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Positive and monotone solutions of an m-point

boundary-value problem ∗

Panos K. Palamides

Abstract

We study the second-order ordinary differential equation

y′′(t) = −f(t, y(t), y′(t)), 0 ≤ t ≤ 1,

subject to the multi-point boundary conditions

αy(0)± βy′(0) = 0, y(1) =

m−2∑
i=1

αiy(ξi) .

We prove the existence of a positive solution (and monotone in some cases)
under superlinear and/or sublinear growth rate in f . Our approach is
based on an analysis of the corresponding vector field on the (y, y′) face-
plane and on Kneser’s property for the solution’s funnel.

1 Introduction

Recently an increasing interest has been observed in investigating the existence
of positive solutions of boundary-value problems. This interest comes from
situations involving nonlinear elliptic problems in annular regions. Erbe and
Tang [5] noted that, if the boundary-value problem

−∆u = F (|x|, u) in R < |x| < R̂

with

u = 0 for |x| = R, u = 0 for |x| = R̂; or

u = 0 for |x| = R,
∂u

∂|x|
= 0 for |x| = R̂; or

∂u

∂|x|
= 0 for |x| = R, u = 0 for |x| = R̂
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is radially symmetric, then the boundary-value problem can be transformed into
the scalar Sturm-Liouville problem

x′′(t) = −f(t, x(t)), 0 ≤ t ≤ 1, (1.1)
αx(0)− βx′(0) = 0, γx(1) + δx′(1) = 0. (1.2)

where α, β, γ, δ are positive constants.
By a positive solution of (1.1)-(1.2), we mean a function x(t) which is positive

for 0 < t < 1 and satisfies the differential equation (1.1) with the boundary
conditions (1.2).

Erbe and Wang [6] using Green’s functions and the Krasnoselskii’s fixed
point theorem on cones proved the existence of a positive solution of ( 1.1)-
(1.2), under the following assumptions:

(B1) The function f is continuous and positive on [0, 1]× [0,∞) and

f0 := lim
y→0+

max
0≤t≤1

f(t, y)
y

= 0, f∞ := lim
y→+∞

min
0≤t≤1

f(t, y)
y

= +∞ (1.3)

i.e. f is superlinear at both ends points x = 0 and x =∞; or

f0 := lim
y→0+

min
0≤t≤1

f(t, y)
y

= +∞, f∞ := lim
y→+∞

max
0≤t≤1

f(t, y)
y

= 0. (1.4)

i.e. f is sublinear at both x = 0 and x =∞.

(B2) ρ := βγ + αγ + αδ > 0.

Also nonlinear boundary constraints have been studied, among others by
Thompson [22] and by the author of this paper and Jackson [9]. There are com-
mon ingredients in these papers: an (assumed) Nagumo-type growth condition
on the nonlinearity f or/and the presence of upper and lower solutions.

The multi-point boundary-value problem for second-order ordinary differen-
tial equations was initiated by Ilin and Moiseev [10, 11]. Gupta [14] studied the
three-point boundary-value problems for nonlinear ordinary differential equa-
tions. Since then, more general nonlinear multi-point boundary-value problems
have been studied by several authors. Most of them used the Leray-Schauder
continuation theorem, nonlinear alternatives of Leray-Schauder, coincidence de-
gree theory or a fixed-point theorem on cones. We refer the reader to [1, 8, 13, 20]
for some recent results of nonlinear multipoint boundary-value problems.

Let ai ≥ 0 for i = 1, . . . ,m− 2 and let ξi satisfy 0 < ξ1 < ξ2 < · · · < ξm−2 <
1. Ma [21] applied a fixed-point theorem on cones to prove the existence of a
positive solution of

u′′ + a(t)f(u) = 0

u(0) = 0, u(1) =
m−2∑
i=1

αiu(ξi)

under superlinearity or sublinearity assumptions on f . He also assumed the
following
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(Γ1) a ∈ C([0, 1], [0,∞)), f ∈ C([0,∞), [0,∞)), and there exists t0 ∈ [ξm−2, 1]
such that a(t0) > 0

(Γ2) For i = 1, . . . ,m− 2, ai ≥ 0 and
∑m−2
i=1 aiξi < 1.

