initial and boundary value problem, namely (1.1)-(1.5), which

has been widely investigated in the last decade (see, among others, [5, 6, 14, 15,
16, 17, 18, 19, 28, 29]).

System (1.1)-(1.2) reflects the balance equations of energy and momentum in
terms of thermodynamic state variables and it is derived from a free energy func-
tional F(θ, χ) in compliance with the basic laws of Thermodynamics. In particular,
the phase-field equation (1.2) originates from the phenomenological assumption

χt = − 1
ω

δF
δχ

(1.6)

which is consistent with the second principle. Here, δF/δχ denotes the functional
derivative of F with respect to χ and has the form

δF
δχ

= −ν∆χ + g(χ) + λ′(χ)θ−1. (1.7)

This quantity may be considered as a generalized force which arises as a consequence
of the tendency of the free energy to decay toward a minimum. Relationship (1.6)
amounts to say that the response of χ to the generalized force is instantaneous.
However, it has been recently supposed that in some situations the response of χ to
the generalized force is subject to a delay expressed by a suitable time dependent
relaxation kernel k (see [25, 26], cf. also [8, 10, 13, 21]). This means that (1.6) can
be replaced by

χt = −
∫ t

−∞
k(t− s)

δF
δχ

(s) ds. (1.8)

The simplest natural choice for the relaxation kernel is

k(t) =
1

ωµ
e−t/µ t ≥ 0

for some µ > 0 sufficiently small. Notice that as µ → 0, then k(t) → δ(t)/ω, where
δ is the Dirac mass at zero, so that (1.8) formally reduces to (1.6). Differentiating
equation (1.8) with respect to time, with k as above, we deduce

µχtt + χt +
1
ω

δF
δχ

= 0.
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Hence, setting for simplicity ω = ν = 1, and recalling (1.7), we deduce the hyperbolic
version of (1.2)

µχtt + χt −∆χ + g(χ) + λ′(χ)θ−1 = 0 in QT . (1.9)

It is interesting to point out that the presence of the inertial term µ∂ttχ is also
discussed in the analysis of dynamical phenomena around the critical region of
the phase transition (see [22, Ch. 7]). In fact, even though one forgets about the
interpretation of (1.9) as a special case of law (1.8), we underline that (1.9) may
be actually considered as a direct time relaxation of (1.2), and thus worth to be
investigated.

On account of our previous considerations, we can formally introduce the initial
and boundary value problem

Problem Pµ. Find a solution (θ, χ) to the system

(θ + λ(χ))t −∆(−θ−1) = f in QT

µχtt + χt −∆χ + g(χ) + λ′(χ)θ−1 = 0 in QT

that satisfies the initial and boundary conditions

θ(0) = θ0, χ(0) = χ0, χt(0) = χ1 in Ω;

(−θ−1)n − γθ−1 = h, χn = 0 on ΓT .

The mathematical analysis of Pµ is the main goal of this paper.
Note that, by linearizing the term θ−1 around the critical value θ−1

c , we obtain
a simplest version of Pµ which has already been analyzed in some detail [9, 11, 12].
Here, our goal is to study problem Pµ, which look considerably more difficult due
to the presence of the nonlinearity θ−1. The main result is the existence of a
weak solution in the case when λ has a quadratic growth. Then, we show any
family of solutions (θµ, χµ) to Pµ converges, as µ ↓ 0, to the weak solution to the
corresponding initial and boundary value problem P0, associated with the standard
Penrose-Fife system (1.1)-(1.2).

Our further results are concerned with continuous dependence estimates and u-
niqueness. We first obtain a (conditional) continuous dependence estimate which
entails uniqueness for N = 1. Then, we show that Pµ has a unique solution which
continuously depends on the data provided that λ is linear. Finally, we report a
continuous dependence estimate for P0 whose proof is inspired by some contracting
arguments developed in [15].

2. Weak formulation and statements of the results

Before introducing the assumptions on λ, g, and on the data along with the weak
formulation of Pµ, we need some notation.

We set
H := L2(Ω), V := H1(Ω).

Consequently, we let V ′ be the dual space of V . As usual, we identify H with its
dual space H ′ and we recall the continuous and dense embeddings

V ↪→ H ≡ H ′ ↪→ V ′.
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Moreover, we indicate by (·, ·) and (·, ·)Γ the usual scalar products in H or HN and
in L2(Γ), respectively. Accordingly, the related norms will be indicated by ‖ · ‖ and
‖ · ‖Γ. We will use the following scalar product in V

((v1, v2)) := (∇v1,∇v2) + γ(v1, v2)Γ ∀ v1, v2 ∈ V.

However, just for the sake of convenience, the norms ‖ · ‖V and ‖ · ‖V ′ will be the
usual ones instead of those associated with the scalar product defined above. The
duality pairing between V ′ and V will be denoted by 〈·, ·〉. We shall also use the
notation (1 ∗ a)(t) =

∫ t

0
a(s) ds for vector-valued functions a summable in (0, T ).

Our structural assumptions on λ and g read
(H1) λ ∈ C2(R)
(H2) λ′′ ∈ L∞(R)
(H3) g ∈ C1(R)
(H4) There exist τ1, τ2 > 0 such that |g(r)| ≤ τ1|r|3 + τ2 for all r ∈ R
(H5) limr→±∞ g(r) = ±∞.

Remark 2.1. On account of (H3)-(H5), it turns out that g is allowed to be the
derivative of a multiple-well potential.

Note that, by virtue of (H3)-(H5), there exists a primitive ĝ of g such that

0 ≤ ĝ(r) ≤ τ3|r|4 + τ4 ∀ r ∈ R (2.1)

for some positive constants τ3 and τ4. For instance, one can take

ĝ(r) = Cg +
∫ r

α0

g(s)ds ∀ r ∈ R (2.2)

where α0 ∈ R is a fixed zero of g and Cg ∈ R is chosen accordingly.
As far as the data are concerned, we assume
(H6) f ∈ L2(0, T ;Lp(Ω))
(H7) h ∈ L2(ΓT )
(H8) h ≤ 0 a.e. on ΓT

(H9) θ0 ∈ Lp(Ω), θ0 > 0 a.e. in Ω
(H10) ln θ0 ∈ L1(Ω)
(H11) χ0 ∈ V
(H12) χ1 ∈ H.

Here p ∈ ( 6
5 , 3

2 ]. We observe that if f ∈ L2(0, T ;Lq(Ω)) and θ0 ∈ Lq(Ω) for some
q > 3/2, then (H6) and (H9) still hold.

We can now introduce the weak formulation of Pµ.
Problem Pµ. Find θ ∈ H1(0, T ;V ′) ∩ L∞(0, T ;Lp(Ω)) and χ ∈ C1([0, T ];H) ∩
C0([0, T ];V ) such that

θ > 0 a.e. in Q (2.3)

θ−1 ∈ L2(0, T ;V ) (2.4)

〈(θ + λ(χ))t, v〉+ ((−θ−1, v)) = 〈f, v〉+ (h, v)Γ ∀ v ∈ V, a.e. in (0, T ) (2.5)

〈µχtt, v〉+ (χt, v) + (∇χ,∇v) + (g(χ) + λ′(χ)θ−1, v) = 0 ∀ v ∈ V, a.e. in (0, T )
(2.6)

θ(0) = θ0, χ(0) = χ0, χt(0) = χ1 a.e. in Ω. (2.7)
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Remark 2.2. As Lp(Ω) ↪→ V ′ because N ≤ 3, the right hand side of (2.5) makes
sense and the first initial condition in (2.7) holds almost everywhere in Ω, due to
the weak continuity of t 7→ θ(t) from [0, T ] to Lp(Ω). Moreover, we point out
that the regularity property χ ∈ C0([0, T ];L6(Ω)) entails (cf. (H4) and (H2), (2.4))
g(χ) ∈ L∞(0, T ;H) and λ′(χ)θ−1 ∈ L2(0, T ;L3(Ω)), whence, by comparison in
(2.6), it follows that χtt ∈ C0([0, T ];V ′) + L2(0, T ;H).

The main result is as follows.

Theorem 2.3. Let (H1)-(H12) hold. Then, for any µ > 0, problem Pµ has a
solution (θµ, χµ).

Consider now the formal limit problem, which corresponds to the standard
Penrose-Fife model (1.1)-(1.2). Note that the regularity prescription on χ is dif-
ferent from the above, and it refers instead to the usual requirement for parabolic
phase field models [6, 15].
Problem P0. Find θ and χ satisfying

θ ∈ H1(0, T ;V ′) ∩ L∞(0, T ;Lp(Ω)) (2.8)

θ > 0 a.e. in QT (2.9)

θ−1 ∈ L2(0, T ;V ) (2.10)
χ ∈ H1(0, T ;H) ∩ L2(0, T ;H2(Ω)) ↪→ C0([0, T ];V ) (2.11)

〈(θ + λ(χ))t, v〉+ ((−θ−1, v)) = 〈f, v〉+ (h, v)Γ ∀ v ∈ V, a.e. in (0, T ) (2.12)
χt −∆χ + g(χ) + λ′(χ)θ−1 = 0 a.e. in QT (2.13)

χn = 0 a.e. on ΓT (2.14)

θ(0) = θ0, χ(0) = χ0 a.e. in Ω. (2.15)

In the body of our arguments, we will check, in particular, existence and unique-
ness of the solution to P0. In a first step, we prove the following theorem.

Theorem 2.4. Let (H1)-(H12) hold and let µ ∈ (0, µ0], µ0 > 0 being fixed. Then
there exists a positive constant K, independent of µ, such that, for any solution
(θµ, χµ) to Pµ, there holds

‖θµ‖H1(0,T ;V ′)∩L∞(0,T ;Lp(Ω)) + ‖1/θµ‖L2(0,T ;V )

+
√

µ ‖χµ
t ‖L∞(0,T ;H) + ‖χµ

t ‖L2(0,T ;H) + ‖χµ‖L∞(0,T ;V ) ≤ K. (2.16)

Consider now a sequence {(θµ, χµ)}µ∈(0,µ0], where (θµ, χµ) denotes an arbitrary
solution to Pµ. Then, the whole sequence {(θµ, χµ)} weakly converges to the pair
(θ, χ), which solves problem P0, in the sense that as µ ↘ 0 the following holds:

θµ → θ weakly star in L∞(0, T ;Lp(Ω)) and weakly in H1(0, T ;V ′)

θµ → θ strongly in C0([0, T ];V ′)
1
θµ

→ 1
θ

weakly in L2(0, T ;V )

µχµ
t → 0 strongly in L∞(0, T ;H)

χµ → χ weakly star in L∞(0, T ;V ) and weakly in H1(0, T ;H)
χµ → χ strongly in C0([0, T ];L4(Ω)).
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Remark 2.5. Note that Theorem 2.4 yields, as a by-product, an existence result for
Problem P0, in which the solution is found as the asymptotic limit of the sequence
{(θµ, χµ)}. The uniqueness of (θ, χ) follows from Theorem 2.10 below (cf. Remark
2.12 for a comparison with existing results).

