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ON THE PROPERTIES OF ∞-HARMONIC FUNCTIONS AND
AN APPLICATION TO CAPACITARY CONVEX RINGS

TILAK BHATTACHARYA

Abstract. We study positive∞-harmonic functions in bounded domains. We
use the theory of viscosity solutions in this work. We prove a boundary Har-

nack inequality and a comparison result for such functions near a flat portion
of the boundary where they vanish. We also study ∞-capacitary functions
on convex rings. We show that the gradient satisfies a global maximum prin-
ciple, it is nonvanishing outside a set of measure zero and the level sets are
star-shaped.

1. Introduction

This is a continuation of the work in [4] and, while we derive a chain of results
for ∞-harmonic functions, our primary effort in this work will be to prove two
sets of results. The first would be for nonnegative ∞-harmonic functions, which
vanish on a flat portion of the boundary of the set in which they are defined, and
the second will be for ∞-capacitary functions in convex rings. More precisely, the
first result discusses the behaviour of nonnegative ∞-harmonic functions near flat
boundaries, on which they vanish, and we prove that any two such ∞-harmonic
functions vanish at the same rate. In the second set of results, we show the non-
vanishing of the gradient of ∞-capacitary functions on convex rings and the star-
shapedness of the level sets of such functions. Clearly, the results are quite different
in nature, however, the techniques used have a lot in common. A more detailed
discussion follows in Section 2. We now comment on the approach used in this
work. Our work utilizes the notion of a viscosity solution in this context and relies
on techniques developed in [3,4,7,11,12,13,17,19-22,25,30]. While our results are
motivated by the results in [15,18,27,30-35], which are about the weak solutions
of the analogous problems with the p-Laplacian, for finite p, we do not work with
approximating weak solutions as has been done in [5,16,18,23,29,30,31,33,34]. The
idea in these works was to take the limit as p → ∞ to capture properties and
estimates for the ∞-harmonic functions. Instead our approach is closer to the
works in [3,4,12,13,21,25,30]. Our intention is to use the framework of viscosity
solutions to provide simpler and direct proofs. In this context we also refer the
reader to the works in [3,4,13,22,24]. There is some overlap between our current
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work and [13]. This latter work contains, at times, finer and more detailed versions
of some of the results proven here.

2. Notation and statements of the main results

We now introduce the notations we will be using in this work. These will be
employed faithfully throughout this work with perhaps minor modifications for
local use. By Ω, we will always mean a bounded domain in R

n, n ≥ 2, and
Ā will stand for the closure of a set A in Rn. The letter O = (0, 0, . . . , 0) will
always stand for the origin in Rn; for a point x = (x1, x2, . . . , xn) ∈ Rn, define
ξ = ξ(x) = (x1, x2, . . . , xn−1) and xn(x) = xn, then x = (ξ(x), xn). Also |ξ(x)| =√
x2

1 + x2
2 + . . .+ x2

n−1. We will sometimes use the notation y = (0, a) to mean
y1 = y2 = · · · = yn−1 = 0 and yn = a. In this context, we will often think
of Rn = R

n−1 × R. We will be working with cylinders in Rn: Ar(P ) = {x :
|ξ(x− P )| < r, Pn < xn < Pn + 2r} = {y ∈ Rn−1 : |y − ξ(P )| < r} × (Pn, Pn + 2r)
is the cylinder with axis parallel to the xn-axis, radius r, length 2r with P being
the center of the bottom face. Let λ > 0, then Aλr(P ) = {y ∈ Rn−1 : |y − ξ(P )| <
λr} × (Pn, Pn + 2λr) is a λ scaling of Ar(P ) with the bottom faces situated at
the same height. Also Fr(P ) = {x : |ξ(x − P )| < r, xn = Pn} = {y ∈ Rn−1 :
|y − ξ(P )| < r} × {Pn} will denote the bottom face. We also describe a cylinder
using the point half way on its axis. Let Kr(P ) = {x : |ξ(x − P )| < r, Pn − r <
xn < Pn + r} = {y ∈ Rn−1 : |y − ξ(P )| < r} × (Pn − r, Pn + r); then Kr(P ) and
Kλr(P ) = {y ∈ Rn−1 : |y−ξ(P )| < λr}×(Pn−λr, Pn+λr) are concentric cylinders
with center P . By Br(P ), we will always mean the ball of radius r, centered at P .
For ease of notation, we take Ar = Ar(O), Kr = Kr(O) and Br = Br(O). Their
use will be clear from the context. The sets B+

r (P ) = {x ∈ Br(P ) : xn > Pn} and
B−r (P ) defined analogously, denote the half-balls. If A and B are two points, with
A 6= B, then AB stands for the straight segment joining A to B.

The ∞-Laplacian operator ∆∞ is defined as ∆∞u =
n∑

i,j=1

DiuDjuDiju, where

Diu = ∂u/∂xi and Diju = ∂2u/∂xi∂xj . This operator is elliptic but highly degen-
erate. In this work, we study viscosity solutions of solutions of

∆∞u = 0, in Ω. (2.1)

We provide a definition in this context. We say that u is a viscosity subsolution (or
∞-subharmonic) of above equation, in Ω, if u is upper-semicontinuous in Ω, and
whenever x0 ∈ Ω and φ ∈ C2(Ω) are such that

φ(x0) = u(x0), and φ(x) < u(x), for x 6= x0,

then ∆∞φ(x0) ≥ 0. Analogously, we may define a viscosity supersolution (or ∞-
superharmonic) of (2.1), by requiring that u be lower-semicontinuous and ∆φ(x0) ≤
0, whenever u(x)−φ(x) has a local minimum at x0. We say u is a viscosity solution
(or ∞-harmonic) of (2.1) if it is both a subsolution and a supersolution. It is
well known that, if u is ∞-harmonic then u is locally Lipschitz continuous in Ω
[4,13,19,21,29]. We must point out a key property, we will often exploit here, is
that if a function u has cone comparison property then it is ∞-harmonic, a fact
proven in [13]. Also see [4]. We now state the first result.
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Theorem 2.1 (Comparison). Let ui(x) > 0, i = 1, 2, be ∞-harmonic in A8(O).
If u1 and u2 vanish continuously on F8(O), then there exist positive constants M1,
M2 and M3 independent of ui, such that for x ∈ A1(O),

(i) ui(x) ≤M1ui(z), i = 1, 2, and

(ii) M2
u1(z)
u2(z)

≤ u1(x)
u2(x)

≤M3
u1(z)
u2(z)

, where z = (0, 2).

One may think of part (i) as a boundary Harnack inequality and plays an im-
portant role in the proof of part (ii). This type of comparison result, near a flat
portion of the boundary, is well known in the theory of both divergence and non-
divergence type elliptic partial differential equations. We refer the reader to the
works in [2,6,8,9,15,32] and the references therein. However, the work in [32], done
in connection with a Fatou theorem, is the earliest work which proves a result of
this type for p-harmonic functions, for 1 < p < 3 + 2/(n− 2). Among other things,
the work used associated kernel functions and is based on the earlier fundamental
works [6], for nondivergence type equations, and [9]. The result for the entire range
of 1 < p < ∞ was later proven in [15], by carrying out a detailed refinement of
the works in [6] and [33]. These works are quite nontrivial in nature. To the best
of our knowledge, no attempt has been made yet to study the behaviour of the
constants M2 and M3 as p → ∞, in the context of the p-Laplacian. For the case
p = ∞, however, we do not utilize the notion of a kernel as employed in these
aforementioned works. But it needs to be mentioned that while we use ideas from
[4,13] and work directly with (2.1), the work in [9] continues to be very useful, even
in this context. Our approach is as follows. We first prove that the oscillation
ν(r) = oscKr u satisfies ν(2r) ≥ Cν(r), for some C > 1. A version of the Harnack
inequality (see Lemma 3.2 and [29]), part (a) of Lemma 3.6 and the comparison
principle permits us to apply the device in Theorem 1.1 [9]. This leads to a proof
of part (i) and implies that the solutions are well behaved near F2; away from F2,
the solution can be controlled by the Harnack inequality. Putting these together
yields the result.

The second set of results are concerned with ∞-capacitary functions. We now
introduce notations for this set up. Let C1 and C2, with C2 ⊂ C1, be bounded
domains in Rn, n ≥ 2. Let Γ = Γ(C1, C2) = C1\C̄2, denote the annular domain.
We take C1 and C2 to be convex C2 domains and we will also assume that the
origin O lies in C2. We will refer to Γ as a convex ring and ∂Γ = ∂C1 ∪ ∂C2. If
Q ∈ ∂C2, then the line L = L(Q) will often denote the straight ray normal to ∂C2,
at Q, directed towards ∂C1. If ν = ν(Q) is the unit outer normal to ∂C2 at Q
(relative to C2), then the hyperplane 〈x − Q, ν(Q)〉 = 0 will be denoted by TQ.
Since C2 is convex, it lies on one side of TQ and L ⊥ TQ at Q. We may also define
analogously the hyperplane TP at a point P ∈ ∂C1. The hyperplane TQ generates
two disjoint half-spaces

H+
Q = {x ∈ Rn : 〈x−Q, ν(Q)〉 < 0} and H−Q = {x ∈ Rn : 〈x−Q, ν(Q)〉 > 0}.

