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Relaxation approximations and bounded

variation estimates for some partial differential

equations ∗

Francisco Caicedo, Yunguang Lu, & Mauricio Sepúlveda

Abstract

In this paper, we introduce a new technique for studying solutions of
bounded variation for some conservation laws of first order partial dif-
ferential equations and for some degenerate parabolic equations in multi-
dimensional space. The connection between these two types of equations
is the vanishing relaxation method.

1 Introduction

We are concerned with solutions of bounded variation and the limiting behavior
of relaxation approximated solutions to the Cauchy problem for the conservation
system

G(u)t +
D∑
j=1

Fj(u)xj = ε∆u (1.1)

with initial data
u(x, 0) = u0(x), (1.2)

where ε = (ε1, ε2, . . . , εN )T is a nonnegative constant vector, x ∈ RD, u ∈ RN , D
denotes the space dimension, Fj(u) = (F 1

j (u), F 2
j (u), . . . , FNj (u))T , and G(u) =

(G1(u), G2(u), . . . , GN (u))T are smooth nonlinear maps from R
N to RN .

For the hyperbolic case, ε = 0, and for the scalar equation, N = 1, the
behavior of the unique solution of (1.1)–(1.2) have been studied in many papers;
see for example [13, 29] and their references. For the interesting case N ≥ 2, a
partial list of results is as follows:
1.) For D = 1 and the system (1.1) is strictly hyperbolic and genuinely nonlinear
in the sense of Lax [15]. When the total variation of initial data (1.2) is small,
the bounded variation of solutions to (1.1)–(1.2) was obtained by using the
Glimm method [8]. This method was developed by Glimm and extended by Liu
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[18] to strictly hyperbolic systems whose characteristic field is either genuinely
nonlinear or linearly degenerate. The Glimm method was use by many authors
in the study of arbitrary data with bounded variation for some special systems
(See [27]), and for general systems of Temple type in which shock waves and
rarefaction waves coincide (See [31]). The uniqueness of limits of Glimm scheme
solutions was proved by Bressan [3].

One of the ideas in the Glimm’s method is to use the explicit structure
of the nonlinear progressing wave solutions in a single space variable, i.e. the
solution of the Riemann problem constructed by Lax in [15]. However for multi-
dimensional case, D ≥ 2, even for the Riemann data, the global structure of
weak solutions is not clear. See [34] for the details about the Riemann solution.
2.) For the case N = 2 and D = 1, if the system (1.1) is strictly hyperbolic
and genuinely nonlinear, and the approximated solutions of (1.1) are uniformly
bounded, then the global existence of L∞ solutions for (1.1)–(1.2) was proved by
DiPerna [7] using the compensated compactness ideas developed by Tartar and
Murat [26, 30]. The most successful application of the theory of compensated
compactness is in the study of gas dynamics system which was non-strictly
hyperbolic at the vacuum line. The existence of a global solution was proved
for the case of a polytropic gas [4, 16, 17]. See also [12, 20, 21] for a related
system.

One of the strong restrictions on the applications of the compensated com-
pactness is that one must construct infinite pairs of entropy-entropy flux for
a given system, which makes this method work well only for systems of two
equations in a single variable.
3.) The local existence in time of smooth solutions of (1.1)–(1.2) in multi-
dimensional space was obtained by Kato for symmetric hyperbolic systems and
sufficiently smooth data [10]. The short-time existence and stability of multi-
dimensional “shock front” solutions of (1.1) with discontinuous initial data were
proved by Majda under some structural hypotheses [24, 25].

For the parabolic case, where ε is a fixed positive constant, (1.1) can be
considered as typical degenerate parabolic equation. For instance, let F (u) = 0,
ε = 1 and G(u) = u1/m, then (1.1) is equivalent to

wt = ∆wm, (1.3)

which is so-called porous medium equation. This equation models the non-
stationary flow of a compressible Newtonian fluid in a porous medium under
polytropic conditions. The value of w ≥ 0 is proportional to the density of the
fluid. It is the most typical case of degenerate parabolic equations. The study
of its regularity has a long history. The optimal Hölder estimate in a single
space variable was resolved by Aronson [1] many years ago, but in the multi-
dimensional space, it is still an open problem. The regularity of solutions for
the Cauchy problem (1.3) in one dimension and in multi-dimensions are quite
different. We refer the readers to the paper [11] and the papers cited therein
for the details. Some recent regularity results about the equation (1.3) can be
found in [22, 23].



