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Compact attractors for a Stefan problem with

kinetics ∗

Michael L. Frankel & Victor Roytburd

Abstract

We prove existence of a unique bounded classical solution for a one-
phase free-boundary problem with kinetics for continuous initial condi-
tions. The main result of this paper establishes existence of a compact
attractor for classical solutions of the problem.

1 Introduction

In this paper we study the asymptotic behavior of solutions of the modified
one-phase Stefan problem in one spatial dimension:

ut = uxx − γu, −∞ < x < s(t), (1.1)
(∂u/∂x)|x=s(t) = −V (t), g(u|x=s(t)) = V (t), (1.2)

u(x, 0) = u0(x). (1.3)

Here u(x, t) is the temperature, the damping term is due to the volumetric
heat losses, γ ≥ 0. The two boundary conditions overdetermine the problem
and allow us to find the free boundary whose position is denoted by s(t), and
V (t) = ṡ(t) is the velocity.

The free-boundary problem (1.1-1.3) arises naturally as a mathematical
model of a variety of exothermic phase transition type processes, such as con-
densed phase combustion [11] (also known as self-sustained high-temperature
synthesis or SHS [12]), solidification with undercooling [10], laser induced evap-
oration [9], rapid crystallization in thin films [16] etc. These processes are
characterized by production of heat at the interface, and their dynamics is de-
termined by the feedback mechanism between the heat release due to the kinetics
g(u|x=s(t)) and the heat dissipation by the medium. The first boundary con-
dition in (1.2) (the Stefan boundary condition) expresses the balance between
the heat produced at the free boundary and the heat diffusion through the ad-
jacent medium. As the problem (1.1)-(1.3) describes propagation of the phase
transition front, the second boundary condition in (1.2) is a manifestation of
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the non-equilibrium nature of the transition; its analog for the classical Stefan
problem is just u|x=s(t) = 0. In the context of condensed phase combustion the
kinetic boundary condition expresses the dependence of the propagation velocity
on the flame front temperature.

The principal objective of the paper is to prove existence of a compact at-
tractor for the infinite-dimensional dynamical system generated by the one-phase
problem (1.1-1.3). In other words, if the problem is viewed as evolution in a
functional space then for all the initial conditions, solutions approach a compact
set in the functional space. This result is motivated by results of DNS and in
particular by numerical experiments described in [2] and [3] (see also [5]). In
[2] we performed DNS of dynamics of the system for a variety of kinetic func-
tions (actually, for a parametric family of kinetic functions). We demonstrated
that for a wide range of initial conditions the system develops complex thermo-
kinetic oscillations. The resulting asymptotic regimes are attained very fast and
do not depend on the initial conditions, thus indicating existence of an attractor
for the dynamics. As the parameter governing kinetics is varied, the dynamical
patterns exhibited by the system include a Hopf bifurcation, period doubling
cascades leading to chaotic pulsations, a Shilnikov-Hopf bifurcation etc. Most
of these patterns appear to be of a finite-dimensional nature and are well-known
for the finite-dimensional dynamical systems.

On the other hand, in [3] we derived and studied a 3 × 3 system of ODEs
which is a three-mode pseudo-spectral approximation to the free-boundary prob-
lem: the dynamics of the finite-dimensional dynamical system mimic those of
the infinite-dimensional system to an amazing degree. These observations led
to the conjecture that the asymptotic dynamics of ( 1.1-1.3) should be finite-
dimensional. The result of this paper is therefore a first step in proving this
conjecture. In the sequel to this paper [6] (to be published elsewhere), based on
the compactness results we demonstrate that the attractor actually has a finite
Hausdorff dimension.

In a nutshell, the idea of the proof of existence of a compact attractor is as
follows: we start with initial data inside a ball in a functional space and estab-
lish uniform a priori estimates on the solutions and their first spatial derivative
that secure the existence of an absorbing compact set. Then we use the sim-
ple abstract result from dynamical systems that the ω-limit set of a compact
absorbing set is a compact attractor. It should be noted however that the ac-
tual proof is not as straightforward as just indicated. If the solution is viewed
as a sum of contributions from the free boundary and from initial data, it is
easy to see that while the former does compactify with time, the latter can-
not compactify. Fortunately the damping guarantees this contribution to decay
exponentially. Also, since we are working on an infinite spatial interval, the
compactness is predicated on a uniform spatial decay, which can be justified for
the contribution from the free boundary.

The rest of the paper is organized as follows. In Sec. 2 we present some
minimal background information that places the model in the context of con-
densed phase combustion. A local existence result is obtained in Sec. 3. We
are not interested in local existence per se since it is well established in the
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literature for various versions of the problem, see for example [13, 19, 1].The
principal value of this result for our purposes is in the direct construction for
a solution that allows us to derive necessary estimates for the solution and its
spatial derivative. A solution is found in the form of a single layer potential.
We demonstrate that the potential density necessarily should have a one over
the square root singularity. We develop a suitable version of potential theory
and design a convergent iteration scheme that produces the density and the free
boundary velocity.

The single-layer representation for the solution is employed in Sec. 4 to
obtain an estimate for the spatial derivative of the solution. This estimate can
be proved uniform with respect to the sup norm of initial data, provided the
solution itself is uniformly bounded. Such a uniform bound is also presented
in Sec. 4: namely, assuming that the kinetic function g satisfies some natural
requirements, we demonstrate an a priori estimate on the solutions uniformly
with respect to the initial conditions. The estimate is based on a representation
of the solution in terms of a combination of single and double layer potentials.
The latter representation is instrumental for the argument of Sec. 5, since it
gives a natural decomposition of the solution into the two contributions, one
from the initial conditions, and another one from the free boundary.

We show that the contributions from the free boundary are uniformly bounded
and decaying at infinity. Together with the uniform bound on the spatial deriva-
tive, this guarantees that contributions from the free boundary for different ini-
tial data from a fixed ball form a precompact set. At this point the presence
of the heat loss becomes crucial. Although the contribution from initial data
is not compactified by the evolution, it decays exponentially with time due to
the damping. Thus the evolution is a combination of a compactifying part and
a decaying part. We complete the proof of existence of a compact attractor by
incurring an appropriate abstract result from dynamical systems.

2 Motivation of the free boundary model

In this section we sketch a derivation of the free boundary model (1.1)-(1.3).
We note that although the derivation is purely heuristic, the model itself is
well accepted in the literature. The interpretation of the free boundary prob-
lem (1.1)-(1.3) in terms of nonequilibrium phase transition with the interface
attachment kinetics g is rather transparent (see e.g. [16]), here we would like to
demonstrate its relevance for the condensed phase combustion. For this type of
combustion the solid fuel mixture is transformed directly into a solid product.
In addition to its theoretical interest, gasless combustion currently finds techno-
logical applications as a method of synthesizing certain technologically advanced
materials for high-temperature semiconductors, nuclear safety devices, fuel cells
etc., see [12], [17] and also [18] for a popular exposition. The process is char-
acterized by highly exothermic reactions propagating through mixtures of fine
elemental reactant powders (e.g., Ti + C, Ti +2B), resulting in the synthesis of
compounds.
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The most primitive model of gasless combustion involves a system of dif-
ferential equations for the temperature u and the concentration of the fuel C
(see Shkadinsky et al., [14]). For appropriately nondimensionalized variables
the one-dimensional formulation of the model takes the form:

ut = (κux)x + qW (C, u)− γu (2.1)
Ct = −W (C, u) (2.2)

where κ is the thermal diffusivity, W is the chemical reaction rate, q is the heat
release and γu, the volumetric heat loss.