Recently, Gupta [16] obtained existence results for the boundary-value problem

y′′(t) = f(t, y(t), y′(t)) + e(t), 0 ≤ t ≤ 1

y(0) = 0, y(1) =
m−2∑
i=1

αiy(ξi),

by using the Leray-Schauder continuation theorem, under smallness assump-
tions of the form

|f(t, y, y′)| ≤ p(t)|y|+ q(t)|y′|+ r(t) and C1‖p(t)‖+ C2‖q(t)‖ ≤ 1,

with p(t), q(t), r(t) and e(t) in L1(0, 1) and C1 and C2 constants.
In this paper, we consider the problem of existence of positive solutions for

the m-point boundary-value problem

y′′(t) = −f(t, y(t), y′(t)), 0 ≤ t ≤ 1, (1.5)

αy(0)− βy′(0) = 0, y(1) =
m−2∑
i=1

αiy(ξi). (1.6)

We assume α > 0, β > 0, the function f is continuous, and

f(t, y, y′) ≥ 0, for all t ∈ [0, 1], y ≥ 0 y′ ∈ R. (1.7)

The presence of the third variable y′ in the function f(t, y, y′) causes some
considerable difficulties, especially, in the case where an approach relies on a
fixed point theorem on cones and the growth rate of f(t, y, y′) is sublinear or
superlinear. We overcome this predicament, by extending below the concept-
assumptions (1.3) and ( 1.4) as follows:

Suppose that for any M > 0,

f0,0 := lim
(y,y′)→(0,0)

max
0≤t≤1

f(t, y, y′)
y

= 0

f+∞ := lim
y→+∞

min
0≤t≤1

f(t, y, y′)
y

= +∞, for |y′| ≤M
(1.8)

i.e. f is jointly superlinear at the end point (0, 0) and uniformly superlinear at
+∞. Similarly

f0 := lim
y→0+

min
0≤t≤1

f(t, y, y′)
y

= +∞, for |y′| ≤M.

f+∞,+∞ := lim
(y,y′)→(+∞,+∞)

max
0≤t≤1

f(t, y, y′)
y

= 0,
(1.9)



4 Positive and monotone solutions EJDE–2002/??

i.e. f is jointly sublinear at (+∞,+∞) and uniformly sublinear at 0.
Furthermore there exist l̄ ∈ (0,∞], such that for every M̄ > 0

lim
y′→−∞

max
0≤t≤1

f(t, y, y′)
y′

= −l̄, for y ∈ [0, M̄ ] (1.10)

i.e. f(t, y, .) is linear or superlinear at −∞ and for every η̄ > 0

lim
y′→0

min
0≤t≤1

f(t, y, y′)
y′

= 0, for y ∈ (0, η̄). (1.11)

i.e. f(t, y, .) is superlinear at 0.

Remark 1.1 Note that the differential equation (1.5) defines a vector field
whose properties will be crucial for our study. More specifically, we look at the
(y, y′) face semi-plane (y > 0). From the sign condition on f (see assumption
(1.7)), we immediately see that y′′ < 0. Thus any trajectory (y(t), y′(t)), t ≥ 0,
emanating from the semi-line

E0 := {(y, y′) : αy − βy′ = 0, y > 0}

“trends” in a natural way, (when y′(t) > 0) toward the positive y-semi-axis
and then (when y′(t) < 0) trends toward the negative y′-semi-axis. Lastly, by
setting a certain growth rate on f (say superlinearity) we can control the vector
field, so that some trajectory satisfies the given boundary condition

y(1) =
m−2∑
i=1

αiy(ξi)

at the time t = 1. These properties will be referred as “The nature of the vector
field” throughout the rest of paper.