Clearly H+
Q ⊃ C2. For P ∈ ∂C1, we will again take H+

P to be the half-space that
contains C1. We will be studying the problem

∆∞u = 0, in Γ, u ∈ C(Γ̄) with u|∂C1 = 1 and u|∂C2 = 0.

We again interpret this in the viscosity sense; see [11]. We call u an ∞-capacitary
function. Invoking the Harnack inequality [4,29], we see that 0 ≤ u ≤ 1. As a
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matter of fact if P is a point of an interior minimum of u then u − u(P ) ≥ 0
in Γ and since u − u(P ) > 0 somewhere in Γ, being connected this would mean
u−u(P ) > 0 everywhere. This contradiction implies that u has no interior minimum
(nor maximum for that matter) and so 0 < u < 1. We will derive better bounds
for u. By Γt, we mean the set {x ∈ Γ : u(x) < t}. This part of our work has been
motivated by the prior works in [18,27,31,33,34].

Theorem 2.2. Let u be an∞-capacitary function in a bounded convex ring Γ ⊂ Rn.
Then
(A) the level sets {x ∈ Γ : u(x) = t}, 0 < t < 1, are star-shaped and satisfy a cone
condition;
(B) there exists a positive number λ, depending only on the geometry of the domain,
such that for any x ∈ Γ, there is a direction ~e = ~e(x), such that

|u(x+ t~e)− u(x)| ≥ λt, ∀ 0 < t < t0 = t0(x).

It clearly follows that |Du(x)| ≥ λ > 0, a.e. in Ω. It is not known yet whether u
is better than Lipschitz in regularity and hence we are unable to assert the existence
of |Du| everwhere. See [12,25] for a discussion regarding this issue. The results in
Theorem 2.2 were proven in [33,34] for the ∞-Laplacian, by utilizing the approxi-
mating procedure involving the p-Laplacian, for finite p; also see [18,31]. The works
[33,34] also deal with star-shaped regions and contain interesting results. However,
for convex rings, the result for the p-Laplacian, for finite p, was originally done in
[27]. In this context also see [18,31]. Our approach will be to work directly with
the viscosity solutions as discussed before. Our proof utilizes scaling and estimates
near the boundaries, proven by employing auxilliary functions as in [27]. While a
great many of the comparison type results used in this work may be worked in fairly
elementary fashion as in [4,13], the comparison principle employed to compare u to
its scaled version requires the application of a stronger result. More general ver-
sions of a comparison principle for such functions, originally proven in [19], may be
found in [3,7,21]. Also see [17,20,23] for related works. Our approach also utilizes
a property of nonnegative ∞-harmonic functions first alluded to in [4, see Remark
6] which follows from cone comparsion. See (3.1) and part (a) of Lemma 3.6 in
Section 3. This is used in the proof of the existence of normal derivatives of u at
the boundaries and also in the proof of a general bound for the gradients. We must
point out that at this time we do not have a proof of the convexity of level sets
uitilizing the viscosity framework. This fact was proven in [27] for the p-Laplacian,
for finite p, and also holds for p =∞ and appears in [33,34]. We make some remarks
about this issue in Section 6.

We have divided our work as follows. Section 3 contains preliminary results
needed for our work and Section 4 contains the proof of Theorem 2.1. Section 5
contains results applicable to the context of convex rings and the proof of Theorem
2.2 appears in Section 6. Appendix contains (i) the proof of the fact that odd
reflections of ∞-harmonic functions are also ∞-harmonic, and (ii) the proof of
Theorem 1.1 in [9].

We thank Michael Crandall for showing us a short proof of a sharper version
of the Harnack inequality (see Lemma 3.2) and also for showing us some elegant
proofs of results related to those in [4]. We also thank Juan Manfredi for several
discussions in connection with this work and also for pointing out the work in
[31,32]. We are also indebted to the referee whose comments have greatly improved
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the presentation of this work and also for pointing out the reference [18]. This
research was partially supported by a grant from NSERC.

3. Preliminary results

In this section we will state and prove a sequence of results which lead to the
proofs of Theorems 2.1 and 2.2. To achieve our end we will require somewhat more
refined versions of the Hopf principle and the Harnack inequality. The proofs rely
on the comparison principle and some auxilliary functions. A general version of the
comparison principle is proven in [3; also see 7,19,21], however simpler arguments,
such as those used in [4,13], will also suffice in many instances.

We will first recall Remark 6 in [4]. Also see Lemme 3.6. Let u > 0 be an ∞-
harmonic function in a domain Ω andBr(O) ⊂⊂ Ω. We set d(x) = dist(x, ∂Br(O)) =
r − |x|, x ∈ Br(O). Part (i) of Lemma 2 [4], then states

u(x)
d(x)

≥ u(O)
d(O)

=
u(O)
r

, ∀x ∈ Br(O).

Utilizing this, we showed, in Remark 6 [4], that if ~e is a unit vector, x = s~e and
y = t~e, where 0 < s, t < r (clearly, x, y ∈ Br(O), d(x) = r − s and d(y) = r − t),
then

u(x)
d(x)

=
u(x)
r − s

≤ u(y)
r − t

=
u(y)
d(y)

, ∀ 0 < s < t < r. (3.1)

In other words, u(x)/(r − |x|) is monotonic along radial lines through O and is
increasing as x→ ∂Br(O) along ~e. One notes that this may prove useful especially
when u(r~e) = 0, i. e., u vanishes at some boundary point. This observation leads
to viscosity proofs of some well-known results and proves important in our work.
We prove (3.1) in Lemma 3.6. We first start with a more general version of the
Hopf boundary point lemma; in this context also see [4,31,33,34].
Lemma 3.1 (Hopf boundary point lemma). Let Ω be a C2 domain and u ∈ C(Ω̄)
be ∞-harmonic in Ω. Suppose S ∈ ∂Ω is such that there is a ball Br(P ) ⊂ Ω with
∂Br(P )∩ ∂Ω 3 S. Let x ∈ Br(P ), I be the fixed straight line segment containing x
and S, ~a = (P − S)/r and ~b = (x− S)/|x− S|. If u(S) = maxx∈Br(P )u(x), then

lim sup
x→s, x∈I

u(x)− u(S)
|x− S|

≤ 〈~a,~b〉u(P )− u(S)
r

< 0.

Proof: We use the result in [4]. By comparison it follows that ∀x ∈ Br(P ),

u(x)− u(S) ≤ (u(P )− u(S))
(

1− |x− P |
r

)
. (3.2)

Writing x− P = (x− S)− (P − S), ε = |x− S|/r, we see that

1− |x− P |
r

=1− |~a− ε~b| = 1− {1− (2〈~a,~b〉 − ε)ε}1/2

=
(2〈~a,~b〉 − ε)ε

1 + {1− (2〈~a,~b〉 − ε)ε}1/2
≥ 0.

(3.3)

Letting ε→ 0, (3.2) and (3.3) yield

lim sup
x→s, x∈I

u(x)− u(S)
|x− S|

≤ 〈~a,~b〉u(P )− u(S)
r

< 0.

�
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We now present a proof of a sharper version of the Harnack inequality for non-
negative ∞-harmonic functions. This version was first proven in [29; also see 21]
using approximating p-harmonic functions. The proof below uses the notion of vis-
cosity solutions and uses the estimates proven in [4]. Note that it uses none of the
differentiation theory utilized in [29]. This proof was pointed out to us by Michael
Crandall.
Lemma 3.2 (The Harnack inequality). Let u > 0 be ∞-harmonic in Ω, and δ > 0
be such that the set Ωδ = {x ∈ Ω : dist(x, ∂Ω) ≥ δ} 6= ∅. Suppose A and B are
points, in Ωδ, such that the segment AB ⊂ Ωδ. Then

u(B) ≥ e−
|A−B|
δ u(A).

Proof: We note that, by employing the comparison principle, if y ∈ Ωδ then

u(y)
(

1− |x− y|
δ

)
≤ u(x), ∀x ∈ Bδ(y). (3.4)

Let x0, x1, x2, . . . , xm be points on the segment AB such that x0 = A, xm = B
and |xi − xi+1| = |A − B|/m, ∀i = 0, 1, . . . , m − 1. Choose m large so that
|A−B|/m ≤ δ/2. Since xi+1 ∈ Bδ(xi), applying (3.4), we find that

u(xi+1) ≥ u(xi)
(

1− |A−B|
mδ

)
, ∀i = 0, 1, . . . , m− 1.

Thus

u(B) ≥ u(A) (1− |A−B|
mδ

)m. (3.5)

The lemma follows by letting m→∞ in (3.5). �

Remark 3.3. It is clear that above estimate can be extended very easily to ∞-
superharmonic functions and to polygonal paths joining two points in Ωδ.