A conditional continuous dependence estimate is given by the following theorem.

Theorem 2.6. Let (H1)-(H5) hold. Suppose moreover that

(H13) λ′ ∈ L∞(R) if N = 2, 3
(H14) for some positive constant c1 and all r ∈ R, |g′(r)| ≤ c1(1 + |r|2).

Consider two sets of data {θ0j , χ0j , χ1j , fj , hj}, j = 1, 2, satisfying assumptions
(H6)-(H12) and denote by (θj , χj) a corresponding solution to problem Pµ. Assume
that

uj := −θ−1
j ∈ L2(0, T ;L∞(Ω)), j = 1, 2 (2.17)

and let M1 be a positive constant such that

max
{
‖χ1‖L∞(0,T ;V ), ‖χ2‖L∞(0,T ;V ), ‖u1‖L2(0,T ;L∞(Ω)), ‖u2‖L2(0,T ;L∞(Ω))

}
≤ M1.

Then( ∫ T

0

∫
Ω

|θ1 − θ2|2

1 + |θ1|2 + |θ2|2
dx ds

)1/2

+
( ∫ T

0

∫
Ω

|u1 − u2|2

1 + |u1|2 + |u2|
dx ds

)1/2

+‖1 ∗ (u1 − u2)‖L∞(0,T ;V ) + ‖(χ1 − χ2)t‖L∞(0,T ;H) + ‖χ1 − χ2‖L∞(0,T ;V )

≤C1

(
‖θ01 − θ02‖V ′ + ‖f1 − f2‖L2(0,T ;V ′) + ‖h1 − h2‖L2(ΓT )

+ ‖χ01 − χ02‖V + ‖χ11 − χ12‖
)

(2.18)

for some positive constant C1 = C1(M1) also depending on T , Ω, γ, µ, λ, and c1.
In particular, if N = 1, then problem Pµ has a unique solution.

Remark 2.7. Note that the first integral on the left hand side makes sense though
it is not clear whether θj 6∈ L2(QT ), j = 1, 2. Indeed, as θj ∈ L∞(0, T ;Lp(Ω)) it
turns out that (cf. also (2.4))

0 ≤ |θ1 − θ2|2

1 + |θ1|2 + |θ2|2
≤ (θ1 − θ2)(u1 − u2)

which is in L1(QT ). Referring now to (2.17), we underline that the existence result
in Theorem 2.3 ensures the regularity uj ∈ L2(0, T ;L∞(Ω)) if N = 1 only. More-
over, in the one-dimensional case χ1, χ2 ∈ L∞(QT ) (see the condition on M1) so
that if N = 1 (H2) (and (H13)) are no longer needed in Theorem 2.6.

In the case of a special class of λ, we have the following statement.

Theorem 2.8. Let (H3)-(H5) and (H14) hold. In addition, suppose that

(H15) λ(r) = r for all r ∈ R.

Consider two sets of data {θ0j , χ0j , χ1j , fj , hj}, j = 1, 2, satisfying assumptions
(H6)-(H12) and denote by (θj , χj) a corresponding solution to problem Pµ. Set
uj = −θ−1

j and let M2 be a positive constant such that

max
{
‖χ1‖L∞(0,T ;V ), ‖χ2‖L∞(0,T ;V )

}
≤ M2.
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Then there exists a positive constant C2 = C2(M2), also depending on T , Ω, γ, µ,
and c1, such that( ∫ T

0

∫
Ω

|θ1 − θ2|2

1 + |θ1|2 + |θ2|2
dx ds

)1/2

+
( ∫ T

0

∫
Ω

|u1 − u2|2

1 + |u1|2 + |u2|
dx ds

)1/2

+‖1 ∗ (u1 − u2)‖L∞(0,T ;V ) + ‖(χ1 − χ2)t‖L∞(0,T ;V ′)

+‖χ1 − χ2‖L∞(0,T ;H) + ‖1 ∗ (χ1 − χ2)‖L∞(0,T ;V )

≤C2

(
‖θ01 − θ02‖V ′ + ‖f1 − f2‖L2(0,T ;V ′) + ‖h1 − h2‖L2(ΓT )

+ ‖χ01 − χ02‖+ ‖χ11 − χ12‖V ′

)
.

(2.19)

Remark 2.9. Observe that (H15) is basically equivalent to assuming that λ is
affine.

Finally, the following theorem implies uniqueness for the solution to P0.

Theorem 2.10. Let (H1)-(H5), (H14) hold and let {θ0j , χ0j , fj , hj}, j = 1, 2,
be two sets of data satisfying assumptions (H6)-(H11). Denote by (θj , χj) a pair
fulfilling (2.8)-(2.15) and set uj := −θ−1

j . Let M2 be as in Theorem 2.8 and let M3

specify a positive constant such that

max
{
‖u1‖L2(0,T ;V ), ‖u2‖L2(0,T ;V )

}
≤ M3.

Then there exists a positive constant C3 = C3(M2,M3), also depending on T , Ω,
γ, λ, and c1, such that( ∫ T

0

∫
Ω

|θ1 − θ2|2

1 + |θ1|2 + |θ2|2
dx ds

)1/2

+
( ∫ T

0

∫
Ω

|u1 − u2|2

1 + |u1|2 + |u2|
dx ds

)1/2

+ ‖1 ∗ (u1 − u2)‖L∞(0,T ;V ) + ‖χ1 − χ2‖L∞(0,T ;H) + ‖χ1 − χ2‖L2(0,T ;V )

≤ C3

(
‖e01 − e02‖V ′ + ‖χ01 − χ02‖+ ‖f1 − f2‖L2(0,T ;V ′) + ‖h1 − h2‖L2(ΓT )

)
(2.20)

where e0j := θ0j + λ(χ0j), j = 1, 2. If in place of (H14) the following condition
holds
(H16) (g(r1)− g(r2))(r1 − r2) ≥ −c2|r1 − r2|2 for all r1, r2 ∈ R

for some nonnegative constant c2, then C3 depends on M3, T , Ω, γ, λ, c2 only.

Remark 2.11. Note that the sample choice g(r) = r3 − r − θ−1
c , r ∈ R, cor-

responding to a double-well potential in the free energy, satisfies both (H14) and
(H16).

Remark 2.12. If one uses the enthalpy variables ej = θj + λ(χj), j = 1, 2, in
Remark 2.9 and Theorem 2.10, then the norm ‖e1−e2‖L∞(0,T ;V ′) can be estimated
in terms of the right hand side of (2.19) and (2.20), respectively. Indeed, it suffices
to integrate the difference of equations (2.12) written for ei, ui, i = 1, 2, with respect
to time and compare the resulting terms. However, we point out that an estimate
like (2.20) referred to the enthalpy has been already proved in [15, Theorem 3.1],
where a problem more general than P0 is considered. There, the enthalpy depends
nonlinearly on θ and equation (2.13) also contains a maximal monotone graph with
bounded domain: this constraint forces χ to be necessarily bounded, which is rather
helpful in the mathematical analysis.
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3. Proof of Theorem 2.3

The proof is split into several steps. First, we construct a suitable sequence of
approximating problems Pn

µ, n ∈ N, and the related sequence of solutions (θn, χn),
the index µ being omitted for the sake of brevity. Then, a series of a priori estimates
on the sequence (θn, χn) will allow us to get a solution to Pµ by passing to the
limit as n → +∞.

Approximating Pµ. Let us introduce approximations of λ and g first. For n ∈ N,
we set

λn(r) :=


λ(−n) + λ′(−n)(r + n) if r < −n

λ(r) if − n ≤ r ≤ n

λ(n) + λ′(n)(r − n) if r > n

(3.1)

and observe that

λn ∈ C1,1(R), λ′n, λ′′n ∈ L∞(R), λn → λ a.e. in R. (3.2)

Also, by (H1)-(H2) and the mean value theorem we easily infer

|λ′n(r)| ≤ cλ (1 + |r|) ∀ r ∈ R (3.3)

where cλ is a positive constant only depending on λ. Then, for any integer n ∈ N,
we consider an approximation ĝn of ĝ (cf. (2.1)) such that

0 ≤ ĝn(r) ≤ ĝ(r) ∀ r ∈ R (3.4)

and, letting gn = ĝ′n,

gn ∈ C0,1(R), gn → g a.e. in R. (3.5)

For instance, recalling (2.2), we can find two sequences {sn} and {rn} such that

sn < α0 < rn (3.6)

g(sn) = −n, g(rn) = n (3.7)

g(r) ≤ −n ∀ r < sn, g(r) ≥ n ∀ r > rn (3.8)

and set

gn(r) :=


−n if r ≤ sn

g(r) if sn < r < rn

n if r ≥ rn.

(3.9)

Note that

g(r) ≤ gn(r) if r ≤ sn, g(r) ≥ gn(r) if r ≥ rn; (3.10)

ĝn(r) = Cg +
∫ r

α0

gn(s) ds, r ∈ R, (3.11)

satisfies (3.4).
To introduce a suitable approximation of the remaining nonlinearity, we set

ρ(u) := (−u)−1 ∀u < 0 (3.12)

an := −(n + 1), bn := − 1
n + 1

∀n ∈ N (3.13)



EJDE–2002/100 ON A PARABOLIC-HYPERBOLIC PHASE-FIELD SYSTEM 9

and define, for any n ∈ N,

ρn(u) :=


ρ(bn) if u > bn

ρ(u) if an ≤ u ≤ bn

ρ(an) if u < an.

(3.14)

We approximate the initial datum θ0 as well. Define the measurable and negative
function (cf. (H9))

u0 := −(θ0)−1 (3.15)

and, consequently, for any n ∈ N, the approximating data

θ0n := ρn(u0), u0n := −(θ0n)−1. (3.16)

Note that u0n, θ0n ∈ L∞(Ω). Moreover, it can be proved

θ0n ≤ θ0 + 1 a.e. in Ω (3.17)

an ≤ u0n ≤ bn a.e. in Ω (3.18)

θ0n → θ0 a.e. in Ω and in Lp(Ω), as n → +∞ (3.19)

by virtue of (H9) and the Lebesgue dominated convergence theorem. Also, setting

νn := (1 + n2)−1 (3.20)

for any n ∈ N, we can infer
νn‖u0n‖2 ≤ C (3.21)

where henceforth C denotes a positive constant independent of n and µ, but depend-
ing on T , Ω, Γ, γ, p, λ, and g, at most. Observe, in particular, that (3.20)-(3.21)
entail

νnu0n → 0 in H, as n → +∞. (3.22)

For the sake of simplicity, we also approximate the source term f with a sequence
{fn} ⊂ L2(0, T ;H) such that

fn → f in L2(0, T ;Lp(Ω)), as n → +∞. (3.23)

We can now formulate the approximating problem for any n ∈ N.