For physically relevant values of parameters, the system is characterized by
the strong temperature sensitivity of the rate and by rather sharply defined re-
gions of dramatic change in the field variables that are usually associated with
propagating fronts. This suggests an alternative to the model with distributed
kinetics (the so-called flame sheet approximation, see [20]): the distributed re-
action rate in (2.1)–(2.2) is replaced by the δ-function,

W = g(u)δ(x− s(t))

with an appropriate rate g(u) supported at the interface x = s(t) between the
fresh (C = 1) and burnt (C = 0) material (see, Matkowsky & Sivashinsky, [11]).
In the case of gaseous combustion with Arrhenius kinetics, the sharp interface
model can be obtained as an asymptotic approximation of the distributed ki-
netics model in the large activation energy limit. In this case the strength of
the δ-function g(u) is determined through an asymptotic analysis by matching
relevant inner and outer solutions. Of course, all the intricacies of the behavior
in the reaction zone are lost in this approximation.

The system (2.1)–(2.2) with the δ-function source is understood in the sense
of distributions. This leads to the system of two heat equations coupled at the
interface

u−t = (κu−x )x − γu, u+
t = (κu+

x )x − γu
u−|x=s(t) = u+|x=s(t), (κu+

x − κu−x )x=s(t) = −w(u)x=s(t)

ds

dt
= −g(u)|x=s(t)

(2.3)

where

u−(x, t) = u(x, t) for x < s(t),

u+(x, t) = u(x, t) for x > s(t).

This is the free interface two-phase problem of condensed phase combustion.
The physical properties of the material such as the heat diffusion coefficient κ
may differ substantially ahead and behind the interface. If, for instance, the
product is a foam-like substance then κproduct � κfuel. By setting κproduct = 0
in the equation and the boundary condition for u+ in (2.3), we arrive at the
one-phase model problem in (1.1)-(1.2) for u ≡ u+.
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We note that in the context of solidification of overcooled liquids or the
amorphous to crystalline transition the kinetic boundary condition corresponds
to the so-called interface attachment kinetics, which are determined by various
microscopic mechanisms of incorporating the matter into the crystalline lattice
at the interface. Concerning the choice of the kinetic function we remark that
this issue is far from settled either theoretically or experimentally. For example,
for solid combustion the widely used exponential approximation of Arrhenius
kinetics has not been obtained from an analysis of molecular collisions in the
spirit of the kinetic theory of gases and, consequentally, asymptotic expansion
in transition to the δ-function approximation, but rather “transplanted” from
the sharp interface model of gas combustion. There are several types of func-
tions that were suggested for a more realistic description of kinetics in specific
chemical and physical settings.

We will assume that g(u) is a monotonically decreasing differentiable func-
tion on [0,∞] with |g′| ≤ C and satisfying

−V0 ≤ g(u) ≤ −v0 for some V0, v0 > 0. (2.4)

The lower bound is satisfied for the standard Arrhenius kinetics where V =
ce−A/u while the upper bound v0 corresponds to the ignition temperature (in
our case, “ignition velocity”) kinetics: the model is valid only for moving fronts.

3 Existence of local classical solutions

In order not to clutter formulas with factors of the type e−γt, from now on, until
Sec. 5 we set the damping coefficient γ = 0. The modifications to the γ > 0
case are trivial and will be indicated when needed. A short-time solution of the
free boundary problem (1.1-1.3) will be sought in the form of a superposition of
heat potentials,

u(x, t) =
∫ t

0

G(x, s(τ), t− τ)ϕ(τ)dτ +
∫ 0

−∞
G(x, ξ, t)u0(ξ)dξ, (3.1)

where G is the fundamental solution of the heat equation,

G(x, ξ, t− τ) = exp
{
− (x− ξ)2

4(t− τ)

}
[4π(t− τ)]−1/2

The density of the single layer potential ϕ and the front position s(t) are to be
determined.

We will demonstrate a little later that the single-layer potential is continuous
up to the boundary and its derivative possesses the standard jump property:

lim
x→s(t)−

∂

∂x

∫ t

0

G(x, s(τ), t− τ)ϕ(τ)dτ =
ϕ(t)

2
+
∫ t

0

Gx(s(t), s(τ), t− τ)ϕ(τ)dτ

(3.2)
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This result is, of course, well-known if ϕ is continuous. It turns out however,
that by the nature of the free-boundary problem at hand, ϕ must have a 1/

√
t

singularity at 0. Thus a justification of (3.2) will require an extra effort. If
the jump property in (3.2) holds then for the solution represented by (3.1), the
boundary conditions in (1.2) yield the following equations

u(s(t), t) = g−1(V (t)) (3.3)

=
∫ t

0

G(s(t), s(τ), t− τ)ϕ(τ)dτ +
∫ 0

−∞
G(s(t), ξ, t)u0(ξ)dξ

ux(s(t), t) = −V (t) (3.4)

=
ϕ

2
−
∫ t

0

Gξ(s(t), s(τ), t− τ)ϕ(τ)dτ −
∫ 0

−∞
Gξ(s(t), ξ, t)u0(ξ)dτ

We will choose the density of the form ϕ(t) = ψ(t)/
√
t,where ψ(t) is con-

tinuous on [0, T ]. To motivate this choice, let us consider asymptotics of (3.4)
as t → 0. Let us assume for simplicity of the argument that u0 ∈ C1 and V
is continuous on [0, T ]. First we integrate by parts the second integral in (3.4)
and note that it has a 1/

√
t singularity:

−
∫ 0

−∞
Gξ(s(t), ξ, t)u0(ξ)dξ

= −u0(0)
exp{−s(t)2/4t}√

4πt
+
∫ 0

−∞
G(s(t), ξ, t)u0

ξ(ξ)dξ (3.5)

∼ −u0(0)
exp{−V (0)2t/4}√

4πt
+
u0
ξ(0)
2

As to the first integral in (3.4), for continuous ϕ it converges to 0 as t→ 0 :

|
∫ t

0

Gξ(s(t), s(τ), t− τ)ϕ(τ)dτ | =
1
2
|
∫ t

0

s(t)− s(τ)
t− τ

Gϕ(τ)dτ |

∼ 1
2
|V (0)| sup |ϕ|

√
t, (3.6)

since |G(·, ·, t − τ)| ≤ 1/
√
t− τ . Thus, for a continuous ϕ the singularities in

(3.4) cannot balance.
If ϕ has a singularity of the type b/

√
t then the estimate in (3.6) should be

augmented by the term∫ t

0

Gξ(s(t), s(τ), t− τ)
b√
τ
dτ

=
b

2

∫ t

0

s(t)− s(τ)
t− τ

exp{−(s(t)− s(τ))2/4(t− τ)}√
4π(t− τ)τ

dτ

∼ b

2
V (0) exp{−V (0)2t/4}

∫ t

0

dτ√
4π(t− τ)τ

=
b

4
V (0)

√
π exp{−V (0)2t/4}
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which converges to the finite value. Thus, the only way to balance the singularity
(3.5) in the boundary condition in (3.4) is for ϕ itself to have a singularity. The
balance condition then reads:

lim
t→0

√
tϕ(t) = u0(0)/

√
π (3.7)

A similar limit obtained from the first integral equation (3.3) leads to the initial
condition for V :

V (0) = g(u0(0)) (3.8)

Next we rewrite the integral equations in (3.3)-(3.4) in terms of ϕ and V :

V = K1(V, ϕ) (3.9)
ϕ = −2K1(V, ϕ) +K2(V, ϕ) (3.10)

where the nonlinear operators K1,K2 are defined as follows

K1(V, ϕ) = g{
∫ t

0

G(s(t), s(τ), t− τ)ϕ(τ)dτ +
∫ 0

−∞
G(s(t), ξ, t)u0(ξ)dξ} (3.11)

K2(V, ϕ) = 2
∫ t

0

Gξ(s(t), s(τ), t− τ)ϕ(τ)dτ + 2
∫ 0

−∞
Gξ(s(t), ξ, t)u0(ξ)dξ

(3.12)

Here as usual,

s(t) =
∫ t

0

V (τ)dτ. (3.13)

The equations are supplemented by the initial conditions:

V (0) = g(u0(0)); lim
t→0

√
tϕ(t) = u0(0)/

√
π (3.14)

The principal goal of the present section is the proof of the following local
existence result:

Theorem 3.1 Let g < 0 be continuously differentiable, monotone decreasing
function, u0 ∈ C(−∞, 0], u0 > 0. Then the problem in (3.9)-(3.10) has a
unique solution V, ϕ such that V and

√
tϕ(t) are continuous on [0, σ] for some

σ > 0, where σ depends only on supu0. The solution to the free boundary
problem is determined by V, ϕ via the representation (3.1) with s(t) =

∫ t
0
V (τ)dτ .