So the technique presented here is different to that given in the above men-
tioned papers [16, 6, 3, 13, 5], but it is closely related with those in [9, 21].
Actually, we rely on the above ”nature of the vector field” and on the simple
shooting method. Finally, for completeness we refer to the well-known Kneser’s
theorem (see for example Copel’s text-book [2]).

Theorem 1.2 Consider the system

x′′ = f(t, x, x′), (t, x, x′) ∈ Ω := [α, β]× R2n, (1.12)

with the function f continuous. Let Ê0 be a continuum (compact and connected)
set in Ω0 := {(t, x, x′) ∈ Ω : t = α} and let X (Ê0) be the family of all solutions
of (1.12) emanating from Ê0. If any solution x ∈ X (Ê0) is defined on the
interval [α, τ ], then the set ( cross-section at the point τ)

X (τ ; Ê0) :=
{

(x(τ), x′(τ)) : x ∈ X (Ê0)
}

is a continuum in R2n.
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Now consider (1.5)-(1.6) with the following notation.

σ :=
m−2∑
i=1

αiξi < 1, σ∗ :=
m−2∑
i=1

αiξi +
β

α

{m−2∑
i=1

αi
ξi
ξ1
− 1
}
< 1,

K0 := max
{2α
β
, 2
[α+ β

β
− σ

ξm−2

]}
,

µ0 := min
{

(1−m∗)εα
β
, 2
[ε(α+ β)

β
− 1
] }

where β/(α+ β) < ε < 1 and σ∗ < m∗ < 1.
So by (1.10), for any K̄ ∈ (0, l̄) there exists H > 0 such that

min
0≤t≤1

f(t, y, y′) > −K̄y′, 0 ≤ y ≤ H
(
1 +

α

β

)
and y′ < −H. (1.13)

By the superlinearity of f(t, y, y′) at y = +∞ (see condition ( 1.8)), for any
K∗ > K0 there exists H∗ > H such that

min
0≤t≤1

f(t, y, y′) > K∗y, y ≥ H∗ and − 2H ≤ y′ ≤ α

β
H. (1.14)

Similarly by the superlinearity of f(t, y, y′) at (0, 0), for any 0 < µ∗ < µ0 there
is an η∗ > 0 such that

0 < y ≤ η∗ and 0 < y′ ≤ α

α+ β
η∗ ⇒ max

0≤t≤1
f(t, y, y′) ≤ µ∗y. (1.15)

Also consider the rectangle

D :=
[
0,
(
1 +

α

β

)
H
]
×
[
− 2H,

α

β
H
]

and define a bounded continuous modification F of f such that

F (t, y, y′) = f(t, y, y′), (t, y, y′) ∈ [0, 1]×D.

2 An m-point boundary-value Problem

We consider now the boundary-value problem

y′′ + F (t, y, y′) = 0.

αy(0)− βy′(0) = 0, y(1) =
m−2∑
i=1

αiy(ξi)
(2.1)

Theorem 2.1 Assume that (1.7) holds and

σ∗ =
m−2∑
i=1

αiξi +
β

α

{m−2∑
i=1

αi
ξi
ξ1
− 1
}
< 1. (2.2)

Then the boundary-value problem (1.5)-(1.6) has a positive solution provided
that:
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• The function f is superlinear (see (1.8)) along with (1.10), or

• The function f is sublinear (see (1.9)), (1.11) holds and in addition,

(m−2∑
i=1

αiξi

)[ 1
2ξm−2

+
α

2β

]
> 1. (2.3)

Furthermore, there exists a positive number H such that

0 < y(t) ≤ H and − 2H ≤ y′(t) ≤ α

β
H, 0 ≤ t ≤ 1,

for any such solution.

Proof 1) Superlinear case. Since f∞ = +∞ and in view of (1.14), for any
K∗ > K > K0 there exists H∗ ≥ H > 0 such that

min
0≤t≤1

f(t, y, y′) > Ky, y ≥ H and
α

β
H ≥ y′ ≥ −2H. (2.4)

Consider the function

W (P ) :=
m−2∑
i=1

αiy(ξi)− y(1),

where y ∈ X (P1) is any solution of differential equation ( 2.1) starting at the
point P1 := (y1, y

′
1) ∈ E0 with y1 = H.