Problem Pn
µ. Find un ∈ C0([0, T ];H) ∩ L2(0, T ;V ) and χn ∈ W 2,∞(0, T ;V ′) ∩

C1([0, T ];H) ∩ C0([0, T ];V ) such that

〈(νnun + ρn(un) + λn(χn))t, v〉+ ((un, v)) = (fn, v) + (h, v)Γ
∀ v ∈ V, a.e. in (0, T ) (3.24)

〈µχn
tt, v〉+ (χn

t , v) + (∇χn,∇v) + (gn(χn) + λ′n(χn)(ρn(un))−1, v) = 0

∀ v ∈ V, a.e. in (0, T ) (3.25)

un(0) = u0n, χn(0) = χ0, χn
t (0) = χ1 a.e. in Ω. (3.26)

Existence and uniqueness for Pn
µ. We can apply a fixed-point argument based

on the Contraction Principle. Define the Banach space

XT = L2(0, T ;H)× C0([0, T ];H)
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and let (ũn, χ̃
n
) ∈ XT . Then, consider the Cauchy problem

〈µχn
tt, v〉+ (χn

t , v) + (∇χn,∇v) + (χn, v) = (G(ũn, χ̃
n
), v) ∀ v ∈ V, a.e. in (0, T )

χn(0) = χ0, χn
t (0) = χ1 a.e. in Ω

(3.27)
where

G(ũn, χ̃
n
) = χ̃n − gn(χ̃

n
)− λ′n(χ̃

n
)(ρn(ũn))−1 ∈ L∞(0, T ;H).

As (3.27) is a linear hyperbolic problem, it turns out that (cf. [1, Theorem 3.3])
there is a unique solution

χn ∈ W 2,∞(0, T ;V ′) ∩ C1([0, T ];H) ∩ C0([0, T ];V )

to (3.27) (one may also see [30, pp. 74–79]). Moreover, the usual energy estimate

µ‖χn
t ‖2C([0,t];H) + ‖χn

t ‖2L2(0,t;H) + ‖χn‖2C0([0,t];V )

≤ C
(
µ‖χ1‖2 + ‖χ0‖2V +

∫ t

0

‖G(ũn(s), χ̃
n
(s))‖2 ds

)
holds for any t ∈ [0, T ]. Next, it is not difficult to realize that (see, for instance, [5,
Lemma 3.4]) there exists a unique solution un ∈ C0([0, T ];H) ∩ L2(0, T ;V ) to

〈(νnun + ρn(un))t, v〉+ ((un, v)) = −((λn(χn))t − fn, v) + (h, v)Γ
∀ v ∈ V, a.e. in (0, T ) (3.28)

un(0) = u0n a.e. in Ω. (3.29)

We have thus constructed a mapping S from XT into itself by setting S(ũn, χ̃
n
) :=

(un, χn), with the property that

(un, χn) ∈
[
C0([0, T ];H) ∩ L2(0, T ;V )

]
×

[
C1([0, T ];H) ∩ C0([0, T ];V )

]
.

Consider now (ũn
j , χ̃

n

j ) ∈ XT , j = 1, 2, and the corresponding (un
j , χn

j ). Observe
that, integrating with respect to time the equation (3.28) written for the difference
un

1 − un
2 , we obtain (cf. also (3.29))

〈νn(un
1 − un

2 ) + ρn(un
1 )− ρn(un

2 ), v〉+ ((1 ∗ (un
1 − un

2 ), v))

= −(λn(χn
1 )− λn(χn

2 ), v) ∀ v ∈ V, in (0, T ).

Then, taking v = un
1 − un

2 and recalling (3.1)-(3.2), (3.14), it is not difficult to
deduce the estimate

‖un
1 − un

2‖2L2(0,t;H) ≤ Λn‖χn
1 − χn

2‖2L2(0,t;H) ∀ t ∈ [0, T ]

where Λn denotes a positive constant blowing up as n goes to +∞.
On the other hand, the energy estimate related to the difference χn

1 − χn
2 (of

solutions to the respective problems (3.27)) yields

‖χn
1 − χn

2‖2C0([0,t];H) ≤ C

∫ t

0

‖G(ũn
1 (s), χ̃

n

1 (s))− G(ũn
2 (s), χ̃

n

2 (s))‖2 ds.

Combining the last two estimates and recalling the definition of G along with (H1)-
(H3), (3.1)-(3.2), (3.9), and (3.14), we eventually deduce

‖un
1 − un

2‖2L2(0,t;H) + ‖χn
1 − χn

2‖2C0([0,t];H)

≤ Λn

∫ t

0

(
‖ũn

1 − ũn
2‖2L2(0,s;H) + ‖χ̃n

1 − χ̃n

2‖2C0([0,s];H)

)
ds
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for any t ∈ (0, T ]. Thus, for any fixed n ∈ N, we can find an integer m = m(n) such
that Sm is a contraction of XT into itself. Therefore S has a unique fixed-point in
XT ; that is, Pn

µ has a unique solution.

A priori estimates. Suppose, for the sake of simplicity, µ ∈ (0, 1]. Let us set

ρ∗n(r) :=
∫ r

−1

(1− (ρn(s))−1) ds

for all r ∈ R. Note that ρ∗n ≥ 0 in R. Moreover, a straightforward computation
gives (cf. (3.12)-(3.14))

ρ∗n(r) =
r2

2
+ r +

1
2

∀ r ∈ [an, bn]. (3.30)

Then, define
θn := ρn(un), wn := (ρn(un))−1 (3.31)

and observe that θn and wn both belong to C0([0, T ];H) ∩ L2(0, T ;V ), due to the
Lipschitz continuity of ρn and 1/ρn.

Let us point out first that the estimates we are performing on equation (3.24)
are formal since we only know that νnun + θn ∈ H1(0, T ;V ′), but we would need
to know that both un and θn belong to H1(0, T ;V ′) at least, separately. In order
to make the estimates rigorous, we should better approximate f , h, and u0 by
smoother functions fn ∈ H1(0, T ;H), hn ∈ H1(0, T ;L2(Γ)), and u0n ∈ V , arguing
then on the regularized version (see also [5, remarks at p. 321] and references
therein).

Consider therefore (3.24) with v = 1− wn and note that

〈(νnun(t) + θn(t))t, 1− wn(t)〉 =
d

dt

∫
Ω

(νnρ∗n(un(t)) + θn(t)− ln θn(t)) dx. (3.32)

Recalling again (3.12)-(3.14) and the definition of the scalar product in V (cf.
Sec. 2), one can easily check that

((un(t), 1− wn(t))) = ‖∇wn(t)‖2 + γ(un(t), 1− wn(t))Γ. (3.33)

On the other hand, we have that

(un(t), 1− wn(t))Γ ≥ (−wn(t), 1− wn(t))Γ. (3.34)

Hence, integrating (3.24) with v = 1 − wn(t) with respect to t and using (3.32)-
(3.34), we deduce the estimate∫

Ω

(νnρ∗n(un(t)) + θn(t)− ln θn(t))dx

+
∫ t

0

‖∇wn(s)‖2 ds + γ

∫ t

0

‖wn(s)‖2L2(Γ) ds− γ

∫ t

0

‖wn(s)‖L1(Γ) ds

≤
∫

Ω

(νnρ∗n(u0n) + ρn(u0n)− ln ρn(u0n))dx

+
∫ t

0

(fn(s)− (λn(χn(s))s, 1− wn(s)) ds +
∫ t

0

(h(s), 1− wn(s))Γ ds.

(3.35)

On account of (3.14) and (3.16), we have

ρn(u0n) = θ0n. (3.36)
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Recalling (3.18), (3.20) and (3.30), we infer∫
Ω

νnρ∗n(u0n) dx ≤ C. (3.37)

Moreover, recalling (H9)-(H10) and using (3.17) and (3.36), we obtain∫
Ω

(ρn(u0n)− ln ρn(u0n)) dx ≤ C + ‖θ0‖L1(Ω) + ‖ ln θ0‖L1(Ω). (3.38)

Therefore, on account of the elementary inequality

r − ln r ≥ 1
3
(r + | ln r|) ∀ r > 0

one sees that (3.35) and (3.37)-(3.38) yield

1
3
(
‖θn(t)‖L1(Ω) + ‖ ln θn(t)‖L1(Ω)

)
+

∫ t

0

‖∇wn(s)‖2 ds + γ

∫ t

0

‖wn(s)‖2L2(Γ) ds− γ

∫ t

0

‖wn(s)‖L1(Γ) ds

≤C + ‖θ0‖L1(Ω) + ‖ ln θ0‖L1(Ω)

+
∫ t

0

(fn(s)− (λn(χn(s))s, 1− wn(s)) ds +
∫ t

0

(h(s), 1− wn(s))Γ ds.

(3.39)

Define now

ρ̃n(r) :=
∫ r

−1

((ρn(s))p−1 − 1) ds

for all r ∈ R. Note that, on account of (3.12)-(3.14), we have

ρ̃n(r) =
(−r)2−p

p− 2
− 1

p− 2
− (r + 1) ∀ r ∈ [an, bn]. (3.40)

Moreover, it is easy to check that ρ̃n ≥ 0 in R. Consider then the identity

〈(νnun(t) + θn(t))t, (θn(t))p−1 − 1〉 =
d

dt

∫
Ω

(
νnρ̃n(un(t)) +

1
p
|θn(t)|p − θn(t)

)
dx.

(3.41)
Arguing as for (3.33), we deduce

((un(t), (θn(t))p−1−1))) = (−∇wn(t),∇((θn(t))p−1−1))+γ(un(t), (θn(t))p−1−1)Γ
(3.42)

as well as (cf. (3.34))

(un(t), (θn(t))p−1 − 1)Γ ≥ (−wn(t), (θn(t))p−1 − 1)Γ. (3.43)

Therefore, (3.42) and (3.43) give

((un(t), (θn(t))p−1 − 1))

≥ (p− 1)‖(θn(t))p/2−1∇ ln θn(t)‖2 + γ(−wn(t), (θn(t))p−1 − 1)Γ. (3.44)
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Set now v = (θn(t))p−1−1 in (3.24) and integrate the resulting identity with respect
to time. On account of (3.41) and (3.44), we can obtain the inequality∫

Ω

(
νnρ̃n(un(t)) +

1
p
|θn(t)|p − θn(t)

)
dx

+(p− 1)
∫ t

0

‖(θn(s))p/2−1∇ ln θn(s)‖2 ds + γ

∫ t

0

(−wn(s), (θn(s))p−1 − 1)Γ ds

≤
∫

Ω

(νnρ̃n(u0n) +
1
p
|ρn(u0n)|p − ρn(u0n)) dx

+
∫ t

0

(fn(s)− (λn(χn(s))s, (θn(s))p−1 − 1) ds +
∫ t

0

(h(s), (θn(s))p−1 − 1)Γ ds.

(3.45)
Recalling (3.36) and using (3.18), (3.20), and (3.40), we find∫

Ω

νnρ̃n(u0n) dx ≤ C.