The proof of the theorem is given in the next subsections. Its outline is as
follows. First of all, we justify the integral equations by establishing the single-
layer potential jump property (3.2) for densities with the 1/

√
t singularity. Then

we demonstrate that the solution of the system of integral equations (3.9)-(3.10)
generates a solution to the free boundary problem via the representation (3.1).
After that we concentrate on existence for the system of integral equations. We
show that, if σ > 0 is small enough, the integral operator is a contraction.



8 A Stefan problem with kinetics EJDE–2002/15

It should be noted that the singularity in the potential density precludes a
simple-minded iteration scheme from being a contraction. Roughly speaking,
the contraction rate for nonsingular densities is on the order of

√
σ. The 1/

√
t

singularity leads to a “cancelation” (the rate of order one) and prevents us from
making the rate coefficient smaller than one. To overcome this difficulty we
introduce a two-step iteration scheme.

Another standard precaution should be taken for the proof to proceed. Be-
cause of the nonlinearity of the problem the contraction rate depends on the size
of {V, ϕ} . Thus to guarantee that the iteration sequence does not deteriorate
the contraction rate and therefore requires smaller and smaller σ, we need to
secure the existence of a ball in the functional space which is mapped by the
operator into itself.

All the results of the section hold without the basic assumption on the kinetic
function in (2.4). Nonetheless, we do not hesitate to assume it whenever it leads
to a substantial simplification of the presentation.

3.1 Two lemmas on the single-layer potential

In this section we study properties of the single-layer potential whose density
has a one over square root singularity. For our purposes it is convenient to
introduce a norm which is appropriate for functions with this singularity:

‖ϕ‖σ = sup
0≤τ≤σ

√
τ |ϕ(τ)| (3.15)

Obviously, if ϕ(t) = ψ(t)/
√
t, where ψ(t) is continuous , then ‖ϕ‖σ = ‖ψ‖C[0,σ].

Specifically we are interested in the behavior of the spatial derivative of the
potential and its limit at the boundary.

Lemma 3.2 Let ϕ(t) = ψ(t)/
√
t, where ψ(t) is a continuous function on [0, T ]

and let s(t) be Lipschitz continuous on [0, T ] and non-increasing. Then for every
0 < t ≤ T , and x < s(t)

|Φ(x, t)| = | ∂
∂x

∫ t

0

G(x, s(τ), t− τ)ϕ(τ)dτ | ≤ const (3.16)

Proof The lemma holds if monotonicity condition for s is dropped, but in
our case s is monotone which simplifies the proof. It is convenient to consider
separately the two cases: |s(t)− x| > 1 and |s(t)− x| < 1.
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For the case |s(t)− x| > 1

|Φ(x, t)| =
∣∣∣ ∫ t

0

x− s(τ)
2(t− τ)

e−(x−s(τ))2/4(t−τ)√
4π(t− τ)

ϕ(τ)dτ
∣∣∣

=
∣∣∣ ∫ t

0

(x− s(τ))2

2(t− τ)(x− s(τ))
e−(x−s(τ))2/8(t−τ)

× exp{− (x− s(t))2 + 2(x− s(t))(s(t)− s(τ)) + (s(t)− s(τ))2

8(t− τ)
}

× ψ(τ)√
4πτ(t− τ)

dτ
∣∣∣

≤
C ‖ϕ‖t
|s(t)− x|

e−v0|x−s(t)|/4
∫ t

0

e−v
2
0(t−τ)/8√

4πτ(t− τ)
dτ ≤ Ce−v0|x−s(t)|/4

|s(t)− x|
‖ϕ‖t

In the last estimate we used the following simple observations: ηe−η ≤const,

for η =
(x− s(τ))2

4(t− τ)
> 0, |s(τ)− x| > |s(t)− x| and∫ t

0

1/
√
τ(t− τ)dτ = π. (3.17)

Remark 3.3 Thus the proof above shows that if |s(t)− s(τ)| ≥ v0|t− τ | which
holds if the basic assumption on the kinetics in (2.4) is satisfied, then the deriva-
tive decays exponentially

|Φ(x, t)| ≤ Ce−v0|x−s(t)|/4

|s(t)− x|
‖ϕ‖t (3.18)

The exponent −v0/4 can be improved to −v0/(2 + ε) (at the price of increasing
C).

For the case |s(t)− x| < 1 we split the integral into the two parts

∂

∂x

∫ t

0

G(x, s(τ), t− τ)ϕ(τ)dτ

= −
[ ∫ t−δ

0

+
∫ t

t−δ

]x− s(τ)
2(t− τ)

G(x, s(τ), t− τ)ϕ(τ)dτ,

where 0 < δ < t to be chosen later on. In the estimates below we follow rather
closely the argument from Friedman [8] (inequality (1.18), p.219):∫ t

t−δ

x− s(τ)
2(t− τ)

G(x, s(τ), t− τ)ϕ(τ)dτ

=
∫ t

t−δ

x− s(t)
2(t− τ)

G(x, s(τ), t− τ)ϕ(τ)dτ

+
∫ t

t−δ

s(t)− s(τ)
2(t− τ)

G(x, s(τ), t− τ)ϕ(τ)dτ

= I1 + I2
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We shall estimate the difference between I1 and

J1 =
∫ t

t−δ

x− s(t)
2(t− τ)

G(x, s(t), t− τ)ϕ(τ)dτ

as follows

|I1−J1| =
∣∣∣ ∫ t

t−δ

x− s(t)
2(t− τ)

G(x, s(t), t−τ)
{

1−e
(x−s(t))2−(x−s(τ))2

4(t−τ)

}
ϕ(τ)dτ

∣∣∣ (3.19)

Since obviously 1 − exp(−η) < η for any η > 0, the expression in the braces is
estimated:

0 < 1− exp[
(x− s(t))2 − (x− s(τ))2

4(t− τ)
] <

s(τ)− s(t)
4(t− τ)

[s(t)− x+ s(τ)− x]

=
s(τ)− s(t)

4(t− τ)
[2(s(t)− x) + s(τ)− s(t)] ≤ V0

4
[2(s(t)− x) + s(τ)− s(t)]

here V0 is the Lipschitz constant for s(t) (the maximal velocity). We note now
that

sup
t−δ≤τ≤t

|ϕ(τ)| = sup
t−δ≤τ≤t

(|ϕ(τ)|
√
τ)|/
√
τ ≤ ‖ϕ‖t /

√
t− δ

and continue (3.19):

|I1 − J1|

≤
∫ t

t−δ

s(t)− x
2(t− τ)

G(x, s(t), t− τ)
V0

4
[2(s(t)− x) + s(τ)− s(t)]

‖ϕ‖t√
t− δ

dτ

=
V0

4
‖ϕ‖t√
t− δ

∫ t

t−δ

{ [s(t)− x]2

(t− τ)
+
s(τ)− s(t)

2(t− τ)
[s(t)− x]

}
e−

(x−s(t))2
4(t−τ)

dτ√
4π(t− τ)

≤ V0

4
‖ϕ‖t√
t− δ

√
δ/π

{
C +

√
δ
V0

2
[s(t)− x]

}
.