By the assumption (1.7) (i.e. the nature of the vector field, see Remark 1.1)
it is obvious that y(t) ≥ y1 = H and y′(t) ≤ y′1 = α

β y1 = α
βH, for all t in a

sufficiently small neighborhood of t = 0.
Let’s suppose that there is t∗ ∈ (0, 1] such that

y(t) ≥ H, −2H ≤ y′(t) ≤ α

β
H, 0 ≤ t < t∗ and y(t∗) = H

or
y(t) ≥ H, −2H ≤ y′(t) ≤ α

β
H, 0 ≤ t < t∗ and y′(t∗) = −2H.

Consider first the case: y(t∗) = H. Then since P1 ∈ E0, by the Taylor’s
formula we get t ∈ [0, t∗] such that

H = y(t∗) ≤ H
[
1 +

α

β

]
− 1

2
f(t, y(t), y′(t)) (2.5)

and thus
H

2α
β
≥ f(t, y(t), y′(t)).

But since y(t) ≥ H and −2H ≤ y′(t) ≤ α
βH, 0 ≤ t < t∗ by (2.4), we have

f(t, y(t), y′(t)) ≥ min
0≤t≤1

f(t, y(t), y′(t)) ≥ Ky(t)) ≥ KH
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and so we obtain H2α/β ≥ KH contrary to the choice K > 2α
β . Furthermore,

by (2.5),
H ≤ y(t) < H

[
1 +

α

β

]
, 0 ≤ t ≤ 1. (2.6)

We recall also (see (1.13)) that for any ε∗ ∈
(
1, min

{
2, 1 + l̄)

})
there exists

K̄ ∈
(
ε∗ − 1, l̄

)
such that

min
0≤t≤1

f(t, y, y′) > −K̄y′, 0 ≤ y ≤ H
[
1 +

α

β

]
and y′ < −H. (2.7)

We shall prove that
α

β
H ≥ y′(t) ≥ −ε∗H > −2H, 0 ≤ t ≤ 1. (2.8)

Indeed, since y′(t) is decreasing on [0, 1], let’s assume that there exist t0, t1 ∈
(0, 1) such that

y′(t0) = −H , −ε∗H < y′(t) < −H, t0 ≤ t ≤ t1 and y′(t1) = −ε∗H

Then by (2.6)-(2.8), for some t̄ ∈ (t0, t1), we get

−ε∗H =y′(t1) = y′(t0)− f(t̄, y(t̄), y′(t̄))
≤−H + K̄y′(t̄) ≤ −H + K̄y′(t0)
=−H − K̄H,

Thus we get another contradiction K̄ ≤ ε∗ − 1. On the other hand by the
concavity of the solution y ∈ X (P1) (due to the assumption (1.7)), we know
that the function y(ξ)/ξ, 0 < ξ ≤ 1 is decreasing and so

y(ξi)
ξi
≥ y(ξm−2)

ξm−2
, i = 1, 2, . . . ,m− 2. (2.9)

Thus in view of (2.6)

W (P1) =
m−2∑
i=1

αiy(ξi)− y(1) =
m−2∑
i=1

αiξi
y(ξi)
ξi
− y(1)

≥
[m−2∑
i=1

αiξi

] H

ξm−2
− y(1) = σ

H

ξm−2
− y(1).

where we recall that σ =
∑m−2
i=1 αiξi < 1. Consequently by Taylor’s formula,

W (P1) ≥ σ

ξm−2
H −

(
y1 +

α

β
y1 −

1
2
f(t∗, y(t∗), y′(t∗))

)
Thus by (2.4), (2.6) and (2.8), we get

W (P1) ≥ σ

ξm−2
H −

[
1 +

α

β

]
H +

1
2
Ky(t∗)

≥ σ

ξm−2
H −

[
1 +

α

β

]
H +

1
2
KH.
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In this way we get
W (P1) ≥ 0, (2.10)

since by the choice of K at (2.4), we have

K > 2
[
1 +

α

β
− σ

ξm−2

]
.