We now prove a result about the oscillation of u which will prove important in
our proof of Theorem 2.1. Calling w(r) = maxBr(O) |u(x)− u(y)| = oscBr(O) u, we
show that w(r) is convex and in particular w(2r) ≥ 2w(r). This fact together with
Theorem 1.1 in [9] will lead to a proof of Theorem 2.1. Note in Lemma 3.4, we do
not assume that u > 0.
Lemma 3.4 (Convexity of oscillation). Let Ω ⊂ R

n be a domain and u be ∞-
harmonic in Ω. Let BR(O) ⊂⊂ Ω, be the ball of radius R, centered at O. Suppose
that M(r) = supBr(O) u(x), and m(r) = infBr(O) u(x). Then for 0 ≤ r ≤ R,
(i) w(r) = oscBr(O) u(x) is convex and

(ii)
w(r)
r

=
M(r)−m(r)

r
↓ as r ↓ 0.

Proof: Let 0 < δ < R; set

Wδ(x) =
M(R)−M(δ)

R− δ
|x|+ RM (δ)− δM(R)

R− δ
,

wδ(x) =
m(R)−m(δ)

R− δ
|x|+ Rm(δ)− δm(R)

R− δ
,

for all x ∈ BR(O)\Bδ(O). It is easily checked that Wδ(x) ≥ u(x) and wδ(x) ≤ u(x),
when |x| = R and |x| = δ. Since Wδ and wδ are both ∞-harmonic, it follows that
wδ ≤ u(x) ≤Wδ(x), δ ≤ |x| ≤ R. Set r = |x|, it then follows that

M(r) ≤ M(R)−M(δ)
R− δ

r +
RM (δ)− δM(R)

R− δ
=

r − δ
R− δ

M(R) +
R− r
R− δ

M(δ),
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and

m(r) ≥ m(R)−m(δ)
R− δ

r +
Rm(δ)− δm(R)

R− δ
=

r − δ
R− δ

m(R) +
R− r
R− δ

m(δ).

It is clear that M(r) is convex and increasing while m(r) is concave and decreasing.
It is clear from above that M(r)−m(r) is convex. Letting δ → 0 and noting that
M(0) = m(0) = u(0), we find that (M(r) −m(r))/r ≤ (M(R) −m(R))/R. This
proves (i) and (ii). �

Remark 3.5. From Lemma 3.4 (ii), it follows that for t > 1, w(tr) ≥ tw(r) and
in particular, w(2r) ≥ 2w(r). Now let Kr = Kr(O) = {x : |ξ(x)| < r, |xn| < r} =
{x : |ξ(x)| < r, } × (−r, r) be the cylinder of length 2r, radius r and centered at O;
let ν(r) = oscKr u. Then K2r ⊃ B2r ⊃ B√2r ⊃ Kr (see Section 2). Thus

ν(2r) ≥ w(2r) ≥
√

2w(
√

2r) ≥
√

2ν(r). (3.6)

We now work a proof of Lemma 3.6; this will imply (3.1). We introduce some
additional notation. Let u be∞-harmonic in Ω, Br(z) ⊂⊂ Ω, M = supx∈Br(z) u(x)
and m = infx∈Br(z)u(x). By the maximum principle, these are attained on the
boundary ∂Br(z). Let PM , Pm ∈ ∂Br(z) be such that u(PM ) = M and u(Pm) =
m. We define the following difference quotients on the segments zPm and zPM ;

∀x ∈ zPm, D1(x, Pm) =
u(x)−m
|x− Pm|

and ∀x ∈ zPM , D2(x, PM ) =
M − u(x)
|x− PM |

.

Note that D1(x, Pm) ≥ 0 and D2(x, PM ) ≥ 0; also define

D(m) = lim
x→Pm

D1(x, Pm), x ∈ zPm and D(M) = lim
x→PM

D2(x, PM ), x ∈ zPM .

whenever these exist. For any x ∈ Br(z), set d(x) = dist(x, ∂Br(z)) = r − |x− z|,
and for x 6= z, take ~e = z−x

|x−z| and y = x − (z − r~e). Note that (z − r~e) ∈ ∂Br(z)
and |y| = r − |x− z| = d(x). We will also take u(y) to stand for the value u(x).

Lemma 3.6 (Monotonicity). Let u be ∞-harmonic in Ω and Br(z) ⊂⊂ Ω.

(a) If u > 0 in Ω and ~η is such that |~η| = 1, then for 0 ≤ a ≤ r,

u(z + a~η)
r − a

=
u(z + a~η)
r − |a~η|

≥ u(z + b~η)
r − |b~η|

=
u(z + b~η)
r − b

, ∀ 0 ≤ b ≤ a ≤ r.

In other words, ∀ x ∈ Br(z), u(x)/d(x), is increasing as x→ ∂Br(z) along a radial
line. We also note that by taking b = 0, u(z + a~η)/(r − a) ≥ u(z)/r, ∀0 ≤ a ≤ r.
(b) Under the assumptions in (a), x 6= z, ~e and y as defined above, we have

u(ty) ≤ tu(y), whenever t ≥ 1 and 0 < t|y| ≤ r.

Furthermore, if Du(x) exists then 〈Du(x), ~e〉 ≤ u(x)
d(x)

.

(c) Moreover, if u > 0 and |Du|(z) exists then

(i) |Du|(z) ≤ u(z)
dist(z, ∂Br(z))

; and (ii) |Du|(z) ≤ u(z)
dist(z, ∂Ω)

.

(d) Regardless of the sign of u, D(M) and D(m) exist on Br(z) and |Du|(z) ≤
min(D(m), D(M)).
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Proof: The proof follows by an application of part (i) Lemma 2 in [4]; see (3.1).
Part (a): For 0 ≤ b ≤ a ≤ r, set x = z + a~η and v = z + b~η; then d(x) =
dist(x, ∂Br(z)) = r − a, d(v) = dist(v, ∂Br(z)) = r − b and d(v) ≥ d(x). Clearly,
x lies in the ball Bd(v)(v); applying Lemma 2 in [4] (also see discussion preceding
(3.1)), we see that u(x) ≥ u(v)d(x)/d(v). This proves part (a). The rest of the
assertions are consequences of this fact.
Part (b): We reinterpret part (a). One notes that for x ∈ Br(z), the ray z−s~e, s ≥
0, cuts ∂Br(z) at z−r~e. Thus by part (a) we find that u(x)/(r−|x−z|) = u(y)/|y|
increases as x → z − r~e, i.e., as |y| = d(x) ↓ 0. If t > 1 is such that 0 < t|y| ≤ r,
then

u(ty)
|ty|

≤ u(y)
|y|

⇒ u(ty) ≤ tu(y).

If x1, x2 ∈ Br(z) such that xi = z − si~e, i = 1, 2, for some ~e ∈ Rn with |~e| = 1,
0 ≤ s2 < s1 ≤ r, and θ = s1 − s2, then x2 = x1 + θ~e, d(xi) = r − si and
d(x1) < d(x2). Using part (a), i.e., u(x1)/d(x1) ≥ u(x2)/d(x2),

u(x1 + θ~e)− u(x1)
θ

=
u(x2)− u(x1)
|x1 − x2|

≤

{
u(x1)
d(x1) = u(x1)

r−|x1−z| ,
u(x2)
d(x2) = u(x2)

r−|x2−z| .
(3.7)

Note that s2 = |x2 − z| < |x1 − z| = s1. Suppose Du(x1) exists; letting x2 → x1 in
(3.7) yields the conclusion. Recall that the solution u is Lipschitz continuous hence
such directional derivatives exist a. e. on these rays.
Part (c): We use part (3.7) with x2 = z, ~e any unit vector and x1 = z + s~e, s > 0.
Then

u(z)− u(z + s(~e))
s

≤ u(z)
r

⇒ 〈Du(z),−~e〉 ≤ u(z)
r
, ∀~e ∈ Rn,

if Du(z) exists. If Du(z) 6= 0, we may take ~e = −Du(z)/|Du(z)| and part (i)
follows. To prove (ii), let R = dist(z, ∂Ω), then the ball BR(z) ⊂ Ω, and (i)
continues to hold by considering an increasing sequence of balls.
Part(d): All the results discussed above require that u > 0. Now we drop this
requirement. With m and M as above, part (c) holds for u−m and M − u, i. e.,

|Du(z)| ≤ min
(M − u(z)

r
,
u(z)−m

r

)
.

Applying part (a) to M −u, it follows that (M −u(z))/r ≤ (M −u(x))/|x−PM | ≤
D(M),∀x ∈ zPM , if D(M) exists. To see this, note

∀x ∈ OPM , 0 < D2(x, PM ) =
M − u(x)
|x− PM |

=
u(PM )− u(x)
|x− PM |

↑ as x→ PM .