EJDE–2002/19 Francisco Caicedo, Yunguang Lu, & Mauricio Sepúlveda 3

In this paper, we study the bounded variation solutions of the Cauchy prob-
lem (1.1)–(1.2) for the case of ε = 0 or for the case of ε being a fixed positive
constant. As the first one of a series, in this paper we restrict our attention to
the most simple case N = 1. Our method is to select solutions of the Cauchy
problem (1.1)–(1.2) as the singular perturbation limit of approximated solutions
for the system

ut +
D∑
j=1

Fj(u)xj +
H(u)− v

τ
= ν∆u

vt +
v −H(u)

τ
= µ∆v,

(1.4)

with initial data
(u(x, 0), v(x, 0)) = (u0(x), v0(x)), (1.5)

where ν > 0 and µ ≥ 0 are constants.
The system (1.4) itself has great interests since it can be considered as the

relaxation problem which arises in many physical situations such as kinetic
theory, multiphase and phase transition, viscoelasticity, river flows, traffic flows,
the theory of combustion and chromatography. In the physical background, u
and v are vectors. In chromatography, ui represent the concentration of the
solute in the fluid phase and vi its concentration in the solid phase, both being
expressed in moles per unit volume of their own phase. When τ = 0, the
equilibrium relation vi which is usually called the adsorption isotherm is, in
general, a complicated nonlinear function of ui in which the mutual influences
among different solutes are taken into account. The details of the physical
backgrounds can be found in [28, 33]. It is worth while pointing that the unique
solution for the system (1.4) without the parameters ν and µ was recently
studied in [4] by using the Glimm method for a small initial date.

First of all, about the solutions of the Cauchy problem (1.4)–(1.5) we have
the following result.

Theorem 1.1 I.) Assume that H(u) is a nondecreasing function and the initial
data (u0(x), v0(x)) have compact support or vanish sufficiently fast as |x| → ∞.
If ∫∫

RD

|(u0(x))xj |dx ≤M,

∫∫
RD

|(v0(x))xj |dx ≤M (1.6)

for j = 1, 2, . . . , D, then for any fixed ν > 0, µ ≥ 0 and τ > 0, the solutions
(uτ , vτ ) of the Cauchy problem (1.4)–(1.5) satisfy the a-priori estimates

(uτ (x, t), vτ (x, t))→ (0, 0), |x| → ∞ (1.7)

for fixed t > 0 and∫∫
RD

|(uτ )xj (x, t)|dx ≤M,

∫∫
RD

|(vτ )xj (x, t)|dx ≤M ; (1.8)

if ∫∫
RD

|(uτ (x, 0))t|dx ≤M,

∫∫
RD

|(vτ (x, 0))t|dx ≤M, (1.9)
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then ∫∫
RD

|(uτ )t(x, t)|dx ≤M,

∫∫
RD

|(vτ )t(x, t)|dx ≤M, (1.10)

where M denotes a positive constant which is independent of ν, µ and τ .
II.) If the conditions in I.) are satisfied and the space dimension is D = 1,
then the Cauchy problem (1.4)–(1.5) has a unique classical solution (uτ , vτ ) on
R× [0, T ] for any even time T , which satisfies (1.8), (1.10) and the boundedness
estimates

|uτ (x, t)| ≤M, |vτ (x, t)| ≤M ; (1.11)

If the space dimension D ≥ 2 and there exist two large constants M1,M2 such
that H(M1) = M2, |u0(x)| ≤ M1, |v0(x)| ≤ M2, then the above boundedness
estimate (1.11) is true.

From the estimates given in (1.8), (1.10), we immediately have the following
theorem.

Theorem 1.2 Under the conditions of Theorem 1.1, if v0(x) = H(u0(x)), then
there exists a subsequence (still denoted by (uτ (x, t), vτ (x, t))) such that

(uτ (x, t), vτ (x, t))→ (u(x, t), v(x, t)) a.e. (1.12)

as ν, µ, τ go to zero and the limit function (u, v) satisfies v = H(u), a.e. and u
is a generalized solution of the scalar equation

(u+H(u))t +
D∑
j=1

Fj(u)xj = 0, (1.13)

u(x, 0) = u0(x) (1.14)

which satisfies the BV estimates

|u(x, t)| ≤M,

∫∫
RD

|ux(x, t)|dx ≤M,

∫∫
RD

|ut(x, t)|dx ≤M. (1.15)

Theorem 1.3 Assume that 0 ≤ w0(x) ≤ M , m > 1,
∫∫
RD
|w0(x)xj |dx, and∫∫

RD
|∆(wm0 (x))|dx are bounded. Then the unique weak solution for the Cauchy

problem

wt = ∆wm (1.16)
w(x, 0) = w0(x) (1.17)

satisfies the bounded variation estimates

|w(x, t)| ≤M,

∫∫
RD

|w(x, t)xj |dx ≤M,

∫∫
RD

|w(x, t)t|dx ≤M. (1.18)

The proofs of the above theorems are given in the next section.
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2 Proofs of Theorems