In the last inequality we have used ηp exp(−η) ≤ C, for any p > 0.
The integral J1 can be reduced via a substitution 4(t− τ)/[s(t)− x]2 = z as

follows

|J1| =
∫ t

t−δ

s(t)− x
4
√
π(t− τ)3/2

e−
(x−s(t))2

4(t−τ) |ϕ(τ)|dτ

≤
‖ϕ‖t√
t− δ

1
2
√
π

∫ δ/[s(t)−x]2

0

z−3/2e−1/zdz

Since 1√
π

∫∞
0
z−3/2e−1/zdz = 1/2 and the integrand is positive we have

|J1| <
1
2
‖ϕ‖t√
t− δ

.
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Now we need to estimate I2.

|I2| =
∣∣∣ ∫ t

t−δ

s(t)− s(τ)
2(t− τ)

G(x, s(τ), t− τ)ϕ(τ)dτ
∣∣∣

≤ V0

2
‖ϕ‖t√
t− δ

∫ t

t−δ
G(x, s(τ), t− τ)dτ ≤ V0

2
‖ϕ‖t√
t− δ

√
δ/π

Finally, for |x− s(t)| < 1 we get that on the interval t− δ ≤ τ ≤ t∣∣∣ ∫ t

t−δ

x− s(τ)
2(t− τ)

G(x, s(τ), t− τ)ϕ(τ)dτ
∣∣∣

≤ |I1|+ |I2| ≤ |I1 − J1|+ |J1|+ |I2|

≤ V0

4
‖ϕ‖t√
t− δ

√
δ/π

{
C +

√
δ
V0

2
[s(t)− x]

}
+

1
2
‖ϕ‖t√
t− δ

+
V0

2
‖ϕ‖t√
t− δ

√
δ/π

=
‖ϕ‖t√
t− δ

[1
2

+ C1

√
δ/ (t− δ)

]
.

As for the estimate on the interval 0 ≤ τ ≤ t− δ for |x− s(t)| < 1 we get∣∣∣ ∫ t−δ

0

x− s(τ)
2(t− τ)

e−(x−s(τ))2/4(t−τ)√
4π(t− τ)

ϕ(τ)dτ
∣∣∣ ≤ C2

‖ϕ‖t
δ

√
t− δ

Now, by combining the estimates above

|Φ(x, t)| ≤ C2
‖ϕ‖t
δ

√
t− δ +

‖ϕ‖t√
t− δ

[1
2

+ C1

√
δ/ (t− δ)

]
we conclude the proof of the lemma for |x− s(t)| < 1. It is possible to optimize
the above estimate by choosing an appropriate δ. However for our purposes it
will suffice to set δ = ct that results in

|Φ(x, t)| ≤ C ‖ϕ‖t /
√
t (3.20)

♦

Remark 3.4 The above estimate for the derivative Φ is obtained for the density
ϕ = ψ(t)/

√
t. If ϕ itself is a continuous function then the above estimate

becomes

|Φ(x, t)| ≤ C ‖ϕ‖t /
√
t = C sup

0≤τ≤t
|ϕ(τ)

√
τ |/
√
t ≤ C sup

0≤τ≤t
|ϕ(τ)| (3.21)

The next lemma presents a version of the classical jump property for the
single-layer potential with singularity.

Lemma 3.5 Let ϕ(t) = ψ(t)/
√
t, where ψ(t) is a continuous function on [0, T ]

and let s(t) be Lipschitz continuous on [0, T ] and non-increasing. Then for every
0 < t ≤ T

lim
x→s(t)−

Φ(x, t) =
1
2
ϕ(t) +

∫ t

0

Gx(s(t), s(τ), t− τ)ϕ(τ)dτ
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Proof As in the previous lemma the result holds if the monotonicity condi-
tion for s is dropped. For ϕ(t) continuous the result is contained in Friedman
[8]. The proof for our case follows the continuous case with relatively minor
modifications.

It is easy to see that for any fixed δ > 0

∫ t−δ

0

x− s(τ)
2(t− τ)

e−
(x−s(τ))2

4(t−τ) ϕ(τ)dτ√
4π(t− τ)

→
∫ t−δ

0

s(t)− s(τ)
2(t− τ)

e−
(s(t)−s(τ))2

4(t−τ) ϕ(τ)dτ√
4π(t− τ)

as x→ s(t)− since the singularity at τ = 0 is integrable. On the other hand, on
the interval [t− δ, t] the density ϕ(τ) is nonsingular and the classical argument
shows that∫ t

t−δ

x− s(τ)
2(t− τ)

e−
(x−s(τ))2

4(t−τ) ϕ(τ)dτ√
4π(t− τ)

→
∫ t

t−δ

s(t)− s(τ)
2(t− τ)

e−
(s(t)−s(τ))2

4(t−τ) ϕ(τ)dτ√
4π(t− τ)

+
ϕ(ξ)

2

where t− δ ≤ ξ ≤ t. By passing to the limit δ → 0 one obtains the result of the
lemma. ♦

Now consider the integral representation (3.1) with ϕ, V ( s(t) =
∫ t

0
V (τ)dτ)

being a solution of the system of integral equations (3.9)-(3.10). Since G is a
fundamental solution of the heat equation, for x < s(t), t > 0, u(x, t) solves the
heat equation. Similar to the argument in the proof of the lemma, it is easy
to show that limx→s(t)− u(x, t) exists and is equal to the right hand side of the
integral equation (3.3). Thus, by the virtue of the integral equation the kinetic
boundary conditions is satisfied. The Stefan boundary conditions is nothing
else than the integral equation in (3.4) which is justified through the lemma.
Finally, for x < 0 it is easily seen that limt→0 u(x, t) = u0(x).

3.2 Iteration scheme

The system of integral equations in (3.9)-(3.10) will be solved iteratively. Given
φ = (ϕ, V ) we define the operator K : (ϕ, V )→ ω = (χ, v) through the following
two-stage procedure. First we define

χ = −2V +K2(V, ϕ)

= −2V + 2
∫ t

0

Gξ(S(t), S(τ), t− τ)ϕ(τ)dτ + 2
∫ 0

−∞
Gξ(S(t), ξ, t)u0(ξ)dξ

where S(t) =
∫ t

0
V (τ)dτ . Then, on the base of the just found χ we compute v:

v = K1(V, χ) = g{
∫ t

0

G(S(t), S(τ), t− τ)χ(τ)dτ +
∫ 0

−∞
G(S(t), ξ, t)u0(ξ)dξ}

We will show that K has a fixed point, which obviously provides a solution to
the original integral equations (3.9)-(3.10), (3.13)-(3.14).
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3.3 Invariant ball

We start with the following remark. Based on its physical interpretation, the
kinetic function g(u) is defined for 0 < u <∞ and varies in the interval −V0 <
V < −v0 = g(0). It is not clear a priori, whether the integral operator K
preserves the “physical” cone of positive temperatures. To avoid complications
caused by using an iteration scheme in the set {g(K1(V, ϕ)) > 0}, we extend
the function g to the interval (−∞, 0) as g(u) ≡ −v0. We abuse the notation
slightly using the same letter for the extension (which has the same Lipschitz
constant as the original g).

In the space of pairs Ξ = {φ = (ϕ, V ) : ϕ(.)√., V ∈ C[0, σ]} we define the
norm

‖φ‖ = max{‖ϕ‖σ, ‖V ‖C[0,σ]} = max{‖ϕ(.)√.‖C[0,σ], ‖V ‖C[0,σ]},

that makes Ξ a Banach space. The fixed point will be sought in the closed
set BM,σ = {φ = (ϕ, V ) : −V0 ≤ V ≤ −v0, ‖ϕ‖σ ≤ M} with M and σ to be
determined.