Also, owing to (3.17) and (3.36), we get∫
Ω

(1
p
|ρn(u0n)|p − ρn(u0n)

)
dx ≤ C

(
‖θ0‖p

Lp(Ω) + ‖θ0‖L1(Ω) + 1
)
. (3.46)

Consequently, from (3.45)-(3.46) we derive

1
p
‖θn(t)‖p

Lp(Ω) − ‖θn(t)‖L1(Ω) + (p− 1)
∫ t

0

‖(θn(s))p/2−1∇ ln θn(s)‖2 ds

+γ

∫ t

0

(−wn(s), (θn(s))p−1 − 1)Γ ds

≤C
(
‖θ0‖p

Lp(Ω) + ‖θ0‖L1(Ω) + 1
)

+
∫ t

0

(fn(s)− (λn(χn(s))s, (θn(s))p−1 − 1) ds

+
∫ t

0

(h(s), (θn(s))p−1 − 1)Γ ds.

(3.47)
We now set v = un(t) in (3.24); that is,

νn

2
d

dt
‖un(t)‖2 + (θn

t (t), un(t)) + ((un(t), un(t)))

= (fn(t)− (λn(χn(t))t, u
n(t)) + (h(t), un(t))Γ. (3.48)

Observe that, on account of (3.12)-(3.14), we have∫ r

1

ρinv
n (s) ds = − ln r ∀ r ∈ [−bn,−an]

where ρinv
n denotes the inverse function of the restriction of ρn to [an, bn]. Hence,

since θn(t) ∈ [−bn,−an], by (3.31) we deduce

(θn
t (t), un(t)) = − d

dt

∫
Ω

ln θn(t) dx. (3.49)

Then, owing to (3.49), an integration of (3.48) with respect to time yields

νn

2
‖un(t)‖2 −

∫
Ω

ln θn(t) dx +
∫ t

0

((un(s), un(s))) ds
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=
νn

2
‖u0n‖2 −

∫
Ω

ln θ0n dx +
∫ t

0

(fn(s)− (λn(χn(s))s, u
n(s)) ds

+
∫ t

0

(h(s), un(s))Γ ds

and, recalling (3.21) and (3.38), we obtain the inequality

νn

2
‖un(t)‖2 −

∫
Ω

ln θn(t) dx +
∫ t

0

((un(s), un(s))) ds

≤C + ‖ ln θ0‖L1(Ω) +
∫ t

0

(fn(s)− (λn(χn(s)))s, u
n(s)) ds

+
∫ t

0

(h(s), un(s))Γ ds.

(3.50)

Consider now equation (3.25) and pick formally v = χn
t (see Appendix in [4] to

make this argument rigorous). Integrating the resulting identity with respect to
time, we get the estimate

µ

2
‖χn

t (t)‖2 +
1
2
‖∇χn(t)‖2 +

∫
Ω

ĝn(χn(t))dx +
∫ t

0

‖χn
s (s)‖2 ds

≤ µ

2
‖χ1‖2 +

1
2
‖∇χ0‖2 +

∫
Ω

ĝn(χ0)dx−
∫ t

0

((λn(χn(s)))s, w
n(s)) ds. (3.51)

Let us add (3.39) and (3.51). This gives

1
3
(
‖θn(t)‖L1(Ω) + ‖ ln θn(t)‖L1(Ω)

)
+

∫ t

0

‖∇wn(s)‖2 ds + γ

∫ t

0

‖wn(s)‖2L2(Γ) ds− γ

∫ t

0

‖wn(s)‖L1(Γ) ds

+
µ

2
‖χn

t (t)‖2 +
1
2
‖∇χn(t)‖2 +

∫
Ω

ĝn(χn(t))dx +
∫ t

0

‖χn
s (s)‖2 ds

≤C + ‖θ0‖L1(Ω) + ‖ ln θ0‖L1(Ω) +
µ

2
‖χ1‖2 +

1
2
‖∇χ0‖2

+
∫ t

0

(fn(s), 1− wn(s)) ds−
∫ t

0

∫
Ω

λ′n(χn)χn
s dx ds

+
∫ t

0

(h(s), 1− wn(s))Γ ds +
∫

Ω

ĝn(χ0)dx.

(3.52)

In view of (3.3) and (3.26), by Young and Hölder inequalities we have that

−
∫ t

0

∫
Ω

λ′n(χn)χn
s dx ds

≤ C
(
1 +

∫ t

0

‖χn(s)‖2 ds
)

+
1
2

∫ t

0

‖χn
s (s)‖2 ds

≤ C
(
1 + ‖χ0‖2 +

∫ t

0

‖χn
s ‖2L2(0,s;H) ds

)
+

1
2

∫ t

0

‖χn
s (s)‖2 ds.

Then, recalling (H1)-(H2), (H11), (2.1), and (3.4), from (3.52) we deduce

1
3
(
‖θn(t)‖L1(Ω) + ‖ ln θn(t)‖L1(Ω)

)
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+
∫ t

0

‖∇wn(s)‖2 ds + γ

∫ t

0

‖wn(s)‖2Γ ds

+
µ

2
‖χn

t (t)‖2 +
1
2
‖∇χn(t)‖2 +

1
2

∫ t

0

‖χn
s (s)‖2 ds

≤C
(
1 + ‖θ0‖L1(Ω) + ‖ ln θ0‖L1(Ω) + ‖χ1‖2 + ‖χ0‖4V +

∫ t

0

‖χn
s ‖2L2(0,s;H) ds

)
+ ‖fn‖L2(0,T ;Lp(Ω))

(
1 + ‖wn‖L2(0,t;Lp′ (Ω))

)
+ ‖h‖L2(ΓT )

(
1 + ‖wn(s)‖L2(Γt)

)
where we have assumed µ ∈ (0, 1] for the sake of simplicity. Hence, the injection
V ↪→ Lp′(Ω) and Young and Gronwall inequalities allow us to obtain the bound

‖θn(t)‖L1(Ω) + ‖ ln θn(t)‖L1(Ω) +
∫ t

0

‖∇wn(s)‖2 ds + γ

∫ t

0

‖wn(s)‖2Γ ds

+ µ‖χn
t (t)‖2 + ‖∇χn(t)‖2 +

∫ t

0

‖χn
s (s)‖2 ds

≤ C
(
1 + ‖θ0‖L1(Ω) + ‖ ln θ0‖L1(Ω) + ‖χ1‖2 + ‖χ0‖4V

+ ‖fn‖2L2(0,T ;Lp(Ω)) + ‖h‖2L2(ΓT )

)
(3.53)

for any t ∈ [0, T ]. Going back to (3.50), we easily see that

νn

2
‖un(t)‖2 +

∫ t

0

((un(s), un(s))) ds

≤ C + ‖ ln θ0‖L1(Ω) + ‖ ln θn(t)‖L1(Ω) +
∫ t

0

(fn(s), un(s)) ds

+
∫ t

0

(h(s), un(s))Γ ds−
∫ t

0

(λ′n(χn(s))χn
s (s), un(s)) ds

(3.54)

from which, on account of (3.3) and (H1)-(H2), using Young and Hölder inequalities,
we derive

νn‖un(t)‖2 + ‖un‖2L2(0,t;V )

≤ C
(
1 + ‖ ln θ0‖L1(Ω) + ‖ ln θn(t)‖L1(Ω) + ‖fn‖2L2(0,T ;Lp(Ω)) + ‖h‖2L2(ΓT )

+
∫ t

0

(
1 + ‖χn(s)‖L4(Ω)

)
‖χn

s (s)‖ ‖un(s)‖L4(Ω) ds
)
.

Then, using the injection V ↪→ L4(Ω) and the bound (3.53), an application of
Gronwall lemma yields

νn‖un(t)‖2 + ‖un‖2L2(0,t;V ) ≤C
(
1 + ‖θ0‖L1(Ω) + ‖ ln θ0‖L1(Ω) + ‖χ1‖2

+ ‖χ0‖4V + ‖fn‖2L2(0,T ;Lp(Ω)) + ‖h‖2L2(ΓT )

)2 (3.55)
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for any t ∈ [0, T ]. At this point, in the light of (3.30) and (H8), from (3.47) we can
infer

1
p
‖θn(t)‖p

Lp(Ω)

≤ C
(
1 + ‖θ0‖p

Lp(Ω) + ‖fn‖L1(QT ) + ‖h‖L1(ΓT ) + ‖(wn)2−p‖L1(Γt)

)
+

∫ t

0

(fn(s), (θn(s))p−1) ds−
∫ t

0

(λ′n(χn(s))χn
s (s), (θn(s))p−1 − 1) ds.

(3.56)

Recalling (H1)-(H2), (3.3), (3.53) and using Young and Hölder inequalities, we have∫ t

0

(λ′n(χn(s))χn
s (s), (θn(s))p−1 − 1) ds

≤ C

∫ t

0

( ∫
Ω

|λ′n(χn(s))χn
s (s)|p dx +

∫
Ω

|(θn(s))p−1 − 1|p
′
dx

)
ds

≤ C

∫ t

0

((
1 + ‖χn(s)‖p

L2p/(2−p)(Ω)

)
‖χn

s (s)‖p + ‖θn(s)‖p
Lp(Ω) + 1

)
ds

≤ C̃

∫ t

0

(
‖χn

s (s)‖2 + ‖θn(s)‖p
Lp(Ω) + 1

)
ds

≤ C̃

∫ t

0

(
‖θn(s)‖p

Lp(Ω) + 1
)
ds

(3.57)

where C̃ denotes a positive constant having the same dependencies as C and addi-
tionally depending on the quantities on the right hand side of (3.53). We have also
used the fact that p ∈ ( 6

5 , 3
2 ] and the continuous embedding V ↪→ L2p/(2−p)(Ω).

Combining (3.56) with (3.57), taking (3.53) into account, and making use of
Hölder inequality and Gronwall lemma, we obtain that for any t ∈ [0, T ],

‖θn(t)‖p
Lp(Ω) ≤ C̃

(
1 + ‖θ0‖p

Lp(Ω) + ‖fn‖2Lp(ΩT )

)
. (3.58)

Collecting (3.53), (3.55), and (3.58), owing to (3.23), we eventually deduce the a
priori bounds

√
νn ‖un‖L∞(0,T ;H) + ‖un‖L2(0,T ;V )

+‖θn‖L∞(0,T ;Lp(Ω)) + ‖ ln θn‖L∞(0,T ;L1(Ω)) + ‖wn‖L2(0,T ;V )

+
√

µ ‖χn
t ‖L∞(0,T ;H) + ‖χn

t ‖L2(0,T ;H) + ‖χn‖L∞(0,T ;V ) ≤ K

(3.59)

with the constant K depending only on data and being independent of µ (cf. The-
orem 2.4). In addition, recalling (H1)-(H2), (H4), (3.1), (3.3)-(3.5), and (3.31), on
account of (3.59) and by comparison in (3.24) and (3.25), we can infer the further
bounds

‖νnun + θn‖H1(0,T ;V ′) + µ‖χn
tt‖L2(0,T ;V ′) ≤ K. (3.60)

Passage to the limit as n → +∞. In this subsection, all the convergences have
to be understood for suitable subsequences. From (3.59) we deduce the existence
of a pair (θ, χ) such that as n → +∞,

θn → θ weakly star in L∞(0, T ;Lp(Ω)) (3.61)

wn → w weakly in L2(0, T ;V ) (3.62)

un → u weakly in L2(0, T ;V ) (3.63)
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νnun → 0 strongly in C0([0, T ];H) (3.64)
χn → χ weakly star in W 1,∞(0, T ;H) ∩ L∞(0, T ;V ) (3.65)
χn

tt → χtt weakly in L2(0, T ;V ′) . (3.66)

Note that (3.59) and (3.60) entail

‖νnun + θn‖H1(0,T ;V ′)∩L∞(0,T ;Lp(Ω)) ≤ K (3.67)

and, due to the compact injection Lp(Ω) ↪→ V ′ and (3.64), we have (see, e.g., [27,
Corollary 8])

θn → θ strongly in C0([0, T ];V ′) (3.68)
as n → +∞. Also, by (3.65) we infer that, as n → +∞,

χn → χ strongly in C0([0, T ];L4(Ω)). (3.69)

We now have all the ingredients to pass to the limit as n goes to +∞ in Pn
µ.