The case of the minimum follows analogously. Clearly the directional derivatives
of u at PM along OPM , and at Pm along OPm, either exist or blow up. Since
Pm and PM are points in the interior of Ω, the local Lipschitz regularity of u
thus implies that D1(x, Pm) and D2(x, PM ) are all uniformly bounded. Hence the
normal derivatives D(m) and D(M) exist and are strictly positive and finite. Thus

|Du(z)| ≤ min(D(m), D(M)).
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4. Proof of Theorem 2.1

We follow the outline of Theorem 1.1 in [9] (see Appendix) and use Lemmas 3.2,
3.4 and 3.6. We point out that part (i) of Theorem 2.1 (also see (4.3)) turns out to
be crucial for the proof of part (ii). One may think of (i) as a boundary Harnack
inequality. For notations, see Section 2. Recall the expression x = (ξ(x), xn),
for all x ∈ Rn and Ar = {x : |ξ(x)| < r, and 0 < xn < 2r}. We proceed as
follows. Assume that ui > 0, i = 1, 2; by scaling if necessary, we may take ui’s to
be ∞-harmonic in A8 and vanishing continuously on the face F8 = {x : |ξ(x)| <
8, xn = 0} ⊂ {xn = 0}. We suppress the subscript and work with a general u
that satisfies the requirements of the theorem. The constants M , C are positive
constants, that are independent of u, but may depend on the geometry. We will
often write x = (ξ(x), xn) and set z = (0, 2). We achieve our proof in five steps.
Step 1. We first show that

u(x)
u(z)

≥ xn
4
, ∀x ∈ A1. (4.1)

For x ∈ A1, write x = (ξ(x), xn) and set P = (ξ(x), 2); then P lies in the hyperplane
xn = 2 and x ∈ B2(P ) ⊂ A8. Applying Lemma 3.6 (a), in B2(P ), we see

u(x)
xn
≥ u(P )

2
.

Again P ∈ B2(z), and applying once more Lemma 3.6 (a) to B2(z) and noting that
d(P ) = dist(P, ∂B2(z)) ≥ 1, we have

u(P ) ≥ u(P )
d(P )

≥ u(z)
2
.

Combining these observations yields (4.1).
Step 2. We now make a few remarks which again follow from Lemmas 3.2 and
3.4. For x ∈ A2 with 0 < xn < 3/2, an application of Lemma 3.2, to the points
(ξ(x), xn) and (ξ(x), 2xn), implies

u(ξ(x), xn) ≤ e(|2xn−xn|/xn)u(ξ(x), 2xn) = e1u(ξ(x), 2xn).

Now for x ∈ A2 with 1 < xn < 3, we see that dist(x, F2) ≥ 1 and |z − x| ≤
√

5.
For these x’s, Lemma 3.2 again implies u(ξ(x), xn) ≤ e

√
5u(z). To recap, with

M = e
√

5,

u(x) = u(ξ(x), xn) ≤

{
Mu(ξ(x), 2xn) : |ξ(x)| ≤ 2, 0 < xn < 3/2,

Mu(z) : |ξ(x)| ≤ 2, 1 < xn < 3.
(4.2)

We also recall, with the notations of Remark 3.5, that if Kr and Kr/2 are concentric
cylinders and ν(r) = oscKr u, then

ν(r) ≥
√

2ν(r/2).

This together with (4.1), the fact that odd reflection of u about xn = 0 continues to
be∞-harmonic (see Appendix) and Theorem 1.1 [9] implies that there is a universal
constant C such that

sup
A1

u(x) ≤ Cu(z) ⇒ sup
A1

ui(x) ≤ Cui(z), i = 1, 2. (4.3)

This achieves the proof of part (i) of Theorem 2.1.
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Step 3. Our next goal is to prove that for some universal constant C,

u(x) ≤ Cu(z)xn, ∀x ∈ A1. (4.4)

We first describe a proof of (4.4) when ξ(x) = 0 and 0 < xn ≤ 2, i.e., when x is on
the segment Oz. It is clear that A1 ⊂ B+√

5
(O) ⊂ A8. Let MO = supB+√

5
(O) u > 0.

By the maximum principle, MO = supS u, where S = ∂B+√
5
(O), since u = 0 on F8.

By comparison, u(x) ≤MO|x|/
√

5, ∀x ∈ B+√
5
(O) ⊃ A1. In particular,

u(x) ≤ MOxn√
5

, ∀x = (0, xn), 0 < xn ≤ 2. (4.5)

Our next task now will be to estimate MO in terms of u(z). We do this as follows.
If the maximum MO occurs near F8, then it can be controlled first by u at a
point away from F8 by an application of (4.3). This in turn can be estimated
by u(z) by the Harnack inequality. Note that a direct application of the Harnack
inequality is not possible since the constants degenerate near F8. If the maximum
occurs away from F8, then the Harnack inequality suffices to achieve our end. We
set T = F8 ∩ ∂B√5(O). For P ∈ T , xn(P ) = 0, |ξ(P )| =

√
5 and the cylinder

A4(P ) ⊂ A8. Thus by (4.3) and scaling

u(x) ≤ C1u(P̄ ), ∀x ∈ A1/2(P ), (4.6)

where P̄ = (ξ(P ), 1) and C1 is the constant in (4.3). Clearly, (4.6) holds in I =
∪P∈TA1/2(P ). Let E = ∪P∈T {P̄} = {x : |ξ(x)| =

√
5, xn = 1}. Observe that

dist(P̄ , F8) = dist(P̄ , ∂A8) = 1, ∀P̄ ∈ E. Employing Lemma 3.2, (4.6) and recalling
that z = (0, 2), we have

u(P̄ ) ≤ u(z)e|P̄−z| ≤ u(z)e
√

6 ⇒ u(x) ≤ C2u(z), ∀x ∈ I. (4.7)

Clearly, this also holds on ∂B+√
5
(O) ∩ I. If the maximum MO occurs in I, (4.7)

applies. Now for x ∈ ∂B+√
5
(O) \ I, dist(x, ∂A8) = dist(x, F8) ≥ 1 and |x− z| ≤

√
6;

we may apply Lemma 3.2, as done above, to conclude that

u(x) ≤ e
√

6u(z), ∀x ∈ ∂B√5(O) \ I.

This together with (4.7) implies that MO ≤ C3u(z), where C3 is again a universal
constant. The inequality in (4) now implies for some appropriate constant C,

u(x) ≤ Cu(z)xn, ∀x = (0, xn), 0 < xn ≤ 2. (4.8)

Step 4. We now show that (4.4) holds in all of A1. Let x ∈ A1, with ξ(x) 6= 0;
define L = (ξ(x), 0) and L̄ = (ξ(x), 2). Then L and L̄ belong to ∂A1; the cylinders
A1(L), A4(L) all lie in A8(O) and the half-ball B+√

5
(L) ⊂ A8(O). Furthermore,

∀N ∈ F8 ∩ ∂B√5(L), A4(N) ⊂ A8(O). Now working with A1/2(N), we may now
apply Step 3 to conclude that for all L̄ ∈ ∂A1, with xn(L̄) = 2, (4.8) holds i.e.,

u(x) ≤ Cu(L̄)xn, ∀x ∈ A1, with ξ(x) = ξ(L̄), 0 < xn ≤ 2.

All that remains now is to relate u(L̄) to u(z) and this is achieved by Lemma 3.2.
Clearly, u(L̄) ≤ e1u(z) and hence we see that

u(x) ≤ Cu(z)xn, x ∈ A1. (4.9)
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Step 5. We combine (4.1) and (4.9) to deduce that for some universal C > 0 and
C̄ > 0

C̄
u1(z)
u2(z)

≤ u1(x)
u2(x)

≤ Cu1(z)
u2(z)

, ∀x ∈ A1.

This finishes the proof of part (ii) of Theorem 2.1.

5. ∞-Capacitary functions in convex rings

Our effort, in Sections 5 and 6, is to prove Theorem 2.2 (see Section 2 for
notation). The main ideas used here are similar to those in Section 3. Our strategy
will be to prove bounds for u, show strict monotonicity by using scaling, a global
maximum principle for |Du| and make remarks about a global lower bound.

We start with bounds for u in Γ. Our approach is to use appropriate barrier
functions and comparison and while these will suffice for our purposes, an approach
based on Lemma 3.6 can also be worked out. We make comments along this direc-
tion later in this work. The function u ∈ C(Γ̄), from hereon, is an ∞-capacitary
function with u|∂C1 = 1, u|∂C2 = 0, and, as observed in Section 2, 0 < u < 1 in Γ.
We take the origin O to lie in C2. We also remind the reader that, for Q ∈ ∂C2,
L = L(Q) will be the straight ray originating from Q, normal to ∂C2, directed
toward ∂C1.
Lemma 5.1 (Lower bound). Let Q ∈ ∂C2 and L be as described above. Let
P = P (Q) = L ∩ ∂C1 and R = |P −Q|, then

u(x) ≥ 1− |x− P |
|Q− P |

= 1− |x− P |
R

> 0, ∀x ∈ BR(P ) ∩ Γ.