First we note that the velocity component of the operator automatically
remains in BM,σ by virtue of the definition of g:

−V0 ≤ g{
∫ t

0

G(s(t), s(τ), t− τ)ϕ(τ)dτ +
∫ 0

−∞
G(s(t), ξ, t)u0(ξ)dτ} ≤ −v0

In a similar fashion, for the ϕ-component of Kφ we obtain:

‖χ‖σ = sup
0≤t≤σ

√
t
(

2V + 2|
∫ t

0

Gξ(S(t), S(τ), t− τ)ϕ(τ)dτ |

+2|
∫ 0

−∞
Gξ(S(t), ξ, t)u0(ξ)dξ|

)
To estimate the first integral we again use (3.17),∣∣∣ ∫ t

0

Gξ(S(t), S(τ), t− τ)ϕ(τ)dτ
∣∣∣

=
∣∣∣ ∫ t

0

S(t)− S(τ)
2(t− τ)

G(S(t), S(τ), t− τ)ϕ(τ)dτ
∣∣∣

≤
∫ t

0

1
2
|V (θ)| 1√

4π(t− τ)
√
τ
|ϕ(τ)|

√
τdτ ≤

√
π

2
V0M

The second integral is treated as follows:∣∣∣ ∫ 0

−∞

ξ − S(t)
2t

e−(ξ−S(t))2/4t

√
4πt

u0(ξ)dξ
∣∣∣

=
1√
t
|
∫ 0

−∞

√
8
ξ − S(t)√

8t
e−(ξ−S(t))2/8t

√
2
e−(ξ−S(t))2/8t

√
8πt

u0(ξ)dξ|

≤ 4
e
√
t
‖u0‖.
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Thus

‖χ‖σ ≤
√
π

2
V0M

√
σ +

4
e
‖u0‖

If the right side of the above inequality is less or equal than M then K will map
BM,σ into itself. This is insured by choosing

√
σ < 2/(V0

√
π) and consequently

M ≥ 8‖u0‖
e(2− V0

√
πσ)

3.4 Iteration for density

Now we will prove that for a sufficiently small σ, K is a contraction in the
density component. Let ω = Kφ , ω′ = Kφ′. For the χ-component of ω− ω′

the estimates are as follows,

|χ− χ′|
≤ 2‖V − V ′‖ (3.25)

+2
∣∣∣ ∫ 0

−∞
Gξ(S(t), ξ, t)u0(ξ)dξ −

∫ 0

−∞
Gξ(S′(t), ξ, t)u0(ξ)dξ

∣∣∣
+2
∣∣∣ ∫ t

0

Gξ(S(t), S(τ), t− τ)ϕ(τ)dτ −
∫ t

0

Gξ(S′(t), S′(τ), t− τ)ϕ′(τ)dτ
∣∣∣

= 2‖V − V ′‖+ 2 |w1|+ 2|w2|

First we estimate w1. Suppose S(t) < S′(t) < 0 and split the integral for w1

into three integrals:

w1 =
∫ S

−∞
δGξu

0dξ +
∫ S′

S

δGξu
0dξ +

∫ 0

S′
δGξu

0dξ (3.26)

where

δGξ = Gξ(S(t), ξ.t)−Gξ(S′(t), ξ, t).

By the mean value theorem,

|δGξ| =
∣∣∣(S − S′)∂2G

∂x2
(s̃− ξ, 0, t)

∣∣∣
=

1√
4π
|S(t)− S′(t)|

∣∣∣ (s̃− ξ)2

4t5/2
− 1

2t3/2

∣∣∣ e− (s̃−ξ)2
4t

where s̃ is an intermediate value:

s̃ = s̃(t, ξ), S(t) ≤ s̃ ≤ S′(t).
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Thus for the first integral in (3.26) we have

∣∣ ∫ S

−∞
δGξu

0dξ
∣∣

≤ |S(t)− S′(t)|
t

∫ S

−∞

∣∣∣ (s̃− ξ)2

4t
− 1

2

∣∣∣e− (s̃−ξ)2
8t

1√
4πt

e−
(s̃−ξ)2

8t |u0(ξ)|dξ

≤ ‖V − V ′‖
∫ 0

−∞
C

1√
4πt

e−
(s̃−ξ)2

8t |u0(ξ)|dξ ≤ C sup |u0(ξ)| ‖V − V ′‖.

The integral over (S′, 0) in (3.26) is estimated similarly. As to the second integral
in (3.26) , it is even simpler:

∣∣ ∫ S′

S

δGξu
0dξ
∣∣

=
∣∣ ∫ S′

S

1√
4πt

(ξ − S
2t

e−
(S−ξ)2

4t − ξ − S′

2t
e−

(S′−ξ)2
4t

)
u0(ξ)dξ

∣∣
≤

∫ S′

S

1√
4πt

(ξ − S
2t

+
S′ − ξ

2t
)
u0(ξ)dξ

(S′ − S)
2t

1√
4πt

2(S′ − S)‖u0‖

≤ C t1/2‖V − V ′‖ ‖u0‖

Finally, by combining the preceding estimates we get:

w1 ≤ (C + C3 t
1/2)‖V − V ′‖ ‖u0‖. (3.27)

Next we estimate the free boundary contribution w2:

w2 ≤
∫ t

0

|∆Gξ| |ϕ| dτ +
∫ t

0

|Gξ(S′(t), S′(τ), t− τ)| ‖ϕ− ϕ′| dτ (3.28)

For |∆Gξ| we get:

|∆Gξ| ≡ |Gξ(S(t), S(τ), t− τ)−Gξ(S′(t), S′(τ), t− τ)|

= |S(t)− S(τ)− (S′(t)− S′(τ))| |∂
2G

∂x2
(s̃, 0, t− τ)|

=
1√
4π
|S(t)− S′(t)− (S(τ)− S′(τ))| | s̃2

4(t− τ)5/2
− 1

2(t− τ)3/2
| e−

s̃2
4(t−τ)

≤ 1
(t− τ)1/2

(1
e

+
1
2
) 1√

4π

∣∣dS
dt

(τ̃)− dS′

dt
(τ̃)
∣∣ ≤ C ‖V − V ′‖

(t− τ)1/2

where s̃ is between S(t)− S(τ) and S′(t)− S′(τ). Therefore∫ t

0

|∆Gξ| |ϕ| dτ ≤ C‖V − V ′‖
∫ t

0

√
τ |ϕ|

√
τ
√
t− τ

dτ

≤ Cπ‖V − V ′‖ ‖ϕ‖t = C1‖V − V ′‖ ‖ϕ‖t .
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Meanwhile,∫ t

0

|Gξ(S′(t), S′(τ), t− τ)| |ϕ− ϕ′| dτ

=
∫ t

0

∣∣S′(t)− S′(τ)
2(t− τ)

∣∣|G(S′(t), S′(τ), t− τ)| 1√
τ

√
τ |ϕ− ϕ′| dτ

≤ C2‖V ′‖ ‖ϕ− ϕ′‖t (3.29)

Together (3.28)-(3.29) yield

w2 ≤ C1‖V − V ′‖ ‖ϕ‖t + C2 ‖V ′‖ ‖ϕ− ϕ′‖t
Thus

|χ− χ′| ≤ 2‖V − V ′‖+ 2 |w1|+ 2|w2|
=

(
2 + (C + C3 t

1/2)‖u0‖+ C1‖ϕ‖t
)
‖V − V ′‖+ C2 ‖V ′‖ ‖ϕ− ϕ′‖t

and we observe that although the densities χ and χ′ both have singularities at
zero, their difference is bounded. This rather remarkable result demonstrates
that the integral operator is a contraction. Indeed,

‖χ− χ′‖σ = sup
0≤t≤σ

√
t|χ(t)− χ′(t)| ≤

√
σ[c1‖V − V ′‖+ c2 ‖ϕ− ϕ′‖σ] (3.30)

where the constants c1 and c2 depend explicitly on M and ‖u0‖. By taking σ
sufficiently small, one can make K a contraction (in the ϕ-component).