First of all, let us analyze the nonlinearities. Observe that, for any v ∈ L2(0, T ;H)
such that ρ(v) ∈ L2(0, T ;H), it turns out that

ρn(v) → ρ(v) strongly in L2(0, T ;H)

as n → +∞. Hence, recalling (3.31), (3.63) and (3.68), in view of the monotonicity
of ρn and the maximal monotonicity of the graph induced by ρ on R × R and
L2(QT )× L2(QT ), taking the limit in∫ T

0

∫
Ω

(θn − ρn(v))(un − v) dxdt

we obtain (cf., e.g., [3, Definition 2.2, p. 22])

u < 0, θ = ρ(u) (3.70)

almost everywhere in QT .
On the other hand, on account of (H1)-(H2), (3.1), (3.2), (3.59) and (3.69), one

easily proves that, as n goes to +∞,

λ′n(χn) → λ′(χ) strongly in C0([0, T ];L4(Ω)). (3.71)

Therefore, combining (3.65) with (3.71), we get

λ′n(χn)χn
t → λ′(χ)χt weakly in L2(0, T ;L4/3(Ω)). (3.72)

Since gn uniformly converges to g on compact subsets of R and (cf. (3.69))

χn → χ a.e. in QT

at least for a subsequence, as n goes to +∞ we have that

gn(χn) → g(χ) a.e. in QT . (3.73)

Also, using the injection V ↪→ L6(Ω), we infer∫ T

0

∫
Ω

|gn(χn(x, t))|2dxdt ≤
∫ T

0

∫
Ω

|g(χn(x, t))|2dxdt

≤
∫ T

0

∫
Ω

(
τ3|χn(x, t)|3 + τ4

)2
dx dt

≤ C
(
‖χn‖6L∞(0,T ;H1(Ω)) + 1

)
.
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Thus we get

{gn(χn)} is bounded in L2(0, T ;L2(Ω)). (3.74)

From (3.73) and (3.74) we deduce (see, e.g., [20, p. 13])

gn(χn) → g(χ) weakly in L2(0, T ;H). (3.75)

Recalling (3.31) and owing to the maximal monotonicity of the inverse graph of ρ, by
(3.62), (3.68), and [3, Prop. 2.5, p. 27] we infer that −w = −θ−1 and consequently

1
θn

→ 1
θ

weakly in L2(0, T ;V ). (3.76)

Thus, (3.71) and (3.76) give

λ′n(χn)
θn

→ λ′(χ)
θ

weakly in L2(0, T ;H). (3.77)

Summing up, the convergences (3.19), (3.23), (3.61)-(3.66), (3.72) (3.75), (3.77),
along with (3.16), (3.70), allow us to pass to the limit in (3.24)-(3.26). There-
fore, (θ, χ) happens to be a solution to Pµ. We recall that the regularity χ ∈
C1([0, T ];H)∩C0([0, T ];V ) follows from a standard argument for linear hyperbolic
equations (see, for instance, [30, Lemma 4.1, p. 76]).

4. Proof of Theorem 2.4

We know that the solution (θµ, χµ) to Pµ we have obtained from the limit
procedure in our approximation scheme certainly satisfies the a priori bound (2.16),
due to (3.59) and (3.60). Indeed, any bounding constant which appears in the
previous proof does not depend on µ.

As a matter of fact, we now prove that any solution (θµ, χµ) to Problem Pµ

necessarily satisfies estimate (2.16). Indeed, on account of (H1)-(H4) and (2.1)-
(2.2) we observe that

ĝ(χµ) ∈ H1(0, T ;L1(Ω)) and (ĝ(χµ))t = g(χµ)χµ
t a.e. in Q (4.1)

λ′(χµ)(θµ)−1 ∈ L2(0, T ;H) (4.2)

Fµ := (λ′(χµ))t = λ′(χµ)χµ
t ∈ L2(0, T ;L3/2(Ω)). (4.3)

Referring to the previous proof, we take a sequence {Fn} ⊂ L2(0, T ;H) such that

Fn → Fµ in L2(0, T ;L3/2(Ω)) (4.4)

and we consider the Cauchy problem (cf. (3.24) and (3.26))

〈(νnun + ρn(un))t, v〉+ ((un, v)) = (fn − Fn, v) + (h, v)Γ ∀ v ∈ V, a.e. in (0, T )
(4.5)

un(0) = u0n a.e. in Ω. (4.6)

Then, it is not difficult to realize that there exists a unique un ∈ C0([0, T ];H) ∩
L2(0, T ;V ) which solves (4.5)-(4.6). Moreover, with the same positions as in (3.31),
the estimates (3.39), (3.47), and (3.50) still hold with Fn in place of (λn(χn))t.
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Therefore, multiplying (3.39) by 6 and adding it to (3.47) and (3.50), we deduce

1
p
‖θn(t)‖p

Lp(Ω) + ‖θn(t)‖L1(Ω) + ‖ ln θn(t)‖L1(Ω)

+ 6
∫ t

0

((wn(s), wn(s))) ds− 6γ

∫ t

0

‖wn(s)‖L1(Γ) ds

− γ

∫ t

0

(wn(s), (θn(s))p−1)Γ ds +
νn

2
‖un(t)‖2 +

∫ t

0

((un(s), un(s))) ds

≤ C
(
1 + ‖θ0‖L1(Ω) + ‖ ln θ0‖L1(Ω) + ‖θ0‖p

Lp(Ω)

)
+ 6

∫ t

0

(fn(s)− Fn(s), 1− wn(s)) ds + 6
∫ t

0

(h(s), 1− wn(s))Γ ds

+
∫ t

0

(fn(s)− Fn(s), (θn(s))p−1 − 1) ds +
∫ t

0

(h(s), (θn(s))p−1 − 1)Γ ds

+
∫ t

0

(fn(s)− Fn(s), un(s)) ds +
∫ t

0

(h(s), un(s))Γ ds.

(4.7)

Then, thanks to (H8) and (3.31) we infer

1
p
‖θn(t)‖p

Lp(Ω) + ‖θn(t)‖L1(Ω) + ‖ ln θn(t)‖L1(Ω)

+6
∫ t

0

((wn(s), wn(s))) ds +
νn

2
‖un(t)‖2 +

∫ t

0

((un(s), un(s))) ds

≤6γ

∫ t

0

‖wn(s)‖L1(Γ) ds + γ

∫ t

0

‖(wn(s))2−p‖L1(Γ) ds

+ C
(
1 + ‖θ0‖L1(Ω) + ‖ ln θ0‖L1(Ω) + ‖θ0‖p

Lp(Ω)

)
+ 6

∫ t

0

(fn(s)− Fn(s), 1− wn(s)) ds− 6
∫ t

0

(h(s), wn(s))Γ ds

+
∫ t

0

(fn(s)− Fn(s), (θn(s))p−1 − 1) ds + 5
∫ t

0

‖h(s)‖L1(Γ) ds

+
∫ t

0

(fn(s)− Fn(s), un(s)) ds +
∫ t

0

(h(s), un(s))Γ ds.

Using now Young inequality, from the above inequality we get (cf. also (3.31))

1
p
‖θn(t)‖p

Lp(Ω) + ‖θn(t)‖L1(Ω) + ‖ ln θn(t)‖L1(Ω)

+
∫ t

0

(((θn)−1(s), (θn)−1(s))) ds +
νn

2
‖un(t)‖2 +

1
2

∫ t

0

((un(s), un(s))) ds

≤C
(
1 + ‖θ0‖p

Lp(Ω) + ‖ ln θ0‖L1(Ω) + ‖h‖2L2(ΓT )

)
+ 5

∫ t

0

‖fn(s)− Fn(s)‖L1(Ω) ds− 6
∫ t

0

(fn(s)− Fn(s), (θn(s))−1(s)) ds

+
∫ t

0

(fn(s)− Fn(s), (θn(s))p−1) ds +
∫ t

0

(fn(s)− Fn(s), un(s)) ds.

(4.8)

Applying Young inequality once more, we have
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0

(fn(s)− Fn(s), (θn(s))p−1) ds

≤ C

∫ t

0

(
‖fn(s)− Fn(s)‖p

Lp(Ω) + ‖θn(s)‖p
Lp(Ω)

)
ds. (4.9)

Then, on account of (4.9), from (4.8) we easily deduce

‖θn(t)‖p
Lp(Ω) + ‖θn(t)‖L1(Ω) + ‖ ln θn(t)‖L1(Ω)

+
∫ t

0

‖(θn)−1(s)‖2V ds + νn‖un(t)‖2 +
∫ t

0

‖un(s)‖2V ds

≤ C
(
1 + ‖θ0‖p

Lp(Ω) + ‖ ln θ0‖L1(Ω) + ‖h‖2L2(ΓT )

+
∫ t

0

‖fn(s)− Fn(s)‖p
Lp(Ω) ds +

∫ t

0

‖θn(s)‖p
Lp(Ω) ds

+
∫ t

0

‖fn(s)− Fn(s)‖V ′

(
‖(θn)−1(s)‖V + ‖un(s)‖V

)
ds

)
and, recalling the embedding Lp(Ω) ↪→ V ′ and using Young inequality, we obtain

‖θn(t)‖p
Lp(Ω) + ‖θn(t)‖L1(Ω) + ‖ ln θn(t)‖L1(Ω)

+
∫ t

0

‖(θn)−1(s)‖2V ds + νn‖un(t)‖2 +
∫ t

0

‖un(s)‖2V ds

≤ C
(
1 + ‖θ0‖p

Lp(Ω) + ‖ ln θ0‖L1(Ω) + ‖h‖2L2(ΓT )

+
∫ t

0

‖fn(s)− Fn(s)‖2Lp(Ω) ds +
∫ t

0

‖θn(s)‖p
Lp(Ω) ds

)
.