Proof: Set w = wP (Q)(x) = 1 − (|x− P |/R); then w is (i) ∞-harmonic in
BR(P )\{P}, (ii) w = 0 on ∂BR(P ) and (iii) 0 < w(x) < 1 in BR(P )\{P}
with w(P ) = 1. We compare w to u in BR(P ) ∩ Γ and conclude that u ≥ w
on ∂(BR(P ) ∩ Γ) = (∂BR(P ) ∩ Γ) ∪ (BR(P ) ∩ ∂Γ). Both being ∞-harmonic in
BR(P ) ∩ Γ, comparison yields u ≥ w in BR(P ) ∩ Γ and

u(x) ≥ wP (Q) = 1− |x− P |
R

> 0, x ∈ BR(P ) ∩ Γ.

Note that the function w̃(x) = supQ∈∂C2
wP (Q)(x) is ∞-subharmonic and u(x) ≥

w̃(x). �
Before we prove an upper bound for u, we note the following. Being a C2 domain,

C1 satisfies an interior ball condition at every point on ∂C1. For η > 0, let C1,η =
{x ∈ Γ : dist(x, ∂C1) ≤ η}. Since ∂C1 is C2, for every A ∈ ∂C1, there is a δA > 0
and an HA ∈ Γ with the property that BδA(HA) ⊂ Γ and BδA(HA) ∩ ∂C1 3 A.
We take δA to be the largest such number, and if δ0 = infA{δA}, then δ0 > 0. Let
l = dist(∂C1, ∂C2)/2 and δ = min(δ0, l). This choice is made for technical reasons.
For notational ease, define δ(x) = dist(x, ∂C1). By ∆, we denote the diameter of
C1. We should point out that while Lemma 5.2, as stated below, provides a bound
only for points near ∂C1, its derivation requires the calculation of upper bounds in
the rest of Γ.
Lemma 5.2 (Upper bound). Let δ, δ(x), ∆, l and C1,δ be as described above. If
x ∈ C1,δ, i.e., δ(x) ≤ δ, then

u(x) ≤ 1− e−(∆/δ)

2δ
δ(x).



12 TILAK BHATTACHARYA EJDE–2002/101

Proof: We do this in three steps.
Step 1 (Upper bound near ∂C2) For every Q ∈ ∂C2, the ball B2l(Q) ⊂ C1. Fix
Q and set v = v(x) = |x−Q|/(2l). Observe that (i) v is∞-harmonic in B2l(Q)∩Γ,
(ii) v = 1 on ∂B2l(Q) ∩ Γ and 0 ≤ v ≤ 1 on ∂C2 ∩ B2l(Q). Since u ≤ v on
∂(B2l(Q) ∩ Γ), comparison implies

u(x) ≤ |x−Q|
2l

≤ 1, x ∈ B2l(Q) ∩ Γ. (5.1)

Clearly u ≤ 1/2 in Bl(Q), and so defining El = ∪Q∈∂C2(Bl(Q) ∩ Γ) = {x ∈ Γ :
dist(x, ∂C2 < l)}, (5.1) yields

u(x) ≤ 1/2, ∀x ∈ Ēl. (5.2)

Step 2 (Upper bound away from ∂C2 and ∂C1) Let Q1 ∈ (∂El \ ∂C2) and
P1 ∈ (∂C1,δ \ ∂C1); hence by (5.2)

u(Q1) ≤ 1/2. (5.3)

Now Q1 and P1 are in Γδ = {x ∈ Γ : dist(x, ∂Γ) ≥ δ}. We now apply Lemma
3.2 to the function 1 − u(x) ≥ 0 in Γ, along the segment P1Q1, to conclude that,
∀x ∈ P1Q1,

1− u(x) ≥ (1− u(Q1))e−(|x−Q1|/δ).

Noting (5.3), it follows that

u(x) ≤ 1− e−(|Q1−x|/δ)

2
, ∀x ∈ P1Q1.

Taking x = P1, and observing that |P1 −Q1| ≤ ∆, we see

u(P1) ≤ 1− e−(|Q1−P1|/δ)

2
≤ 1− e−(∆/δ)

2
⇒ 1− u(P1) ≥ e−(∆/δ)

2
. (5.4)

Step 3 (Bound near ∂C1) To get our target estimate for every x ∈ C1,δ, we
proceed as follows. For a fixed x ∈ C1,δ, let H ∈ ∂C1 be such that |x−H| = δ(x).
Then the straight line R containing the segment xH is perpendicular to ∂C1 at H.
Set P1 = R∩ (∂C1,δ \ ∂C1) and Q1 ∈ Ēl be such that dist(P1, El) = |Q1 −P1|. We
now employ Lemma 3.1 as follows. Observe that Bδ(P1) ⊂ Γ, ∂Bδ(P1)∩ ∂C1 3 H,
u(H) = 1 = maxx∈Bδ(P1) u(x) and δ(x) = δ − |x− P1|. Then (3.2) implies

u(x)− 1 ≤ (u(P1)− 1)
(

1− |x− P1|
δ

)
= (u(P1)− 1)

δ(x)
δ

⇒ u(x) ≤ 1− (1− u(P1))
δ(x)
δ
, ∀x ∈ P1H. (5.5)

Clearly our estimate in (5.3) now holds for u(Q1) and |P1−Q1| ≤ ∆; an application
of Lemma 3.2, (5.4) and (5.5) implies

u(x) ≤ 1−
(e−(∆/δ)

2δ

)
δ(x), ∀x ∈ C1,δ. (5.6)

�

Remark 5.3. The boundaries of Γ being C2, the distance functions di(x) =
dist(x, ∂Ci), i = 1, 2, is C2 in a neighborhood of ∂Ci. Note that d2(x) is C2, ∀x ∈
R
n\C2. Thus ∆∞d2 = 0, ∀x ∈ Γ, while ∆∞d1 = 0 only for x near ∂C1. One may

also use these functions as barriers.
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Our next step is to prove strict monotonicity of u along rays emanating from
points in C2. This lemma relies on the comparison principle proven in [3,7,19,21]. A
stronger result is proven in Theorem 2.2 but this weaker result will prove adequate
for what is to follow. We use scaling as was done in [27]. We introduce the following
notations. For t > 0, define Cti = tCi = {tx, ∀x ∈ Ci}, and ∂Cti = t∂Ci = {tx :
x ∈ ∂Ci}, i = 1, 2. If 0 < t < 1 then Cti ⊂ Ci. Also set ut(y) = u(y/t). We will
take t to be close to 1 and assume that C2 ⊂ Ct1 ⊂ C1.
Lemma 5.4 (Strict monotonicity). Let T denote a straight ray originating from
O ∈ C2 and Q = T ∩∂C2. Then u is strictly increasing along T ∩Γ, in the direction
of ∂C1.
Proof: We employ scaling. Let P0 and P1 be on T ∩ Γ with 0 < |P0| < |P1|.
Set t = |P0|/|P1| < 1, y = tx and ut(y) = u(x) = u(y/t). Clearly, tP1 = P0,
ut(P0) = ut(tP1) = u(P1) and ut is ∞-harmonic in Γt = Γ(Ct1, C

t
2). Notice that

0 < ut < 1 in Γt, ut = 0 on ∂Ct2, ut = 1 on ∂Ct1 and ∂(Γ ∩ Γt) = ∂C2 ∪ ∂Ct1. Now

∆∞u = ∆∞ut = 0, in Γ ∩ Γt, u < ut = 1 on ∂Ct1 and u = 0 < ut, on ∂C2.

Applying the comparison principle, we obtain

ut(y) ≥ u(y), ∀y ∈ Γt ∩ Γ, ⇒ u(P1) = ut(tP1) = ut(P0) ≥ u(P0).

Since ∆∞ is translation and rotation invariant, we may move O around in C2 and
conclude that u is nondecreasing along the cone of rays passing through Q (call
it KQ) and in particular if P ∈ Γ then there is a cone KP (with apex at P ) of
rays through P , opening towards ∂C1, along which u is nondecreasing. To see this
just join O to P and move O in C2. Fix Q ∈ ∂C2; we now show that u is strictly
increasing along T ∩ Γ. Let P0 and P1 ∈ T as before and KP0 be the cone as
described above. Clearly, u(x) ≥ u(P0) in KP0 . Recall that u(P0) < 1, and if
S ∈ T ⊂ KP0 , close enough to ∂C1, then Lemma 5.1 ensures that u(S) > u(P0).
To see this, let L 3 S be a straight line such that L ⊥ ∂C2 and take P = L ∩ ∂C1.
Thus u(S) − u(P0) > 0 and u(x) − u(P0) ≥ 0 in KP0 . The Harnack inequality
implies that u(P1) > u(P0). Clearly u is strictly increasing along rays in a strict
sub-cone of KP0 . �

One of our goals is to prove the strict positivity of |Du|, whenever it exists, in
Γ. To do this, we will need to derive bounds on u, at points near ∂Γ, which in turn
require estimates of distances.
Lemma 5.5 (Distance estimate). Let 0 < t < 1, t close to 1, be fixed. For i = 1, 2,
let ∂Cti = t∂Ci be the t scaling of ∂Ci, and li = dist(O, ∂Ci). Then

dist(∂Ci, ∂Cti ) ≥ li(1− t), i = 1, 2.