3.5 Iteration for velocity

For the V -component of ω− ω′ we have

|v − v′| ≤ L
{∣∣ ∫ 0

−∞
[G(S(t), ξ, t)u0(ξ)−G(S′(t), ξ, t)]u0(ξ)dξ

∣∣
+
∣∣ ∫ t

0

[G(S(t), S(τ), t− τ)χ−G(S′(t), S′(τ), t− τ)χ′]dτ
∣∣}

= L{W1 +W2} (3.31)

where L is the Lipschitz constant for g. This estimate is very similar to (3.25),
the principal difference being that the integrand there contains Gξ instead of
G. The estimates for separate terms are quite elementary and are based on the
mean value theorem. To estimate W2 we will need a bound for the difference,

|∆G| ≡ |G(S(t)− S(τ), t− τ, 0)−G(S′(t)− S′(τ), t− τ, 0)|

= |S(t)− S(τ)− (S′(t)− S′(τ))| |∂G
∂x

(s̃, t− τ, 0)|

=
∣∣S(t)− S′(t)− (S(τ)− S′(τ))

2(t− τ)

∣∣ |s̃G(s̃, t− τ, 0)|

=
1
2

∣∣dS
dt

(τ̃)− dS′

dt
(τ̃)
∣∣ |s̃G(s̃, t− τ, 0)|

≤ 1
2
‖V − V ′‖ |s̃G(s̃, t− τ, 0)|
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where τ ≤ τ̃ ≤ t and s̃ are intermediate values. Since s̃ is between S′(t)−S′(τ)
and S(t)− S(τ),

|s̃| ≤ max {|S′(t)− S′(τ)|, |S(t)− S(τ)|} ≤ V0(t− τ)

Taking into account |G| ≤ [4π(t− τ)]−1/2 we get the estimate

|∆G| ≤ C1‖V − V ′‖ (t− τ)1/2. (3.32)

where C1 = V0/4
√
π is an absolute constant. For the term W2 we obtain

W2 ≤
∫ t

0

|∆G| χ dτ +
∫ t

0

G(S′(t), S′(τ), t− τ) |χ− χ′| dτ

≤ C1‖V − V ′‖
∫ t

0

√
(t− τ)√
τ

√
τ χ dτ

+
∫ t

0

e−(S′(t)−,S′(τ))2/4(t−τ)√
4π(t− τ)τ

√
τ |χ− χ′| dτ (3.33)

≤ C1
tπ

2
‖V − V ′‖ M + ‖χ− χ′‖t

√
π

2

≤ (C1
tπ

2
+ C
√
t)‖V − V ′‖ M + C0

√
t‖ϕ− ϕ′‖t

√
π

2
The estimation for the W1 in (3.31) is a little different. Suppose S(t) <

S′(t) < 0 and split the integral for W1 into three integrals:

W1 =
∫ S

−∞
δGu0dξ +

∫ S′

S

δGu0dξ +
∫ 0

S′
δGu0dξ (3.34)

where δG = G(S(t), t, ξ)−G(S′(t), t, ξ). By the mean value theorem,

δG = (S − S′)∂G
∂x

(s̃− ξ, t, 0) = (S − S′) s̃− ξ
2t

G(s̃− ξ, t, 0)

where s̃ is an intermediate value: s̃ = s̃(t, ξ), S(t) ≤ s̃ ≤ S′(t).
If ξ < S < s̃ < S′ then

(s̃− ξ)G(s̃− ξ, t, 0)

= (4π)−1/2(s̃− ξ)t−1/2e−(s̃−ξ)2/4t

= (4π)−1/2(8t)1/2 s̃− ξ
(8t)1/2

e−(s̃−ξ)2/8t21/2(2t)−1/2e−(s̃−ξ)2/8t

≤ 4t1/2c1G(s̃− ξ, 2t, 0) ≤ 4c1t1/2G(s̃− ξ, 2t, 0)

where c1 = max(xe−x
2
). Thus for the first integral in (3.34) we have∣∣ ∫ S

−∞
δGu0dξ

∣∣ ≤ S − S′

2t
4c1t1/2

∫ S

−∞
G(S − ξ, 2t, 0)|u0(ξ)|dξ

≤ 2c1t1/2
1
t

∫ t

0

[V (τ)− V ′(τ)] dτ
∫ 0

−∞
G(S − ξ, 2t, 0)|u0(ξ)|dξ

≤ 2c1t1/2 sup |u0(ξ)| ‖V − V ′‖.
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The integral over (S′, 0) in (3.34) is estimated similarly. As to the second integral
in (3.34), it is even simpler:

∣∣ ∫ S′

S

δGu0dξ
∣∣ =

∣∣ ∫ S′

S

[G(S(t), t, ξ)−G(S′(t), t, ξ)] dξ
∣∣

≤ (S′ − S)2 supG · ‖u0‖
= (S′ − S)2(4π)−1/2t−1/2‖u0‖
≤ 2(4π)−1/2 t1/2‖V − V ′‖ ‖u0‖

Finally, by combining the preceding estimates we get:

W1 ≤ C3 t
1/2‖V − V ′‖ ‖u0‖. (3.35)

Thus, the estimates in (3.33), (3.35) yield

‖v − v′‖ = sup
0≤t≤σ

|v − v′|

≤ C3 σ
1/2‖V − V ′‖ ‖u0‖+ C1

σπ

2
‖V − V ′‖M

+C0

√
σ‖ϕ− ϕ′‖σ

√
π

2
(3.36)

≤ (A1σ
1/2 +A2σ)‖V − V ′‖+A3σ

1/2 ‖ϕ− ϕ′‖σ,

where the constants depend only on M and ‖u0‖. It is clear from (3.30) and
(3.36) that the map K is a contraction for a sufficiently small σ.

This completes the proof of Theorem 3.1 since by the contraction mapping
principle, the system of integral equations has a unique solution. As we saw at
the end of Sec. 3.1 it produces the solution for the problem (1.1)-(1.3).

4 A priori bounds and global existence

In this section we present a priori bounds for solutions of the free-boundary
problem and their first spatial derivatives. The a priori bound for the solutions
was established in our prior work [4] (where a more involved case of g sublinear
is also considered); its proof is included here for reader’s convenience.

4.1 A priori estimate for the solution

The derivation of the bound is based upon an integral representation of the
solution that we will obtain next. If G is the fundamental solution of the
heat equation and u(x, t), s(t) is a classical solution of (1.1)-( 1.3), then by
integrating Green’s identity

∂

∂ξ

(
G
∂u

∂ξ
− u∂G

∂ξ

)
− ∂

∂τ
(Gu) = 0 (4.1)
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over the domain ξ < s(τ), 0 < τ < t and using the Stokes formula, we obtain
the integral representation for the solution:

u(x, t) =
∫ t

0

G(x, s(τ), t− τ) [−V (τ) + U(τ)V (τ)] dτ (4.2)

−
∫ t

0

∂G

∂ξ
(x, s(τ), t− τ)U(τ)dτ +

∫ 0

−∞
G(x, ξ, t)u0(ξ)dξ

which employs both the single-layer and double-layer potentials. In the limit
x→ s(t)− the integral representation yields the following equation:

1
2
U(t) =

∫ t

0

G(s(t), s(τ), t− τ)[−V (τ)]dτ +
∫ t

0

G(s(t), s(τ), t− τ)U(τ)V (τ)dτ

−
∫ t

0

∂G

∂ξ
(s(t), s(τ), t− τ)U(τ)dτ +

∫ 0

−∞
G(x, ξ, t)u0(ξ)dξ (4.3)

where

U(t) = g−1(V (t)), s(t) =
∫ t

0

V (τ)dτ. (4.4)

Note that the factor 1
2 arises from the jump relation for the second integral in

(4.2).
We will show first that the temperature at the front, U(t), is uniformly

bounded. The proof consists of separate estimates for different terms in ( 4.3).
For the first integral we obtain:∫ t

0

G(s(t), s(τ), t− τ)[−V (τ)]dτ ≤ V0

∫ t

0

e−v
2
0(t−τ)/4√

4π(t− τ)
dτ (4.5)

≤ V0

∫ ∞
0

e−v
2
0τ/4

√
4πτ

dτ = V0/v0.