(4.10)

An application of Gronwall lemma to (4.10) yields the bound (cf. also (3.23) and
(4.4))
√

νn ‖un‖L∞(0,T ;H) + ‖un‖L2(0,T ;V ) + ‖θn‖L∞(0,T ;Lp(Ω))

+ ‖ ln θn‖L∞(0,T ;L1(Ω)) + ‖(θn)−1‖L2(0,T ;V ) ≤ Kµ. (4.11)

Here, Kµ denotes a generic positive constant which does depend on the quantity
‖Fµ‖L2(0,T ;L3/2(Ω)), but it is independent of n. Consequently, by comparison in
(4.5), we also have

‖νnun + θn‖H1(0,T ;V ′) ≤ Kµ. (4.12)
Then, arguing as in the last subsection of the existence proof, we obtain

θn → θµ weakly star in L∞(0, T ;Lp(Ω)) (4.13)

θn → θµ strongly in C0([0, T ];V ′) (4.14)

un → −(θµ)−1 weakly in L2(0, T ;V ) (4.15)

(θn)−1 → (θµ)−1 weakly in L2(0, T ;V ) (4.16)

νnun → 0 strongly in C0([0, T ];H) (4.17)

where the limit θµ should solve the Cauchy problem (cf. (4.5) and (4.6))

〈θµ
t , v〉+ ((−(θµ)−1, v)) = 〈f − Fµ, v〉+ (h, v)Γ ∀ v ∈ V, a.e. in (0, T )

θµ(0) = θ0 a.e. in Ω
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and therefore (cf. (4.3)) coincide with the first component of the solution (θµ, χµ)
to Pµ fixed at the beginning of this section. Indeed, the above Cauchy problem
admits a unique (positive) solution. Uniqueness can be checked by a contradiction
argument (see, e.g., the proof of Theorem 2.6 below).

Observe now that, owing to (4.14), we have, for any t ∈ [0, T ],

θn(t) → θµ(t) in V ′. (4.18)

On the other hand, since t → θn(t) is weakly continuous from [0, T ] to Lp(Ω) and
{θn} is bounded in L∞(0, T ;Lp(Ω)) (cf. (4.11)), it follows that, for any t ∈ [0, T ],
there exists a subsequence {θnk(t)} and some element ηt ∈ Lp(Ω) such that

θnk(t) → ηt weakly in Lp(Ω). (4.19)

Hence, combining (4.18) with (4.19) and exploiting the uniqueness of the first limit,
we deduce

θn(t) → θµ(t) weakly in Lp(Ω). (4.20)

Then, since (3.39) holds with wn, (λn(χn))t replaced by (θn)−1, Fn, respectively,
by (H8) and Hölder and Young inequalities we have

1
3
‖θn(t)‖L1(Ω) +

∫ t

0

‖∇(θn)−1‖2 ds +
γ

2

∫ t

0

‖(θn)−1(s)‖2L2(Γ) ds

≤ C
(
1 + ‖θ0‖L1(Ω) + ‖ ln θ0‖L1(Ω) + ‖h‖2L2(ΓT )

)
+

∫ t

0

‖fn(s)− Fn(s)‖L1(Ω) ds−
∫ t

0

(fn(s)− Fn(s), (θn)−1(s)) ds.

(4.21)

On account of (3.23) and (4.4), using (4.16), (4.20) and the (weak) lower semicon-
tinuity of the norm, we deduce from (4.21) the following inequality

1
3
‖θµ(t)‖L1(Ω) +

∫ t

0

‖∇(θµ)−1‖2 ds +
γ

2

∫ t

0

‖(θµ)−1(s)‖2L2(Γ) ds

≤ C
(
1 + ‖θ0‖L1(Ω) + ‖ ln θ0‖L1(Ω) + ‖h‖2L2(ΓT )

)
+

∫ t

0

‖f(s)− Fµ(s)‖L1(Ω) ds−
∫ t

0

(f(s)− Fµ(s), (θµ)−1(s)) ds.

(4.22)

Observe now that our fixed χµ satisfies equation (2.6) and related initial condi-
tions in (2.7). Hence, we can formally take v = χµ

t (t) in (2.6) and integrate with
respect to time over (0, t). In view of (4.1) and (4.3), we get the energy identity

µ

2
‖χµ

t (t)‖2 +
1
2
‖∇χµ(t)‖2 +

∫
Ω

ĝ(χµ(t))dx +
∫ t

0

‖χµ
s (s)‖2 ds

=
µ

2
‖χ1‖2 +

1
2
‖∇χ0‖2 +

∫
Ω

ĝ(χ0)dx−
∫ t

0

(Fµ(s), (θµ)−1(s)(s)) ds. (4.23)

We recall that the above argument can be made rigorous by using a suitable regu-
larization of χµ

t (t) (see [4, Appendix]).
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Adding (4.22) and (4.23) and arguing as we did in the previous proof to obtain
(3.53), we deduce the estimate

‖θµ(t)‖L1(Ω) +
∫ t

0

‖∇(θµ)−1(s)‖2 ds + γ

∫ t

0

‖(θµ)−1(s)‖2Γ ds

+ µ‖χn
t (t)‖2 + ‖∇χn(t)‖2 +

∫ t

0

‖χn
s (s)‖2 ds

≤ C
(
1 + ‖θ0‖L1(Ω) + ‖ ln θ0‖L1(Ω) + ‖χ1‖2 + ‖χ0‖4V

+ ‖f‖2L2(0,T ;Lp(Ω)) + ‖h‖2L2(ΓT )

)
(4.24)

for any t ∈ [0, T ]. In the light of the definition (4.3) of Fµ, it turns out that (4.24)
yields a fortiori a bound for ‖Fµ‖L2(0,T ;L3/2(Ω)) independent of µ. Hence, from
(4.11) and (4.13) we conclude that

‖θµ‖L∞(0,T ;Lp(Ω)) ≤ K. (4.25)

Moreover, a comparison in (2.5) entails

‖θµ
t ‖L2(0,T ;V ′) ≤ K. (4.26)

Finally, (4.24)-(4.26) enable us to deduce (2.16).
Thanks to (2.16), there exist a sequence {µn} that converges to 0 and a pair

(θ, χ) such that

θµn → θ weakly star in L∞(0, T ;Lp(Ω)) (4.27)

θµn → θ weakly in H1(0, T ;V ′) (4.28)

θµn → θ strongly in C0([0, T ];V ′) (4.29)
1

θµn
→ 1

θ
weakly in L2(0, T ;V ) (4.30)

µnχµn

t → 0 strongly in C0([0, T ];H) (4.31)
χµn → χ weakly star in L∞(0, T ;V ) (4.32)
χµn → χ weakly in H1(0, T ;H) (4.33)
χµn → χ strongly in C0([0, T ];L4(Ω)) (4.34)

as n → +∞ (cf. also the last subsection of the existence proof).
Integrating equation (2.6) with respect to time over (0, t) and taking initial

conditions into account, we obtain

(µnχµn

t + χµn , v) + (∇(1 ∗ χµn),∇v) +
(
1 ∗ (g(χµn) + λ′(χµn)(θµn)−1

)
, v)

= (µnχ1 + χ0, v) ∀ v ∈ V, a.e. in (0, T ). (4.35)

Then, thanks to (4.27)-(4.34), we can pass to the limit as n → +∞ in (2.5) and
(4.35), arguing as above for the nonlinearities, and we can deduce that (θ, χ) satisfies
the equations

〈(θ + λ(χ))t, v〉+ ((−θ−1, v)) = 〈f, v〉+ (h, v)Γ ∀ v ∈ V, a.e. in (0, T ) (4.36)

(χ, v) + (∇(1 ∗ χ),∇v) +
(
1 ∗ (g(χ) + λ′(χ)θ−1), v

)
= (χ0, v)

∀ v ∈ V, a.e. in (0, T ) (4.37)

θ(0) = θ0 in V ′. (4.38)
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On the other hand, owing to (H1)-(H4), (H11) and (4.30), (4.32)-(4.34), from (4.37)
we can infer

(χt, v) + (∇χ,∇v) +
(
g(χ) + λ′(χ)θ−1, v

)
= 0 ∀ v ∈ V, a.e. in (0, T ) (4.39)

χ(0) = χ0 a.e. in Ω. (4.40)

Moreover, since
g(χ) + λ′(χ)θ−1 − χt ∈ L2(0, T ;H)

we deduce from (4.39) and the standard elliptic regularity theory that χ satisfies
(2.11) and (2.14). Hence, the pair (θ, χ) fulfills (2.8)-(2.15) and solves problem P0.
Consequently, the uniqueness of solutions to P0 (cf. Theorem 2.10) implies that
the whole family {(θµ, χµ)} converges to (θ, χ) according to (4.27)-(4.34) as µ ↘ 0,
and Theorem 2.4 is completely proved.

5. Proof of Theorem 2.6

Observe that, for j = 1, 2, (θj , χj) solves the problem Pµ with θ0j , fj , hj , χ0j ,
χ1j in place of θ0, f , h, χ0, χ1, respectively, and uj = −θ−1

j . Then, setting

θ = θ1 − θ2, u = u1 − u2, χ = χ1 − χ2

θ0 = θ01 − θ02, f = f1 − f2, h = h1 − h2

χ0 = χ01 − χ02, χ1 = χ11 − χ12

we have

〈(θ + λ(χ1)− λ(χ2))t, v〉+ ((u, v)) = 〈f, v〉+ (h, v)Γ ∀ v ∈ V, a.e. in (0, T ) (5.1)

〈µχtt, v〉+ (χt, v) + (∇χ,∇v) + (g(χ1)− g(χ2)− λ′(χ1)u1 + λ′(χ2)u2, v) = 0

∀ v ∈ V, a.e. in (0, T ) (5.2)

θ(0) = θ0, χ(0) = χ0, χt(0) = χ1 a.e. in Ω. (5.3)

Let us integrate (5.1) with respect to time over (0, t), take v = u(t) and integrate
in time once more. We obtain∫ t

0

(θ(s), u(s)) ds +
1
2
(((1 ∗ u)(t), (1 ∗ u)(t)))

= −
∫ t

0

(λ(χ1(s))− λ(χ2(s)), u(s)) ds

+
∫ t

0

〈θ0 + λ(χ01)− λ(χ02) + (1 ∗ f)(s), u(s)〉 ds +
∫ t

0

((1 ∗ h)(s), u(s))Γ ds.

(5.4)
Observe now that

(θ(s), u(s)) ≥ 1
2

∫
Ω

|θ(s)|2

1 + |θ1(s)|2 + |θ2(s)|2
dx +

1
2

∫
Ω

|u(s)|2

1 + |u1(s)|2 + |u2(s)|2
dx.