Similarly by the superlinearity of f(t, y, y′) at (0, 0), for any µ > 0 there is an
η > 0 such that

0 < y ≤ η and 0 ≤ y′ ≤ 2αε
β
η imply max

0≤t≤1
f(t, y, y′) < µy, (2.11)

where β
α+β < ε < 1. We choose now (see (1.15))

µ∗ ≤ µ < µ0 = min
{

(1−m∗)εα
β
, 2
[ε(α+ β)

β
− 1
]}

(2.12)

and then clearly η ≥ η∗.
Let now y ∈ X (P0) be a solution of differential equation (2.1) starting at the

point P0 := (y0, y
′
0) ∈ E0 with y0 = εη. We shall show that

εη ≤ y(t) ≤ η and m∗
αε

β
η ≤ y′(t) ≤ αε

β
η, 0 ≤ t ≤ 1, (2.13)

where we recall that

σ∗ =
m−2∑
i=1

αiξi +
β

α

{m−2∑
i=1

αi
ξi
ξ1
− 1
}
< m∗ < 1.

Indeed, if there is a least t∗ ∈ (0, 1] such that m∗ αεβ η = y′(t∗), and

εη ≤ y(t) ≤ η and m∗
αε

β
η ≤ y′(t) ≤ αε

β
η, 0 ≤ t < t∗,

then again by Taylor’s formula,

m∗
αε

β
η = y′(t∗) = y0

α

β
− f(t, y(t), y′(t)) ≥ y0

α

β
− µy(t) ≥ εηα

β
− µη,

and hence we obtain the contradiction µ ≥ (1−m∗) εαβ , due to the choice of µ
at (2.12). Similarly we may prove the first inequality of (2.13).

Consider once again the function

W (P ) =
m−2∑
i=1

αiy(ξi)− y(1)
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and then by (2.9),

W (P0) =
m−2∑
i=1

αiy(ξi)− y(1) =
m−2∑
i=1

αiξi
y(ξi)
ξi
− y(1)

≤
[m−2∑
i=1

αiξi

]y(ξ1)
ξ1
− y(1).

(2.14)

Now in view of (2.13),

y(ξ1)
ξ1

=
1
ξ1

{
y(0) +

∫ ξ1

0

y′(s)ds
}
≤ εη

ξ1
+
αε

β
η

and

y(1) = y(0) +
∫ 1

0

y′(s)ds ≥ εη +m∗
αε

β
η.

Consequently by (2.14),

W (P0) ≤
[m−2∑
i=1

αiξi

](αε
β
η +

εη

ξ1

)
−m∗αε

β
η − εη

=
(m−2∑
i=1

αiξi −m∗
)αε
β
η +

{m−2∑
i=1

αi
ξi
ξ1
− 1
}
ηε ≤ 0

(2.15)

due to the choice of m∗ >
∑m−2
i=1 αiξi + β

α

{∑m−2
i=1 αi

ξi
ξ1
− 1
}

.
It is now clear that the function W = W (P ), P ∈ [P0, P1] is continuous

and thus by the Kneser’s property (see Theorem 1.2), (2.10) and (2.15), we
get a point P ∈ [P0, P1] (we chose the last one to the “left” of P1) such that
W (P ) = 0. This fact clearly means that there is a solution y ∈ X (P ) of equation
(2.1), such that

W (P ) =
m−2∑
i=1

αiy(ξi)− y(1) = 0.