Proof: Let A1 ∈ ∂C1 and A2 ∈ ∂Ct1 be such that dist(∂Ct1, ∂C1) = |A1−A2|. Since
∂Ct1, ∂C1 are boundaries of C2 convex sets, it follows that the supporting hyper-
planes T1 (at A1) and T2 (at A2) are parallel and the segment A1A2 is orthogonal
to both T1 and T2. We show that T2 is obtained form T1 by the t scaling. Let R be
the line containing O and A1; this intersects ∂Ct1 at B. Clearly |B| = t|A1| and the
supporting hyperplane T at B is parallel to T1 since T is the t scaling of T1. Then
T ‖ T2 and by convexity T2 = T , which in turn implies that T2 is the t scaling of
T1. If C1 is strictly convex this would also imply B = A2. Let L be the straight line
containing O and perpendicular to T1 and T2. Let the intersection of L with ∂Ct1
be C, with T2 be D and with T1 be E. Then |E−D| = |A1−A2| = dist(∂Ct1, ∂C1).
Clearly |D| = t|E| and tl1 ≤ |D|. The latter follows since D lies on the supporting
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hyperplane T2 and D 6∈ Ct1. Thus |E − D| = (1 − t)|D|/t ≥ (1 − t)l1. A similar
argument now proves the statement when i = 2. �

Define, for η > 0, Ci,η = {x ∈ Γ : dist(x, ∂Ci) ≤ η}, i = 1, 2. For Q ∈ ∂C2,
let L = L(Q) be the line ⊥ to ∂C2, P = P (Q) = L ∩ ∂C1. Set η0 = δ/10,
where δ is the number in Lemma 5.2, and ∆ =diameter(C1). For every such Q, let
Q̄ = Q̄(Q, t) ∈ ∂Ct2 be such that |Q − Q̄| = dist(Q, ∂Ct2). We select t such that
supQ∈∂C2 |Q− Q̄| ≤ η0. Also take ut as in Lemma 5.4.
Lemma 5.6 (Bounds on u and ut). Let t ∈ (0, 1) be such that ∂Cti ⊂ Ci,η0 , i = 1, 2.
Then there exist positive constants η1 and η2, depending only on the geometry of
Γ, such that

(i) u(x) ≤ 1− η1(1− t), for all x ∈ ∂Ct1 and
(ii) ut(x) ≥ η2(1− t), for all x ∈ ∂C2.

Proof: To prove (i), we use Lemma 5.1. Let Q ∈ ∂C2 and select Q̄ ∈ ∂Ct2 closest
to Q. The line L containing Q̄ and Q is orthogonal to ∂Ct2. Let P = L ∩ ∂C1,
Pt = L∩∂Ct1; set R = |Q−P | and Rt = |Q̄−Pt|. Then Rt = R+|Q̄−Q|−|P−Pt| ≤
R+ η0 ≤ ∆ + η0. Applying Lemma 5.1 to ut(Q), we see

ut(y) ≥ 1− (|Q− Pt|/Rt) = (Rt − |Q− Pt|)/Rt = |Q− Q̄|/Rt.
Since Q lies on ∂C2, by Lemma 5.5, |Q− Q̄| ≥ (1− t)l2, and we have

ut(y) ≥ (1− t)l2
∆ + η0

on ∂C2.

To prove (ii) we use Lemma 5.2. For x ∈ ∂Ct1, δ(x) ≥ dist(∂C1, ∂C
t
1) ≥ l1(1 − t).

We use (5.6) to conclude

u(x) ≤ 1− C(δ, η0)δ(x)
2δ

,

and this in turn yields, u(x) + C(δ)(1− t)l1 ≤ 1 on ∂Ct1. �
We now begin our study of the boundary behaviour of ∞-capacitary functions

in convex rings. We will utilize the observation in (3.1) in Section 2 and Lemma
3.6. We recall and introduce some notations. For Q ∈ ∂C2, let ν(Q) denote the
unit outer normal to C2, and for A ∈ ∂C1, let ν(A) stand for the unit outer normal
to C1. For Q ∈ ∂C2, let L = L(Q) 3 Q be the straight line with L ⊥ ∂C2. Call
P = P (Q) = L∩ ∂C1; for x ∈ L∩Γ, define d(x) = d(x,Q) = |x−Q|. For A ∈ ∂C1,
let Br(H) = Br(H,A) ⊂ Γ be the interior ball at A, centered at H, and for x on
the segment formed by HA, set δ(x) = δ(x,A) = |x−A|. Note that HA is directed
along ν(A). The following notation is set up for directional derivatives of u along
ν(Q) and along ν(A). For Z ∈ ∂Γ, set

∆(x,Z) = ∆(x, ν(Z)) =
du(x+ θν(Z))

dθ
|θ=0, x ∈ Γ;

and when x = Z, we write ∆(Z) = ∆(Z,Z) = ∆(Z, ν(Z)), where

∆(Z) =

{
limθ→0+

u(Z+θν(Z))−u(Z)
θ : Z ∈ ∂C2,

limθ→0−
u(Z+θν(Z))−u(Z)

θ : Z ∈ ∂C1,

whenever they exist. We make an observation before we start. Suppose A ∈ ∂C1

and TA is the supporting hyperplane at A. Let J ∈ ∂C2 be such that the supporting
hyperplane TJ ‖ TA, i.e., ν(J) = ν(A). This is possible since C1 and C2 are both
C2. Recall the definitions of the hyperplanes H+

A and H−J ; see Section 2. Set G =
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H−J ∩H
+
A and define wA(x) = 1+〈x−A, ν(A)〉/R, where R = R(A) = dist(TA, TJ).

Note that convexity of C1 implies 〈x − A, ν(A)〉 ≤ 0, ∀x ∈ H+
A ; it is easily seen

that wA|TJ = 0, wA|TA = 1 and ∆∞wA = 0 in G. Now u ≥ wA = 0 on TJ ∩ Γ and
wA ≤ u = 1 on ∂C1. Comparison in G ∩ Γ yields that

u(x) ≥ wA(x) = 1 +
〈x−A, ν(A)〉

R
, x ∈ G ∩ Γ. (5.7)

Thus, for x ∈ G ∩ Γ with (x − A) ‖ ν(A), i.e., x = A − tν(A), for some t > 0, we
have

1− u(x) ≤ δ(x)
R
⇒ 1− u(x)

δ(x)
≤ 1
R
. (5.8)

Theorem 5.7 (A global maximum principle for |Du|). Let u be the ∞-capacitary
function in Γ; for Q ∈ ∂C2, let d(x), δ(x), L = L(Q) and P = P (Q) be as described
above. Then the following are true.
(a) The normal derivatives of u exist on ∂Γ, i.e., ∀A ∈ ∂C1 and ∀Q ∈ ∂C2,

∆(A) > 0, ∆(Q) > 0, and max(sup
Q

∆(Q), sup
A

∆(A)) <∞.

(b) Let x ∈ Γ and Q ∈ ∂C2 be such that |x −Q| = dist(x, ∂C2). If x1, x2 ∈ L(Q)
are such that d(x1) ≤ d(x2), then

0 <
u(x2)− u(x1)
|x1 − x2|

≤ u(x2)− u(Q)
d(x2)

≤ u(x1)− u(Q)
d(x1)

≤ ∆(Q).

In particular,

u(y) < u(ty) ≤ tu(y), ∀t with 1 ≤ t ≤ |Q− P |/|x−Q|,

where y = x − Q and u(y) stands for the value u(x). Moreover, if the directional
derivative of u along L exists at x, then 0 < ∆(x,Q) ≤ ∆(Q).
(c) Suppose A ∈ ∂C1 and Br(H) is the interior ball at A. Let x1, x2 ∈ HA, with
x1 6= x2, and δ(x1) ≤ δ(x2). Then

u(x1)− u(x2)
|x2 − x1|

≤ u(A)− u(x1)
δ(x1)

≤ u(A)− u(x2)
δ(x2)

≤ ∆(A).

In particular, if the directional derivative of u along HA exists at x, then 0 <
∆(x,A) ≤ ∆(A).
(d) Finally, we have

||Du||L∞(Γ) ≤ max
(

sup
Q∈∂C2

∆(Q), sup
P∈∂C1

∆(P )
)
.