(5.5)
Integrations by parts lead to∫ t

0

〈θ0 + λ(χ01)− λ(χ02) + (1 ∗ f)(s), u(s)〉 ds

= 〈θ0 + λ(χ01)− λ(χ02) + (1 ∗ f)(t), (1 ∗ u)(t)〉 −
∫ t

0

〈f(s), (1 ∗ u)(s)〉 ds (5.6)
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and∫ t

0

((1 ∗ h)(s), u(s))Γ ds = ((1 ∗ h)(t), (1 ∗ u)(t))Γ −
∫ t

0

(h(s), (1 ∗ u)(s))Γ ds. (5.7)

Then, recalling (H1) and (H13) and using (5.5)-(5.7) and Young inequality, from
(5.4) we infer∫ t

0

∫
Ω

|θ|2

1 + |θ1|2 + |θ2|2
dx ds +

∫ t

0

∫
Ω

|u|2

1 + |u1|2 + |u2|
dx ds + ‖(1 ∗ u)(t)‖2V

≤ C
( ∫ t

0

∫
Ω

|χ| |u| dx ds +
∫ t

0

‖(1 ∗ u)(s)‖2V ds + ‖θ0‖V ′ + ‖χ0‖

+ ‖(1 ∗ f)(t)‖2V ′ + ‖f‖2L2(0,T ;V ′) + ‖(1 ∗ h)(t)‖2L2(Γ) + ‖h‖2L2(ΓT )

)
.

(5.8)

Here and in the sequel of the proof, C denotes a positive constant depending on
T , Ω, γ, λ, and g, at most. Note that if N = 1 there is no need of (H13) since
C0([0, T ];V ) ↪→ C0(QT ). In this case the constant C depends on M1 as well. We
now have∫

Ω

|χ(s)| |u(s)| dx

=
∫

Ω

|u(s)|√
1 + |u1(s)|2 + |u2(s)|2

√
1 + |u1(s)|2 + |u2(s)|2|χ(s)| dx

≤ 1
2

∫
Ω

|u(s)|2

1 + |u1(s)|2 + |u2(s)|2
dx +

1
2

∫
Ω

(
1 + |u1(s)|2 + |u2(s)|2

)
|χ(s)|2 dx

(5.9)

so that we deduce∫
Ω

|χ(s)| |u(s)| dx ≤ 1
2

∫
Ω

|u(s)|2

1 + |u1(s)|2 + |u2(s)|2
dx + CΛ(s)‖χ(s)‖2 (5.10)

where

Λ(t) = 1 + ‖u1(t)‖2L∞(Ω) + ‖u2(t)‖2L∞(Ω) for a.a. t ∈ (0, T ). (5.11)

Note that Λ ∈ L1(0, T ), due to (2.17). Then, a combination of (5.8) with (5.10)
gives∫ t

0

∫
Ω

|θ|2

1 + |θ1|2 + |θ2|2
dx ds +

∫ t

0

∫
Ω

|u|2

1 + |u1|2 + |u2|
dx ds + ‖(1 ∗ u)(t)‖2V

≤ C
(
‖θ0‖2V ′ + ‖χ0‖2H + ‖f‖2L2(0,T ;V ′) + ‖h‖2L2(ΓT )

+
∫ t

0

‖(1 ∗ u)(s)‖2V ds +
∫ t

0

Λ(s)‖χ(s)‖2 ds
)
.

(5.12)

Take now v = χt in (5.2) and integrate over (0, t). Thus, we obtain

µ

2
‖χt(t)‖2 +

∫ t

0

‖χs(s)‖2 ds +
1
2
‖∇χ(t)‖2

=
µ

2
‖χ1‖2 +

1
2
‖∇χ0‖2 −

∫ t

0

(g(χ1(s))− g(χ2(s)), χs(s)) ds

+
∫ t

0

((λ′(χ1(s))− λ′(χ2(s)))u1(s) + λ′(χ2(s))u(s), χs(s)) ds.

(5.13)
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We notice once more that this argument is formal since χt(t) does not belong to
V ; however, it can be made rigorous using, for instance, [4, Appendix].

Observe that, thanks to (H14), Hölder inequality and the injection V ↪→ L6(Ω),
we have

‖g(χ1(s))− g(χ2(s))‖2

≤ c 2
1

∫
Ω

(1 + |χ1(s)|2 + |χ2(s)|2)2|χ(s)|2 dx

≤ C
(
1 + ‖χ1(s)‖4L6(Ω) + ‖χ2(s)‖4L6(Ω)

)
‖χ(s)‖2L6(Ω)

≤ C
(
1 + ‖χ1‖4L∞(0,T ;V ) + ‖χ2‖4L∞(0,T ;V )

)
‖χ(s)‖2V .

(5.14)

On the other hand, due to (H1)-(H2), (2.17), and (5.11) we deduce that∫
Ω

|λ′(χ1(s))− λ′(χ2(s))| |u1(s)||χt(s)| dx ≤ CΛ(s)
∫

Ω

|χ(s)| |χt(s)| dx. (5.15)

Moreover, thanks to (H13), we have (cf. (5.10))∫
Ω

|λ′(χ2(s))u(s)χt(s)| dx ≤C

∫
Ω

|u(s)χt(s)| dx

≤1
2

∫
Ω

|u(s)|2

1 + |u1(s)|2 + |u2(s)|2
dx + CΛ(s)‖χt(s)‖2.

(5.16)
Collecting (5.13)-(5.16) and using Hölder inequality, we obtain

µ

2
‖χt(t)‖2 +

∫ t

0

‖χs(s)‖2 ds +
1
2
‖∇χ(t)‖2

≤ µ

2
‖χ1‖2 +

1
2
‖∇χ0‖2 + C

∫ t

0

Λ(s)
(
‖χ(s)‖2 + ‖χs(s)‖2

)
ds

+ C
(
1 + ‖χ1‖4L∞(0,T ;V ) + ‖χ2‖4L∞(0,T ;V )

) ∫ t

0

‖χ(s)‖2V ds

+
1
2

∫ t

0

∫
Ω

|u|2

1 + |u1|2 + |u2|2
dx ds.

(5.17)

Hence, a combination of (5.12) with (5.17) gives∫ t

0

∫
Ω

|θ|2

1 + |θ1|2 + |θ2|2
dx ds +

1
2

∫ t

0

∫
Ω

|u|2

1 + |u1|2 + |u2|
dx ds

+ ‖(1 ∗ u)(t)‖2V +
µ

2
‖χt(t)‖2 +

∫ t

0

‖χs(s)‖2 ds +
1
2
‖∇χ(t)‖2

≤ C
(
‖θ0‖2V ′ + ‖χ0‖2V + µ‖χ1‖2 + ‖f‖2L2(0,T ;V ′) + ‖h‖2L2(ΓT )

+
∫ t

0

‖(1 ∗ u)(s)‖2V ds +
∫ t

0

Λ(s)
(
‖χ(s)‖2 + ‖χs(s)‖2

)
ds

+
(
1 + ‖χ1‖4L∞(0,T ;V ) + ‖χ2‖4L∞(0,T ;V )

) ∫ t

0

‖χ(s)‖2V ds
)

and eventually an application of Gronwall lemma yields (2.18).
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6. Proof of Theorem 2.8

Referring to the previous proof, observe that, owing to (H15), (5.4) becomes∫ t

0

(θ(s), u(s)) ds +
1
2
(((1 ∗ u)(t), (1 ∗ u)(t)))

= −
∫ t

0

(χ(s), u(s)) ds−
∫ t

0

〈θ0 + χ0 + (1 ∗ f)(s), u(s)〉 ds

+
∫ t

0

((1 ∗ h)(s), u(s))Γ ds.

(6.1)

On the other hand, integrating by parts with respect to time yields∫ t

0

(χ(s), u(s)) ds = (χ(s), (1 ∗ u)(s))−
∫ t

0

(χs(s), (1 ∗ u)(s)) ds. (6.2)

Therefore, recalling (5.5)-(5.7), the analog of (5.8) reads∫ t

0

∫
Ω

|θ|2

1 + |θ1|2 + |θ2|2
dx ds +

∫ t

0

∫
Ω

|u|2

1 + |u1|2 + |u2|
dx ds + ‖(1 ∗ u)(t)‖2V

≤ C
(
‖χ(s)‖V ′‖(1 ∗ u)(s)‖V +

∫ t

0

‖χs(s)‖V ′‖(1 ∗ u)(s)‖V ds +
∫ t

0

‖(1 ∗ u)(s)‖2V ds

+ ‖θ0 + χ0 + (1 ∗ f)(t)‖2V ′ + ‖f‖2L2(0,T ;V ′) + ‖(1 ∗ h)(t)‖2L2(Γ) + ‖h‖2L2(ΓT )

)
.

Here and in the sequel of this proof, C stands for a positive constant that depends
on T , Ω, γ, µ, and c1, at most. Other possible dependencies will be pointed out
explicitly.

Using then Young and Hölder inequalities, we easily deduce∫ t

0

∫
Ω

|θ|2

1 + |θ1|2 + |θ2|2
dx ds +

∫ t

0

∫
Ω

|u|2

1 + |u1|2 + |u2|
dx ds + ‖(1 ∗ u)(t)‖2V

≤ C
(
‖χ(s)‖2V ′ +

∫ t

0

‖χs(s)‖2V ′ ds +
∫ t

0

‖(1 ∗ u)(s)‖2V ds

+ ‖θ0‖2V ′ + ‖χ0‖2 + ‖f‖2L2(0,T ;V ′) + ‖h‖2L2(ΓT )

)
.

(6.3)

Consider now equation (5.2) and integrate it with respect to time. Recalling (H15)
and (5.3), we obtain

〈µχt, v〉+ (χ, v) + (∇(1 ∗ χ),∇v) + (1 ∗ (g(χ1)− g(χ2))− 1 ∗ u, v)

= 〈µχ1, v〉+ (χ0, v) ∀ v ∈ V, a.e. in (0, T ). (6.4)

Pick v = χ in (6.4) and integrate with respect to time once again. We get

µ

2
‖χ(t)‖2 +

∫ t

0

‖χ(s)‖2 ds +
1
2
‖∇(1 ∗ χ)(t)‖2

= −
∫ t

0

([1 ∗ (g(χ1)− g(χ2))](s)− (1 ∗ u)(s), χ(s)) ds

+
µ

2
‖χ0‖2 + (µχ1 + χ0, (1 ∗ χ)(s))

(6.5)
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for t ∈ [0, T ]. An integration by parts yields∫ t

0

([1 ∗ (g(χ1)− g(χ2))](s), χ(s)) ds =([1 ∗ (g(χ1)− g(χ2))](t), (1 ∗ χ)(t))

−
∫ t

0

(g(χ1(s))− g(χ2(s)), (1 ∗ χ)(s)) ds.

(6.6)
Observe now that, using (H14), Hölder inequality and the injection V ↪→ L6(Ω),
we have

‖g(χ1(s))− g(χ2(s))‖L6/5(Ω)

≤ c1

{∫
Ω

(1 + |χ1(s)|2 + |χ2(s)|2)6/5|χ(s)|6/5 dx
}5/6

≤ C
{∫

Ω

(1 + |χ1(s)|6 + |χ2(s)|6) dx
}1/3

‖χ(s)‖

≤ C
(
1 + ‖χ1‖2L∞(0,T ;V ) + ‖χ2‖2L∞(0,T ;V )

)
‖χ(s)‖.