It remains to be proved that the so obtaining solution y = y(t) is actually
a bounded function. Indeed, by the choice of P , the continuity of y(t) with
respect initial values, (2.10) and (2.15), it follows that

y(t) > 0, 0 ≤ t ≤ 1,

because if
y(t) > 0, 0 ≤ t < 1 and y(1) = 0,

then W (P ) > 0. Moreover by the nature of the vector field (see Remark 1.1),
there is tP ∈ (0, 1) such that the so obtaining solution y ∈ X (P ) is strictly
increasing on [0, tp], strictly decreasing on [tp, 1] and further is strictly positive
on [0, 1]. Also it holds y(t) ≤ H, 0 ≤ t ≤ 1, i.e.

0 < y(t) ≤ H, 0 ≤ t ≤ 1. (2.16)
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Indeed, let’s assume that there exist t0, t1 ∈ [0, 1] such that

y(t) ≤ H, 0 ≤ t < t0, y(t0) = H, y(t) ≥ H, and y′(t) ≥ 0, t0 ≤ t ≤ t1.

Then we have 0 < y′(t0) < α
β y(t0) ≤ α

βH and further by (2.4), for some t̄ ∈
(t0, t1)

H ≤ y(t1) =y(t0) + (t1 − t0)y′(t0)− 1
2
f(t̄, y(t̄), y′(t̄))

≤H
[
1 +

α

β

]
− K

2
y(t̄)

≤H
[
1 +

α

β

]
− K

2
H.

Thus we get the contradiction K < 2α/β. Also by assumption (1.10 ), we may
show (exactly as at (2.8)) that the above solution y ∈ X (P ) implies further the
inequalities

α

β
H ≥ y′(t) ≥ −ε∗H ≥ 2H, 0 ≤ t ≤ 1. (2.17)

and hence by (2.16) and the definition of the modification F , the obtaining
solution of (2.1) is actually a solution of the original equation (1.5).

2) Sublinear case. We choose ε0 >
α+β
β and recall that

m−2∑
i=1

αiy(ξi) +
β

α

{m−2∑
i=1

αi
ξi
ξ1
− 1
}
< m∗ < 1.

Since f+∞,+∞ = 0, for µ < min
{

(1−m∗) α
ε0β

, 2
ε0

[ε0− α+β
β ]
}

, there exists H > 0
such that

max
0≤t≤1

f(t, y, y′) < µy, y ≥ H, and
α

β
H ≥ y′ ≥ m∗α

β
H. (2.18)

Let’s consider a point P0 := (y0, y
′
0) ∈ E0 with y0 = H. We will prove first that

for any solution y ∈ X (P0) ,

H ≤ y(t) ≤ ε0H and
m∗α

β
H ≤ y′(t) ≤ α

β
H, 0 ≤ t ≤ 1. (2.19)

Let us suppose that this is not the case. Then by the assumption (1.7), there is
t∗ ∈ [0, 1] such that

H ≤ y(t) ≤ ε0H,
m∗α

β
H ≤ y′(t) ≤ α

β
H, 0 < t < t∗,

and y(t∗) = ε0H or y′(t) =
m∗α

β
H.

(2.20)
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Assume that y(t∗) = ε0H. Then by the Taylor’s formula, (2.18) and (2.20) we
obtain t ∈ [0, t∗] such that

ε0H = y(t∗) =y0[1 +
α

β
]− 1

2
f(t, y(t), y′(t))

<H[1 +
α

β
] +

1
2
µy(t̄) ≤ H[1 +

α

β
] +

1
2
µε0H

and hence it contradicts

µ <
2
ε0

[
ε0 −

α+ β

β

]
.

Let’s suppose now that y′(t∗) = m∗ αβH. Then again by (2.18) and (2.20), we
obtain

m∗
α

β
H = y′(t∗) = y′0 − f(t, y(t), y′(t)) ≥ α

β
H − µy(t) ≥ α

β
H − µε0H,

which contradicts µ < (1−m∗)α/(ε0β).
Consider the function W (P ). Then

W (P0) =
m−2∑
i=1

αiy(ξi)− y(1) =
m−2∑
i=1

αiξi
y(ξi)
ξi
− y(1)

≤
[m−2∑
i=1

αiξi

]y(ξ1)
ξ1
− y(1)

and so by the second inequality of (2.19) (see also (2.15)), we get

W (P0) ≤
[m−2∑
i=1

αiξi

](α
β
H +

H

ξ1

)
−m∗α

β
H −H

=
(m−2∑
i=1

αiξi −m∗
)α
β
H +

(m−2∑
i=1

αi
ξi
ξ1
− 1
)
H ≤ 0

(2.21)

due to the fact that m∗ >
∑m−2
i=1 αiξi + β

α

{∑m−2
i=1 αi

ξi
ξ1
− 1
}

.