Proof. Part (a): Let A ∈ ∂C1 and Q ∈ ∂C2. We first note that u(Q) = 0 and
u(A) = 1. Since C2 is C2 and convex, we may find an outer ball Br(S) ⊂ Γ at Q;
note that (S−Q)/|S−Q| = ν(Q). Recall that u > 0 in Br(S) and so an application
of part (a) of Lemma 3.6, yields that for x ∈ SQ,

0 <
u(x)
d(x)

=
u(x)− u(Q)
|x−Q|

↑ as d(x) ↓ 0, i.e., x→ Q. (5.9)

Recalling Lemma 5.2, in particular (5.1), we know that u(x) ≤ |x − Q|/d for an
appropriate D = D(Q). Thus

0 <
u(S)
r
≤ u(x)
d(x)

=
u(x)− u(Q)
|x−Q|

≤ 1
D
, ∀x = Q+ θν(Q), 0 < θ ≤ min(r,D).
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Letting θ → 0+ yields the result for ∆(Q). To see the result for ∆(A), note that
1−u(x) > 0 in Γ and 1−u(A) = 0. Let Br(H) ⊂ Γ be the interior ball at A. Then
(A−H)/|A−H| = ν(A). An application of Lemma 3.6 (a) to 1− u(x) in Br(H),
and (5.8) implies that, for x ∈ HA,

1− u(x)
δ(x)

↑ as x→ A, and

0 <
1− u(H)

r
≤ 1− u(x)

δ(x)
=
u(A)− u(x)
|x−A|

≤ 1
R(A)

.

(5.10)

The result for ∆(A) now follows. Note that ∆(Q) ≤ 1/D(Q) and ∆(A) ≤ 1/R(A).
An inspection of (5.1) and (5.8) shows that the supremum of each of these quantities
is also finite.
Part (b): Let Q, P and L be as above; set r = |P −Q| and w(x) = 1 − |x − P |/r
in Br(P ). From Lemma 5.1,

u(x) ≥ w(x) = 1− |x− P |
r

=
|x−Q|

r
=
d(x)
r
, x ∈ L ∩Br(P ) ∩ Γ.

Now let x1, x2 ∈ L ∩ Γ such that d(x1) ≤ d(x2). Then the ball B = Bd(x2)(x2) ⊂
Br(P ) and B 3 x1. If we fix x2 then

v(z) = u(x2)
(

1− |z − x2|
d(x2)

)
≤ u(z), ∀z ∈ B ∩ Γ.

To see this, note that (i) u(z) ≥ v(z) = 0 on ∂B ∩ Γ, (ii) u(x2) = v(x2), and (iii)
u(z) = 1 > u(x2) ≥ v(z) on B ∩ ∂C1; now apply comparison. For z on the segment
x1x2, d(z) = d(x2)−|z−x2|; taking z = x1 yields that u(x1)/d(x1) ≥ u(x2)/d(x2).
Thus for all x ∈ L, u(x)/d(x) ↑ as d(x) ↓ 0, i.e., as x → Q. This implies the
assertion about scaling. Also

u(x1)
d(x1)

≥ u(x2)
d(x2)

≥ u(P )
R

=
1
R
⇒ 0 <

u(x2)− u(x1)
|x2 − x1|

≤ u(x2)
d(x2)

≤ u(x1)
d(x1)

.

The positivity follows from Lemma 5.4. By considering x close to Q, applying (5.9)
and part (a), we obtain the complete assertion in part (b).
Part (c): We work with v(x) = 1 − u(x) and use (5.10) much the way we did in
part (b).
Part (d): Let x ∈ Γ and µ(x) = dist(x, ∂Γ) =min(dist(x, ∂C1), dist(x, ∂C2)). Thus
ball Bµ(x)(x) either touches ∂C1 or ∂C2 or both. In the first case, calling the point
of tangency as P , u(P ) = 1 = supΓ u. By Lemma 3.6 (d) and part (c) above,

|Du|(x) ≤ D(M) = ∆(P ), where M = 1.

An analogous situation arises if the second case happens; calling the point of tan-
gency to be Q, we see that from part (b)

|Du|(x) ≤ D(m) = ∆(Q), where m = 0.

Clearly, the statement follows from part (a). �

Remark 5.8. The assertion in Theorem 5.7 (b) yields some type of concavity of
u along L. Note also that if we take Q = O then, along L, u(P ) = u(|P |x/|x|) ≤
u(x)|P |/|x|, implying thereby u(x) ≥ |x|/|P |. This fact has been derived in Lemma



EJDE–2002/101 ∞-HARMONIC FUNCTIONS 17

5.1. The inequalities in Theorem 5.7 (a), clearly imply

u(x2) ≤ u(x1) + ∆(Q)|x2 − x1| ⇒ u(x) ≤ ∆(Q)|x−Q|, (take x1 = Q), and
u(x) ≥ 1−∆(Q)|x− P |, (take x2 = P ), ∀x ∈ QP.

The latter is similar to Lemma 5.2.
We now prove a global lower bound for u in Γ. This consists in taking the

supremum (call it w) of affine functions that lie below u; see (5.7) and (5.8). It
turns out that this lower bound is a solution in many special cases. It is not
clear whether this is actually a solution in more general situations. We adopt the
notations used in (5.7) and (5.8); also see Section 2. Let P ∈ ∂C1, R(P ) and H±P ,
as before. Suppose TP is the supporting hyperplane at P and Q ∈ ∂C2 is such that
the supporting hyperplane TQ, at Q, is parallel to TP . Let H±Q be corresponding
the half-spaces. Set G = H+

P ∩H
−
Q and ν(P ) is the unit outer normal to ∂C1 at P .

Lemma 5.9 (Universal lower bound for u). Let P ∈ ∂C1, Q ∈ ∂C2, G and ν(P )
as described above. Set

wP (x) = 1 +
〈x− P, ν(P )〉

δ(Q)
, ∀x ∈ Γ and w(x) = sup

P∈∂C1

wP (x).

Then w|∂C1 = 1, w|∂C2 = 0, w is ∞-subharmonic and u(x) ≥ w(x), x ∈ Γ.
Proof: From (5.7), we see that wP (x) ≤ u(x). Clearly then w(x) ≤ u(x) and it
is well known that w(x) is ∞-subharmonic. Note that w(x) = wP (x) = 1 − |x −
P |/|P−Q| along the segment PQ. It is also to be noted that in case Γ is a spherical
annulus or more generally if the geometry of Γ is such that C1 = ∪x∈C2Br(x) =
{x ∈ Rn : dist(x,C2) < r}, for some r > 0, then u(x) = w(x). As a matter of fact
u(x) = dist(x, ∂C2)/r. �

Remark 5.10. Let P ∈ ∂C1 and Q ∈ ∂C2 be such that |P−Q| = dist(∂C1, ∂C2) =
δ. Clearly the smallest ball in Γ, that touches both ∂C1 and ∂C2, has radius δ/2.
From Lemma 5.1 and (5.1) (2l = δ), it follows that u(x) ≤ |x − Q|/δ and u(x) ≥
1− (|x− P |/δ). Note that the segment PQ is orthogonal to both ∂C1 and ∂C2. It
then follows that u is linear on PQ and u(x) = |x−Q|/δ, ∀x ∈ PQ.

6. Proof of Theorem 2.2

(a) Proof of part A of Theorem 2.2: Star-shapedness of level sets {u = t}
and cone condition.
For 0 < t < 1, let Γt = {x ∈ Γ : u(x) < t}, then ∂Γt = ∂C2 ∪ {u(x) = t}. This
follows from Lemma 5.4, since any x ∈ Γ, with u(x) = t, may be approached by
points where u(x) < t. This is seen by considering the straight line containing x
and a point in C2. Also at x, there are two cones with the apex at x such that
u > t in one and u < t in the other. Thus {x ∈ Γ : u(x) = t} satisfies an interior
and an exterior cone condition. The shape of the cones depend on the geometry of
Γ. This also implies the set {u(x) = t} is locally Lipschitz. It is also clear that Γt
is star-shaped with respect to any point in C2.
(b) Proof of part B of Theorem 2.2: Strict positivity of the difference
quotient and |Du|.
We employ the idea of Lemma 5.4 again. The selection of O ∈ C2 will influence the
lower bound λ, but it will stay positive. We recall the notations and the scaling in
Lemma 5.4. We consider P0 and P1, in Γ, such that |P0| = |P0−O| < |P1−O| = |P1|
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and t = |P0|/|P1| < 1. We select t close to 1. Note that ut(y) is ∞-harmonic in
Γt = Γ(Ct1, C

t
2) and

Cti ⊂ Ci, i = 1, 2, ut|∂Ct1 = 1 and ut|∂Ct2 = 0.

From Lemma 5.6 there exists a positive η, depending only on the geometry, such
that

u|∂Ct1 + η(1− t) ≤ 1 = ut|∂Ct1 and u|∂C2 = 0 ≤ η(1− t) + u|∂C2 ≤ ut|∂C2 .

Thus ut ≥ u+ η(1− t) on ∂(Γt ∩ Γ). Thus by comparison ut(y) ≥ u(y) + η(1− t)
in Γt ∩ Γ. Recalling that P0 = tP1 and ut(y) = u(y/t), it is seen that

ut(P0)− u(P0)
|P1 − P0|

=
u(P1)− u(P0)
|P1 − P0|

≥ η(1− t)
(1− t)|P1|

=
η

|P1|
≥ η

∆
> 0,

where ∆ is the diameter of C1. The result follows.

7. Appendix

In this section we put together results needed in the proofs of the theorems. We
will show that odd reflections of ∞-harmonic functions stay ∞-harmonic and also
include the proof of Theorem 1.1 [9].