In the above estimate we have used the obvious bound:
(s(t)− s(τ))2

t− τ
=
[s(t)− s(τ)

t− τ
]2(t− τ) ≥ v2

0(t− τ).

We combine together the two subsequent integrals with respect to τ from (4.3):

Φ(t) =
∫ t

0

G(s(t), s(τ), t− τ)U(τ)
[
V (τ)− 1

2
s(t)− s(τ)
t− τ

]
dτ, (4.6)

note that the term with the average velocity,

s(t)− s(τ)
t− τ

,

arises from the explicit differentiation in ∂G/∂ξ. The estimate is based on the
observation that the integrand in ( 4.6) is negative for the velocity of large
magnitude.

Lemma 4.1 Let g(U) ≥ −V0 for U ≥ 0 then the function Φ(t) defined by (4.6)
is bounded uniformly in t.
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Proof We split the domain of integration in (4.6) into the two sets:

[0, t] = {τ : V (τ) < −V0/2} ∪ {τ : V (τ) ≥ −V0/2} = B− ∪B+. (4.7)

Note that on B−

V (τ)− 1
2
s(t)− s(τ)
t− τ

= V (τ)− 1
2
V (σ) ≤ −V0/2 + V0/2 = 0, (4.8)

where τ ≤ σ ≤ t. On B+ the absolute value of the difference in (4.8) is bounded
by supB+

|V | = V0/2, therefore, since U ≥ 0 and G > 0, we obtain the estimate:

Φ(t) ≤
∫
B+

G(s(t), s(τ), t− τ)U(τ)
[
V (τ)− 1

2
s(t)− s(τ)
t− τ

]
dτ,

≤ g−1(−V0/2)V0

2

∫
B+

e−v
2
0(t−τ)/4√

4π(t− τ)
dτ ≤ g−1(−V0/2)V0

2v0
. (4.9)

�

Therefore for the interface temperature U we obtained the bound:

U(t) = 2{
∫ t

0

G(s(t), s(τ), t− τ)[−V (τ) + U(τ)V (τ)]dτ

−
∫ t

0

∂G

∂ξ
(s(t), s(τ), t− τ)U(τ)dτ +

∫ 0

−∞
G(s(t), ξ, t)u0(ξ)dξ}

≤ [g−1(−V0/2) + 2]V0

v0
+ 2‖u0‖ ≡ Rfb + 2‖u0‖.

We have shown that the solution on the free boundary is bounded. In
combination with the boundedness of the initial data it yields boundedness
of the solution everywhere:

Theorem 4.2 Let the kinetic function g satisfy the kinetic condition in 2.4.
If u(x, t), V (t) is a solution of the free boundary problem ( 1.1)-(1.3) then the
functions u, V are bounded,

0 ≤ u(x, t) ≤ Rfb + 2‖u0‖, (4.10)

where Rfb is an “absolute” constant determined by the kinetics.

The proof is extremely simple. We ignore the boundary condition on ux in
(1.2) and note that a solution u(x, t) of the free boundary problem solves the
initial value problem for the heat equation with the given Dirichlet boundary
conditions U(t) = g−1((ṡ(t)) at the free boundary. Since both initial data and
the boundary conditions are bounded, u(x, t) is also bounded by the maximum
principle.

As a corollary we note here the global existence result that follows from the
local existence and from the a priori bound (cf. Sec. 5 of [1]).

Remark 4.3 Bounds V0 and v0 play very different roles in the previous results.
It can be shown that a version of the a priori estimate (4.10) holds even if the
condition |g| ≤ V0 is relaxed to g(u)/u1+ε → 0 as u→∞ (see [4] for details).
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4.2 A priori estimate for the derivative

Theorem 4.4 Consider the ball
∥∥u0
∥∥ ≤ R. There exists σ > 0 depending on

R such that for any fixed t, 0 < t ≤ σ, the derivative of the solutions of the free
boundary problem with the initial data from the ball is uniformly bounded. More
specifically

|ux(x, t)| ≤ C

1 + |s(t)− x|
where C is determined by R and t.

Proof Consider the solution u(x, t) given by the single-layer integral repre-
sentation (3.1). By Theorem3.1 the representation is valid on some life span σ
that is completely determined by R. We differentiate u with respect to x

ux(x, t) =
∂

∂x

∫ t

0

G(x, s(τ), t− τ)ϕ(τ)dτ +
∫ 0

−∞

∂

∂x
G(x, ξ, t)u0(ξ)dξ

It was shown in Sec. 3 for |s(t)− x| > 1, see (3.18), that

∂

∂x

∫ t

0

G(x, s(τ), t− τ)ϕ(τ)dτ ≤ C‖ϕ‖σ
|s(t)− x|

(4.12)

and for |s(t)− x| ≤ 1, [see (3.20)]

∂

∂x

∫ t

0

G(x, s(τ), t− τ)ϕ(τ)dτ ≤ C ‖ϕ‖σ /
√
t (4.13)

Now we need the estimate for the integral of the initial data∣∣∣ ∫ 0

−∞

∂

∂x
G(x, ξ, t)u0(ξ)dξ

∣∣∣ =
∫ 0

−∞

1√
4πt
|ξ − x|

2t
e−

(x−ξ)2
4t

∣∣u0(ξ)
∣∣ dξ (4.14)

=
1√
t

∫ 0

−∞

2√
8πt

e−
(x−ξ)2

8t
|ξ − x|√

8t
e−

(x−ξ)2
8t

∣∣u0(ξ)
∣∣ dξ

≤ 2
e
√
t

∥∥u0
∥∥

It was shown in the proof of the local existence of solutions that, given a bound
on the initial data u0, the density ϕ belongs to the invariant ball of radius M
and therefore is uniformly bounded for all initial conditions within the bound.
Thus, (4.12)-(4.14) yield the result of the theorem.

Corollary 4.5 For all t ≥ t0, where t0 ≤ σ the derivative is uniformly bounded:
|ux(x, t)| ≤ C.

For the proof we note that ux solves the heat equation in the domain {(x, t) :
t > t0, x < s(t)} with the initial data ux(x, t0) and boundary conditions V (t)
which are both bounded. This yields a bound in the interior of the domain by
the maximum principle.
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5 Absorbing set and attractor

In this section we use the estimates obtained above to establish the existence
of a bounded absorbing set and of the attractor which is compact in the space
of continuous functions. In order to establish compactness of the attractor we
need to reinstitute the heat losses. It can be easily verified that all the analytical
properties of the solutions and estimates established above can be only improved
by introducing the heat losses. On the other hand the problem with the heat
losses exhibits uniform exponential decay in time of the contribution of initial
data that is necessary for the proof of compactness of the attractor.

With the heat loss, the integral representation of the solution in terms of
mixed potential (4.2) takes the form

u(x, t)
∫ t

0

e−γ(t−τ)G(x, s(τ), t− τ) [−V (τ) + U(τ)V (τ)] dτ

−
∫ t

0

e−γ(t−τ) ∂G

∂ξ
(x, s(τ), t− τ)U(τ)dτ + e−γt

∫ 0

−∞
G(x, ξ, t)u0(ξ)dξ

The representation describes globally in time the evolution of the initial temper-
ature distribution u0: u(t) = T (t)u0. We think of the evolution as taking place
for the functions on the fixed interval (−∞, 0). To achieve this we introduce the
moving coordinate system attached to the free boundary x′ = x− s(t).