On the other hand, since f0 = +∞, for any K > max{ 2(α−β)
β , 2α

β } there
exist η ∈ (0,H) such that

min
0≤t≤1

f(t, y, y′) > Ky, 0 < y ≤ η and − η ≤ y′ ≤ α

β

η

2
. (2.22)

Consider a point P1 := (y1, y
′
1) ∈ E0 with y1 = η

2 and any y ∈ X (P1). As above,
by Taylor’s formula, (2.22) and the choice K > max{ 2(α−β)

β , 2α
β } we can easily

prove that
η

2
≤ y(t) ≤ η, 0 ≤ t ≤ 1. (2.23)
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We choose now ε∗0 ∈ (1, 2) and then by Assumption (1.11), there exist η̄0 ∈ (0, η)
and

0 < K∗ < min
{ε∗0 − 1

ε∗0
, min{1, 2β

α
}[σξm−2

2
]−1[

σ

2ξm−2
+
σα

2β
− 1]

}
(2.24)

such that

max
0≤t≤1

f(t, y, y′) < K∗|y′|, η

2
≤ y ≤ η, and − 2η̄0 ≤ y′ <

αη

2β
. (2.25)

Besides (2.23) we shall prove that

α

β

η

2
≥ y′(t) ≥ −η̄0 > −η, 0 ≤ t ≤ 1. (2.26)

Indeed since y′(t) is decreasing on [0, 1] and ε∗0 ∈ (1, 2) is arbitrary, let’s assume
that there exist t0, t1 ∈ [0, 1] such that y′(t0) = −η̄0,

−2η̄0 < −ε∗0η̄0 ≤ y′(t) ≤ −η̄0, t0 ≤ t < t1, and y′(t1) = −ε∗0η̄0.

Thus by (2.23)-(2.25), we have for some t̄ ∈ (t0, t1)

−ε∗0η̄0 = y′(t1) = y′(t0)− f(t̄, y(t̄), y′(t̄)) ≥ −η̄0 +K∗y′(t̄) ≥ −η̄0 −K∗ε∗0η̄0,

and so, we get another contradiction K∗ ≥ (ε∗0 − 1)/ε∗0, due to (2.24).
Now as above (see (2.9) and (2.21)), we have

W (P1) ≥
[m−2∑
i=1

αiξi

]y(ξm−2)
ξm−2

− y(1) = σ
y(ξm−2)
ξm−2

− y(1).

Consequently by (2.23) and the Taylor’s formula,

W (P1) ≥ σ

ξm−2

(
y1 +

α

β
y1ξm−2 −

ξ2
m−2

2
f(t̄, y(t̄), y′(t̄))

)
− η

=
σ

ξm−2

η

2
+ σ

α

β

η

2
− 1

2
σξm−2f(t̄, y(t̄), y′(t̄))− η

Thus by (2.23) and (2.26), we get

W (P1) ≥ σ

ξm−2

η

2
+ σ

α

β

η

2
− σξm−2

2
K∗|y′(t̄)| − η

≥ σ

ξm−2

η

2
+ σ

α

β

η

2
− σξm−2

2
K∗η̂ − η,

where η̂ := max{η, αη2β }. In this way, by the assumption (2.3) and the choice of
K∗ at (2.24), we get

W (P1) ≥ 0.