(6.7)

Hence, on account of (6.7) and Young inequality, from (6.6) we deduce

−
∫ t

0

([1 ∗ (g(χ1)− g(χ2))](s), χ(s)) ds

≤ C

∫ t

0

‖g(χ1(s))− g(χ2(s))‖2L6/5(Ω) ds +
1
8
‖(1 ∗ χ)(t)‖2V +

∫ t

0

‖(1 ∗ χ)(s)‖2V ds

≤ C(M2)
∫ t

0

‖χ(s)‖2 ds +
1
8
‖(1 ∗ χ)(t)‖2V +

∫ t

0

‖(1 ∗ χ)(s)‖2V ds.

(6.8)
Using (6.8) and Young inequality once more, we infer from (6.5)

µ

2
‖χ(t)‖2 +

1
2

∫ t

0

‖χ(s)‖2 ds +
1
4
‖∇(1 ∗ χ)(t)‖2

≤ C
(
‖χ0‖2 + ‖χ1‖2V ′ +

∫ t

0

‖(1 ∗ u)(s)‖2 ds

+
∫ t

0

‖∇(1 ∗ χ)(s)‖2 ds
)

+ C(M2)
∫ t

0

‖χ(s)‖2 ds.

(6.9)

Thanks to (6.7) and (6.9), by comparison in equation (6.4) we also derive

µ2‖χt(t)‖2V ′ ≤ C(M2)
(
‖χ0‖2 + ‖χ1‖2V ′ +

∫ t

0

‖(1 ∗ u)(s)‖2 ds

+
∫ t

0

‖χ(s)‖2 ds +
∫ t

0

‖∇(1 ∗ χ)(s)‖2 ds
)

+ 2‖(1 ∗ u)(t)‖2. (6.10)

Finally, multiplying (6.10) by 1/4, then adding it to (6.3) and (6.9), a subsequent
application of Gronwall lemma leads to (2.19).

7. Proof of Theorem 2.10

In this section, we also set

e0 = θ0 + λ(χ01)− λ(χ02)
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and let the generic constant C depend on T , Ω, γ, ‖λ′′‖L∞(R), and c1 or c2, at most.
We still have (5.4), due to (2.12). On the other hand, observe that (cf. (2.13))

χt + ∆χ + g(χ1)− g(χ2) = λ′(χ1)u1 − λ′(χ2)u2 a.e. in QT . (7.1)

Therefore, multiplying equation (7.1) by χ and integrating over space and time,
with the help of Green formula we get

1
2
‖χ(t)‖2 +

∫ t

0

‖∇χ(s)‖2 ds =−
∫ t

0

(g(χ1(s))− g(χ2(s)), χ(s)) ds +
1
2
‖χ0‖2

+
∫ t

0

(λ′(χ1(s))u1(s)− λ′(χ2(s))u2(s), χ(s)) ds.

(7.2)
Adding (5.4) and (7.2), in view of (5.5)-(5.7) we can infer

1
2

∫ t

0

∫
Ω

|θ|2

1 + |θ1|2 + |θ2|2
dx ds +

1
2

∫ t

0

∫
Ω

|u|2

1 + |u1|2 + |u2|
dx ds

+
1
2
‖(1 ∗ u)(t)‖2V +

1
2
‖χ(t)‖2 +

∫ t

0

‖∇χ(s)‖2 ds

≤ 〈e0 + (1 ∗ f)(t), (1 ∗ u)(t)〉 −
∫ t

0

〈f(s), (1 ∗ u)(s)〉 ds

+ ((1 ∗ h)(t), (1 ∗ u)(t))Γ −
∫ t

0

(h(s), (1 ∗ u)(s))Γ ds +
1
2
‖χ0‖2

−
∫ t

0

(g(χ1(s))− g(χ2(s)), χ(s)) ds−
∫ t

0

(λ(χ1(s))− λ(χ2(s)), u(s)) ds

+
∫ t

0

(λ′(χ1(s))u1(s)− λ′(χ2(s))u2(s), χ(s)) ds.

(7.3)

Let us estimate the last three integrals on the right hand side. Assume that (H14)
holds. Then, owing to (6.7) and Young inequality, we have

−
∫ t

0

(g(χ1(s))− g(χ2(s)), χ(s)) ds

≤ C‖g(χ1(s))− g(χ2(s)‖2L6/5(Ω) +
1
8

∫ t

0

‖χ(s)‖2V ds

≤ C(M2)
∫ t

0

‖χ(s)‖2 ds +
1
8

∫ t

0

‖∇χ(s)‖2 ds.

(7.4)

Next, owing to (H1)-(H2), Taylor expansion, and Hölder inequality, we have

−
∫ t

0

(λ(χ1(s))− λ(χ2(s)), u(s)) ds

+
∫ t

0

(λ′(χ1(s))u1(s)− λ′(χ2(s))u2(s), χ(s)) ds

=
∫ t

0

∫
Ω

u1(λ(χ2)− λ(χ1)− λ′(χ1)(χ2 − χ1)) dx ds

+
∫ t

0

∫
Ω

(u2(λ(χ1)− λ(χ2)− λ′(χ2)(χ1 − χ2)) dx ds
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≤ ‖λ′′‖L∞(R)

∫ t

0

∫
Ω

(|u1|+ |u2|)|χ|2 dx ds

≤ C

∫ t

0

(
‖u1(s)‖L4(Ω) + ‖u2(s)‖L4(Ω)

)
‖χ(s)‖‖χ(s)‖V ds

≤ C

∫ t

0

(
1 + ‖u1(s)‖2V + ‖u2(s)‖2V

)
‖χ(s)‖2 ds +

1
8

∫ t

0

‖∇χ(s)‖2 ds

≤ C(M3)
∫ t

0

‖χ(s)‖2 ds +
1
8

∫ t

0

‖∇χ(s)‖2 ds.

By virtue of (7.4), the above inequality, and Young inequality, from (7.3) it is
straightforward to deduce (cf. (5.8))∫ t

0

∫
Ω

|θ|2

1 + |θ1|2 + |θ2|2
dx ds +

∫ t

0

∫
Ω

|u|2

1 + |u1|2 + |u2|
dx ds

+ ‖(1 ∗ u)(t)‖2V + ‖χ(t)‖2 +
∫ t

0

‖∇χ(s)‖2 ds

≤ C
(
‖e0‖2V ′ + ‖χ0‖2 + ‖f‖2L2(0,T ;V ′) + ‖h‖2L2(ΓT )

)
+

∫ t

0

‖(1 ∗ u)(s)‖2V ds + C(M2,M3)
∫ t

0

‖χ(s)‖2 ds.

(7.5)

Then, an application of Gronwall lemma yields (2.20).
Finally, suppose that (H16) holds instead of (H14). Then, in place of (7.4) we

have

−
∫ t

0

(g(χ1(s))− g(χ2(s)), χ(s)) ds ≤ c2

∫ t

0

‖χ(s)‖2 ds.

Therefore, the constant C3 appearing in (2.20) does not depend on M2 and Theo-
rem 2.10 is proved.
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8. Erratum: submitted on March 31, 2003.

1. [p. 1, last line, and p. 2, first line] We should point out that the well-known
example of g we give, i.e., g(r) = r3 − r − θ−1

c , r ∈ R, where θc > 0 is the critical
temperature around which the phase transition occurs, applies for solid-liquid phase
transitions to the simplest case λ′(r) = 1 for all r ∈ R (cf. also Remark 2.11, p. 7).
In the general case, g can still be a third-degree polinomial with the same leading
term, but with more general first and possibly second-order terms.

2. [p. 15, line +4] This line must be converted into

+ ‖fn‖L2(0,T ;Lp(Ω))

(
C + ‖wn‖L2(0,t;Lp′ (Ω))

)
+

(
C + ‖h‖L2(ΓT )

)
‖wn(s)‖L2(Γt)

that yields the correct last two terms on the right hand side of the involved inequal-
ity.
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3. [p. 16] At line +1, (3.31) should be recalled along with (3.30) and (H8). More-
over, in formula (3.58) Lp(ΩT ) must be replaced by Lp(QT ).

4. [p. 17, lines from +12 to +21] This part must be changed as follows.
First of all, let us analyze the nonlinearities. Observe that, for any v ∈ L2(0, T ;Lp′(Ω))
such that ρ(v) ∈ L2(0, T ;Lp(Ω)), it turns out that

ρn(v) → ρ(v) strongly in L2(0, T ;Lp(Ω))

as n → +∞. On the other hand, it is known that ρ induces a maximal monotone
graph in R×R and, by regarding ρ as the subdifferential of a proper convex lower
semicontinuous function, one can adapt the arguments in Example 3, pp. 61-63,
of [V. Barbu, Nonlinear semigroups and differential equations in Banach spaces,
Noordhoff, Leyden (1976)] to show that the graph relation

z ∈ ρ(v) almost everywhere in QT (∗)

between two functions v ∈ L2(0, T ;Lp′(Ω)) and z ∈ L2(0, T ;Lp(Ω)) yields a maxi-
mal monotone operator in the product space.

Hence, recalling (3.31), (3.61), (3.63) and (3.68), in view of the monotonicity of
ρn we can take the limit in∫ T

0

∫
Ω

(θn − ρn(v))(un − v) dxdt

=
∫ T

0

〈θn(t), un(t)〉dt−
∫ T

0

∫
Ω

(θnv + ρn(v)(un − v)) dxdt

and obtain ∫ T

0

∫
Ω

(θ − z)(u− v) dxdt ≥ 0

for all functions v ∈ L2(0, T ;Lp′(Ω)) and z ∈ L2(0, T ;Lp(Ω)) fulfilling (*). Now,
this implies (cf., e.g., [3, Definition 2.2, p. 22])

u < 0, θ = ρ(u) (3.70)

almost everywhere in QT , where ρ here denotes the function again.

5. [p. 29, line +4] This line must be deleted so that (7.5) becomes∫ t

0

∫
Ω

|θ|2

1 + |θ1|2 + |θ2|2
dx ds +

∫ t

0

∫
Ω

|u|2

1 + |u1|2 + |u2|
dx ds

+ ‖(1 ∗ u)(t)‖2V + ‖χ(t)‖2 +
∫ t

0

‖∇χ(s)‖2 ds

≤ C
(
‖e0‖2V ′ + ‖χ0‖2 + ‖f‖2L2(0,T ;V ′) + ‖h‖2L2(ΓT )

)
+

∫ t

0

‖(1 ∗ u)(s)‖2V ds

+ C(M2)
∫ t

0

(
1 + ‖u1(s)‖2V + ‖u2(s)‖2V

)
‖χ(s)‖2 ds.

(7.5)
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and still one can conclude via Gronwall lemma, with exp(M3) entering the constant
C3 in (2.20). �
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