In the proof of Theorem 2.1, we required the the following result which we now
prove. Let F be the n − 1 dimensional hyperplane given by xn = 0. Let us write
x = (ξ, xn), where ξ = ξ(x) = (x1, . . . , xn−1); also take

B+ = B+
R(O) = {x ∈ BR(O) : xn > 0}, B− = B−R (O) = {x ∈ BR(O) : xn < 0}

and FR = F ∩BR(O).
Proposition 7.1 (Odd reflection of u). Let F and O be as above and u be ∞-
harmonic in B+; also assume that u vanishes continuously on F . Define

v(x) = v(ξ(x), xn) =

{
u(ξ(x), xn) : xn ≥ 0
−u(ξ(x),−xn) : xn ≤ 0.

Then v is ∞-harmonic in BR(O).
Proof: We will show that ∆∞v = 0 in the viscosity sense. Let ψ ∈ C2 and
P ∈ BR(O) be such that v − ψ attains a local minimum at P . We show that
∆∞ψ(P ) ≤ 0. We will concern ourselves with the cases when P ∈ B− and when
P ∈ FR.
Case A (P ∈ B−): Since v(x)− ψ(x) ≥ v(P )− ψ(P ), it follows that u(ξ,−xn)−
φ(ξ,−xn) ≤ u(ξ(P ),−Pn) − φ(ξ(P ),−Pn), where φ(ξ,−xn) = −ψ(ξ, xn). Clearly
∆∞φ(ξ(P ),−Pn) ≥ 0, since (ξ(P ),−Pn) ∈ B+ is a point of local maximum of u−φ.
Clearly then ∆∞ψ(P ) ≤ 0.
Case B (P ∈ FR): Note v(P ) = v(ξ, 0) = 0. Thus v(x) ≥ ψ(x)− ψ(P ), which in
turn implies

v(x) ≥ 〈Dψ(P ), x− p〉+
1
2
〈D2ψ(P )(x− P ), x− P 〉+ o(|x− P |2), x→ P. (7.1)

We study various situations. Suppose that x ∈ FR, i.e., xn = xn − Pn = 0. Since
v(ξ, 0) = 0, (7.1) implies

0 ≥
i=n−1∑
i=1

Diψ(P )(x− P )i +
1
2

n−1∑
i,j=1

Dijψ(P )(x− P )i(x− P )j + o(|ξ(x− P )|2),
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x → P . Now select x such that (x − P )i = t and (x − P )j = 0, j = 1, . . . , n − 1,
j 6= i. Then

0 ≥ tDiψ(P ) +
t2

2
Diiψ(P ) + o(t2), t→ 0.

Since this holds for all t ∈ (−ε, ε) for small ε > 0, it follows that Diψ(P ) = 0, i =
1, . . . , n− 1. From (7.1), it follows that

v(x) = v(ξ, xn) ≥ Dnψ(P )(x−P )n+
1
2

n∑
i,j=1

Dijψ(P )(x−P )i(x−P )j +o(|x−P |2),

x → P , and ∆∞ψ(P ) = (Dnψ(P ))2Dnnψ(P ). To prove this is non-positive, we
consider x’s such that ξ(x) = ξ(P ) (i.e., xi = Pi, i = 1, . . . , n − 1) and xn = ±t,
for small t. Let t > 0, then the above inequality for ψ yields

v(ξ(P ), t) = u(ξ(P ), t) ≥ tDnψ(P ) +
t2

2
Dnnψ(P ) + o(t2),

v(ξ(P ),−t) = −u(ξ(P ), t) ≥ −tDnψ(P ) +
t2

2
Dnnψ(P ) + o(t2),

as t→ 0. Adding the two inequalities, dividing by t2 and letting t→ 0, we obtain
that Dnnψ(P ) ≤ 0. Thus ∆∞ψ(P ) ≤ 0. The case of local maximum may be
handled analogously. �
Proof of Theorem 1.1 [9] For easy reference, we now include the proof of The-
orem 1.1 in [9], as applied to our situation. This is essentially a repetition of the
proof in [9], nonetheless we provide details.
Theorem 7.2 (Boundary Harnack Principle). Let A8 = {x : |ξ(x)| < 8, 0 < xn <
16}, A1 = {x : |ξ(x)| < 1, 0 < xn < 2} and X0 = (0, 1). Let u > 0 be ∞-harmonic
in A8. Then there exists a constant C, independent of u but depending on the
geometry, such that supA1

≤ Cu(X0).
Proof. Recall (4.2) from the proof of Theorem 2.1 and (3.6). Let us continue to
call u the extended function obtained by the odd reflection about F8. Let us note
that Lemma 3.4 continues to apply to this extended function. Clearly then u is
Lipschitz continuous in any sub-cylinder of A8. Our selection of X0 is different
from z. This means the Harnack constant M will need modification (see (4.2)).
For x with 1 < xn < 3 and |ξ(x)| ≤ 2, dist(x, F8) ≥ 1 and dist(x,X0) ≤ 2

√
2. This

implies u(x) ≤ e2
√

2/1u(X0) by Lemma 3.2. Take M = e2
√

2 in (4.2). The letters l,
m and k denote positive integers. Rewritten

u(x) = u(ξ(x), xn) ≤

{
Mu(ξ(x), 2xn) : |ξ(x)| ≤ 2, 0 < xn < 3/2,
Mu(X0) : |ξ(x)| ≤ 2, 1 < xn < 3.

(7.2)

We argue by contradiction. Suppose that there is a Y0 ∈ A1 such that u(Y0) ≥
M l+2u(X0), where l is large and its value will be determined later in the proof.
We now make an observation which will be used repeatedly in the proof. If x ∈ Ā1

is such that dist(x, F8) = xn ≥ 2−l then u(x) ≤ M l+1u(X0). This follows by an
application of (7.2). If xn ≥ 1 then (7.2) implies the result. If 0 < xn < 1 and s is
the smallest integer such that 2sxn ≥ 1, then (7.2) implies

u(x) = u(ξ(x), xn) ≤Mu(ξ(x), 2xn) ≤ . . . ≤Msu(ξ(x), 2sxn) ≤Ms+1u(X0).
(7.3)
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Since l ≥ s, u(x) ≤M l+1u(X0). It follows from (7.3) that

dist(Y0, F8) ≤ 2−l.

Let K(r, Z) = Kr(Z) be the cylinder of dimension r and center Z (see Section 2)
and ν(Z, r) = oscK(r,Z) u. Recall from Remark 3.5 that ν(Z, r) ≥ Cν(Z, r/2). We
consider K(r, Y0). Clearly K̄(Y0, 2−l) ∩ F8 6= ∅ and ν(Y0, 2−l) ≥ u(Y0). It follows
then

ν(Y0, 2−l+m) ≥ Cmν(Y0, 2−l) ≥ CmM l+2u(X0).
Choose m so that Cm ≥ 2M2. Thus ν(Y0, 2−l+m) ≥ 2M l+4u(X0). Noting u has
been extended as an odd function about F8, there is a Y1 such that

Y1 ∈ K(Y0, 2−l+m) ∩ {xn > 0} and u(Y1) ≥M l+4u(X0).

Thus dist(Y1, F8) ≤ 2−l−2 (if not, an argument along the lines of (7.3) will imply
u(Y0) ≤M l+3) and ν(Y1, 2−l−2+m) ≥ Cmν(Y1, 2−l−2) ≥ Cmu(Y1) ≥ 2M l+6u(X0).
Once again there exists a

Y2 ∈ K(Y1, 2−l−2+m) ∩ {xn > 0} and u(Y2) ≥M l+6u(X0).

Again dist(Y2, F8) ≤ 2−l−4 and ν(Y2, 2−l−4+m) ≥ Cmν(Y2, 2−l−4) ≥ 2M l+8u(X0).
We obtain by induction a sequence of points {Yk} such that

dist(Yk, F8) ≤ 2−l−2k, Yk ∈ K(Yk−1, 2−l−2(k−1)+m) ∩ {xn > 0},

u(Yk) ≥M l+2(k+1)u(X0).
(7.4)

Recalling that K(Yk−1, 2−l−2(k−1)+m) is a cylinder with center Yk−1 with radius
2−l−2(k−1)+m and long axis 2(2−l−2(k−1)+m),

|Yk| ≤ |Yk−1 − Yk|+ |Yk−1| ≤ 2−l−2(k−1)+m+1 + |Yk−1|.

Thus |Yk| ≤ 2−l+m+1
∑k
j=1 2−2(j−1) + |Y0| ≤ 2−l+m+1

∑k
j=0 2−2j + 1. Now choose

l so large that |Yk| ≤ 3/2, ∀k. Thus if Y ∈ K(Yk, 2−l−2k+m) then |Y | ≤ 3. Thus
each K(Yk, 2−l−2k+m) lies in a fixed sub-cylinder of A8. Letting k →∞ results in
a contradiction.

The above proves that for some constant C > 0, u(x) ≤ Cu(X0) ≤ CMu(z).
This completes the proof.
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