Thus as at the superlinear case, we obtain a point P ∈ [P0, P1] such thatW (P ) =
0 and this clearly completes the proof.
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Remark 2.2 By the choice of m∗ ∈
(∑m−2

i=1 αiξi+ β
α

{∑m−2
i=1 αi

ξi
ξ1
−1
}
, 1
)

and
following Ma [21], we may easily show that for

m−2∑
i=1

αiξi ≥ 1,

there is not (positive) solution y ∈ X (P ) of the BVP (1.5)-(1.6). Indeed, if there
is one, then

y(1) =
m−2∑
i=1

αiy(ξi) =
m−2∑
i=1

αiξi
y(ξi)
ξi
≥
m−2∑
i=1

αiξi
y(ξ∗)
ξ∗

>
y(ξ∗)
ξ∗

,

where clearly ξ∗ = ξm−2 and this contradicts the concavity of the solution y =
y(t). Furthermore we must seek the monotone (obviously increasing) solutions
of (1.5)-(1.6), only for the case

∑m−2
i=1 αi ≥ 1, since otherwise we get

0 = W (P ) =
m−2∑
i=1

αiy(ξi)− y(1) <
[m−2∑
i=1

αi − 1
]
y(1) < 0.

The question of existence of such a monotone solution remains open. However
we can obtain a strictly decreasing solution for the boundary-value problem

y′′(t) = −f(t, y(t), y′(t)), 0 ≤ t ≤ 1,

αy(0) + βy′(0) = 0, y(1) =
m−2∑
i=1

αiy(ξi).
(2.27)

where α ≥ 0 and β > 0.

Remark 2.3 Suppose that the concept of jointly sublinearity is modified to

f0 := lim
y→0+

min
0≤t≤1

f(t, y, y′)
y

= +∞, for |y′| ≤M.

f∞,−∞ := lim
(y,y′)→(+∞,−∞)

max
0≤t≤1

f(t, y, y′)
y

= 0.
(2.28)

Then, following almost the same line as above (under the obvious modifications)
we may prove the next theorem.

Theorem 2.4 Assume that (1.7) holds and further

σ∗ =
m−2∑
i=1

αiξi +
β

α

{m−2∑
i=1

αi
ξi
ξ1
− 1
}
< 1.

Then the boundary-value problem (2.27) has a positive strictly decreasing solu-
tion provided that:
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• The function f is superlinear (see (1.8)) along with (1.10), or

• The function f is sublinear (see (2.28)), (1.11) is true and in addition,

m−2∑
i=1

αiξi
[ 1
ξm−2

− α

β

]
> 1.

Furthermore there exists a positive number H such that

0 < y(t) ≤ H and − 2H ≤ y′(t) ≤ −α
β
H, 0 ≤ t ≤ 1,

for any such solution.

Remark 2.5 Again, as in Remark 2.2, we may show that for

m−2∑
i=1

αiξi ≥ 1,

there is no (positive) solution y ∈ X (P ) of the BVP (2.27). Furthermore we
must seek the possible solutions of (2.27) only for the case

m−2∑
i=1

αi ≤ 1,

since otherwise, by the monotonicity of y(t), we get the contradiction

0 = W (P ) =
m−2∑
i=1

αiy(ξi) ≥
[m−2∑
i=1

αi − 1
]
y(1) > 0.

Finally consider the boundary-value problem

y′′ + f(t, y, y′) = 0, y′(0) = 0, y(1) =
m−2∑
i=1

αiy(ξi). (2.29)

Then following almost the same lines as above, we may prove the next theorem.

Theorem 2.6 Assume that (1.7) holds and

m−2∑
i=1

αi
ξi
ξ1
< 1.

Then the boundary-value problem (2.29) has a positive strictly decreasing solu-
tion provided that

• The function f is superlinear (see (1.8)) along with (1.10), or
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• The function f is sublinear (see (2.28)), (1.11) holds and in addition

m−2∑
i=1

αi
ξi

ξm−2
> 1.

Furthermore there exists a positive number H such that

0 < y(t) ≤ H and − 2H ≤ y′(t) ≤ 0, 0 ≤ t ≤ 1,

for any such solution.
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