We split the semigroup operator T into two parts: the contribution of the
free boundary

T1(t)u0(x′) =
∫ t

0

e−γ(t−τ)G(x′, s(τ)− s(t), t− τ) [−V (τ) + U(τ)V (τ)] dτ

−
∫ t

0

e−γ(t−τ) ∂G

∂ξ
(x′, s(τ)− s(t), t− τ)U(τ)dτ (5.1)

and that of the initial data

T2(t)u0 = e−γt
∫ 0

−∞
G(x′, ξ − s(t), t)u0(ξ)dξ (5.2)

As a basic metric space we choose a ball in the space C(−∞, 0]:

X = {u ∈ C(−∞, 0]; ‖u‖ = sup |u(x′)| ≤ N}

where the radius N is large enough (it suffices to take N > Rfb + 2Rabs where
Rabs is the radius of the absorbing ball which is estimated in the following
proposition). Note that by Theorem 4.2, the evolution of any ball BR of radius
R ≤ (N −Rfb)/2 stays in X for all time.

The following result establishes existence of an absorbing set for the evolu-
tion.
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Proposition 5.1 (i) The semigroup T2 is uniformly contracting:

rX(t) = sup
u0∈X

‖T2(t)u0‖ → 0 as t→∞.

(ii) There exists a constant, Rabs, totally determined by the kinetics such that
any ball Ba = {u ∈ X : ‖u‖ ≤ a}, where a = Rabs + ε < N , is an absorbing set
for any ball BR (where R ≤ (N − Rfb)/2) with respect to the evolution by T1

(and T ).

Proof As is easily seen from (5.2) the contribution of the initial data decays
uniformly ‖T2(t)u0‖ ≤ e−γt‖u0‖. The contribution from the free boundary
is represented through the mixed potential integral with the densities U and
−V +UV . Both densities are bounded: |V (τ)| ≤ V0 and U was estimated above
in (4.10). In the presence of the heat losses the estimate is modified

|U(τ)| ≤ Rfb + 2e−γt‖u0‖

(the value of Rfb is even slightly less than in (4.10): v0 should be replaced by
v0 +

√
γ). Next we estimate contributions of both potentials in the expression

for T1. The estimates are very similar to the estimates for the derivative of the
single layer potential in Lemma 3.2:∫ t

0

e−γ(t−τ) e
−(x−s(τ))2/4(t−τ)√

4π(t− τ)
[−V (τ) + U(τ)V (τ)] dτ

≤
∫ t

0

V0(Rfb + 2e−γτN + 1)e−(x−s(τ))2/8(t−τ)

× exp{− (x′)2 + 2x′(s(t)− s(τ)) + (s(t)− s(τ))2

8(t− τ)
} e
−γ(t−τ)dτ√
4π(t− τ)

≤ e−v0|x′|/4
∫ t

0

V0(Rfb + 2e−γτN + 1)e−(s(t)−s(τ))2/8(t−τ) e
−γ(t−τ)dτ√
4π(t− τ)

≤ e−v0|x′|/4
∫ t

0

V0(Rfb + 2e−γτN + 1)e−v
2
0(t−τ)/8 e

−γ(t−τ)dτ√
4π(t− τ)

≤
√

2V0(Rfb + 2e−γtN + 1)
v0

e−v0|x′|/4. (5.3)

The estimation for the double layer potential term from (5.1) is almost iden-
tical to the corresponding estimate in Lemma 3.5. For |x′| > 1, it produces the
bound:∣∣∣ ∫ t

0

e−γ(t−τ) ∂G

∂ξ
(x′, s(τ)− s(t), t− τ)U(τ)dτ

∣∣∣ ≤ c1(Rfb + 2e−γtN)
v0(1 + |x′|)

e−v0|x′|/4,

(5.4)
while for |x′| < 1 it is bounded by c2(Rfb + 2e−γtN)/v0. Both c1 and c2 are
explicit, order one constants.
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If now we take Rabs equal to the sum of the constants in the above estimates
(5.3)-(5.4) then

|T1(t)u0| ≤ Rabse−v0|x′|/4 + Ce−γte−v0|x′|/4N (5.5)

if ‖u0‖ ≤ N . By choosing t1 such that Ce−γt1N < a−Rabs we ensure that the
orbit of any bounded subset of X enters Ba and remains there after that time
t1, which means that Ba is absorbing for X. �

Next we prove that the boundary contribution to the evolution, i.e. the
operators T1(t) are uniformly compact. Namely, the following proposition holds:

Proposition 5.2 There exists t0 > 0 such that ∪t≥t0T1(t)X is relatively com-
pact in X.

Proof The proof of the proposition contains the following two basic ingre-
dients: We establish certain estimates on the functions T1(t)u, and their first
spatial derivatives, uniformly in u ∈ X, that are valid for any t ≥ t0 > 0, next
we demonstrate that the set determined by the estimates is relatively compact.

First we recall that by Corollary 4.5 for sufficiently small t0 > 0 and any
u0 ∈ X,

|(T (t)u0)x| ≤ C for t ≥ t0, x ∈ (−∞, 0]

On the other hand the contribution from the free boundary

|(T1(t)u0)x| = |(T (t)u0)x − (T2(t)u0)x|
≤ |(T (t)u0)x|+ |(T2(t)u0)x|
≤ C + C‖u0‖/

√
t ≤ C

since the contribution of the initial conditions is also uniformly bounded
|(T2(t)u0)x| ≤ C‖u0‖/

√
t, see (4.14). Therefore the family ∪t≥t0T1(t)X is

equicontinuous.
For the version of Arzela-Ascoli theorem appropriate for (−∞, 0] we need

uniform boundedness and uniform decay of the family of functions as |x′| →
∞. These properties are provided by the estimate (5.5) that gives a uniform
exponential decay. Then it is easy to construct a finite ε-net by choosing a
finite interval beyond which the functions of the family are smaller than ε and
extending the elements of the ε-net from this interval by zero. �

The properties of the evolution operator T (t) described in the above propo-
sitions allow us to apply the abstract general result (see, for example, [15] Chap.
1) that in our situation can be stated as follows:

Theorem 5.3 The continuous semigroup T (t), T (t) = T1(t) + T2(t) with T1(t)
uniformly compact and T2(t) uniformly contracting has the following properties:
the ω-limit set A of the absorbing set Ba is a compact attractor for the metric
space X; A is the maximal attractor in X and it is connected.
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6 Concluding remarks

Compactness of the attractor and ultimately its finite Hausdorff dimension (see
[6]) for the free boundary problem modeling nonequilibrium solidification and
SHS is a rather remarkable fact, especially in view of the surprising wealth
of possible dynamical scenarios. The situation should be compared, perhaps,
to the similar facts known for the Kuramoto-Sivashinsky equation or Navier-
Stokes equations. In both cases the compactness is shown for finite intervals
whose length enters also into the estimate on the Hausdorff dimension. In our
case, however, the domain of the field variable is an infinite interval.

The compactness result was proved here in the presence of heat losses for
any nonzero heat loss. Although we chose to operate in spaces of continuous
uniformly bounded functions on the infinite interval, we believe that compact-
ness can be established in spaces with weaker topology, specifically in the space
of continuous functions bounded on each finite interval. In this case we would
not need the heat loss term, but we would have less control over the behavior
of solutions at infinity.

Results of this paper are proved for the kinetic function satisfying the bounds
in (2.4). These bounds are quite physical and cover a wide range of important
applications. Nonetheless, our numerical experimentation with different types
of kinetic functions, including unbounded ones demonstrate that the asymptotic
dynamics are insensitive to the behavior of the kinetic function for large tem-
peratures. On the other hand, our results from [4] provide global existence for
a wider class of kinetic functions, than in (2.4), namely for sublinear kinetics.
Therefore it seems plausible that a compact attractor should exists for this case
as well.

Finally, we should remark that the one-phase problem is to a degree a par-
ticular case of a more general two-phase problem (2.4). There are technical dif-
ficulties in implementation of the construction of this paper for the two-phase
problem, as the field extends behind the interface where it is not necessarily
decaying. At the same time numerical experiments show a great similarity in
dynamical behavior of both problems. It would be, therefore, interesting to
extend results of the present paper to the two-phase problem.
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