Proof of Theorem 1.1 The behavior (1.7) of the solutions can be seen from
the proof of the existence of a local solution; see [29] for the details. To prove
(1.8), we differentiate (1.4) with respect to y, where y = xl for l = 1, 2, . . . , D,
and multiply by τ sgn(uy) in the first equation, and by τ sgn(vy) in the second
equation. We obtain

τ |uy|t + τ
D∑
j=1

(F ′j(u)|uy|)xj + (H ′(u)|uy| − sgn(uy)vy) = ντsgnuy)∆(uy),

τ |vy|t + (|vy| −H ′(u)uy sgn(vx)) = τµ sgn(vy)∆(vy).
(2.1)

Adding the above two equations, we obtain

τ(|uy|+ |vy|)t + τ
D∑
j=1

(F ′j(u)|uy|)xj + (H ′(u)|uy|+ |vy|)(1− sgn(vy) sgn(uy))

= τ(ν sgnuy)∆(uy) + µ sgn(vy)∆(vy)). (2.2)

Integrating (2.2) on RD× [0, T1] for a fixed time T1, and noticing (1.7), we have∫∫
RD

(|uy(x, t)|+ |vy(x, t)|)dx
∫∫
RD

(|(u0(x))y|+ |(v0(x))y|)dx, (2.3)

which is the estimate (1.8). Similarly we can get∫∫
RD

(|ut(x, t)|+ |vt(x, t)|)dx ≤
∫∫
RD

(|(u(x, 0))t|+ |(v(x, 0))t|)dx, (2.4)

which is the estimate (1.10). So part I) of Theorem 1.1 is proved.
For the one dimension case D = 1 in II) of Theorem 1.1, we have

|u| =
∣∣ ∫ x

−∞
uxdx

∣∣ ≤ ∫
R

|ux|dx ≤M, (2.5)

which imply the existence of global solutions in time for the Cauchy problem
(1.4),(1.5). Using the condition H(M1) = M2 given in II), a maximum principle
applying to (1.4) gives the boundedness estimate (1.11), which again implies the
global existence of solutions for the Cauchy problem (1.4),(1.5). So Theorem
1.1 is proved.

Proof of Theorem 1.2 Let µ = 0 in (1.4). Then if the total variation of
u0(x) is bounded, we can smooth u0(x) by a molifier such that ν∆u0(x) is L1

bounded. Then from the first equation in (1.4) and v0(x) = H(u0(x)), uτ (x, 0)t
is also L1 bounded; and from the second equation in (1.4), vτ (x, 0)t = 0.

From the second equation in (1.4) and the the estimate in (1.10), we have∫∫
RD

|H(uτ )− vτ |dx ≤ τM. (2.6)
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So there exists a subsequence (uτk , vτk) such that uτk converges to a function u
as τ, ν tend to zero and so vτk converges to H(u) from (2.6), where u satisfies
the estimates (1.8),(1.10). Adding two equations in (1.4) together, we have

(uτ + vτ )t +
D∑
j=1

Fj(uτ )xj = ν∆uτ . (2.7)

which gives (1.13) in the sense of distributions as τ and ν tend to zero. So
Theorem 1.2 is proved.

Proof of Theorem 1.3 Let Fj = 0, µ = 0 and ν = c be a fixed positive
constant in (1.4). Then (1.4) is equivalent to

ut +
H(u)− v

τ
= c∆u

vt +
v −H(u)

τ
= 0,

(2.8)

with the initial data

(u0(x), v0(x)) = (wm0 (x),H(wm0 (x))), (2.9)

where H(u) = cu1/m − u. Let 0 ≤ u0(x) ≤ ( cm )
m
m−1 = U+ and V+ =

H(U+), then H ′(u) ≥ 0 for u ∈ [0, U+]. From the conditions in Theorem
1.3,

∫∫
RD
|w0y|dx is bounded, where y denotes an xj , j = 1, 2, . . . D, then the

integral
∫∫
RD
|(wm0 )y|dx is also bounded since m > 1 and the boundedness of w0

follows. Thus
∫∫
RD
|u0y|+|v0y|dx ≤ is bounded. Furthermore if

∫∫
RD
|∆(wm0 )|dx

is bounded, then
∫∫
RD
|ut(x, 0)|dx is bounded from the first equation in (2.8)

and vt(x, 0) = 0 from the second in (2.8). Therefore from the conclusions given
in II) in Theorem 1.1, we have the following estimates for the solutions (uτ , vτ )
of the Cauchy problem (2.8),(refe27)

0 ≤ uτ ≤ U+, 0 ≤ vτ ≤ V+∫∫
RD

|uτy(x, t)|dx ≤M,

∫∫
RD

|vτy (x, t)|dx ≤M∫∫
RD

|uτt (x, t)|dx ≤M,

∫∫
RD

|vτt (x, t)|dx ≤M.

(2.10)

Using the second equation in (2.8), we have∫∫
RD

|vτ −H(uτ )|dx ≤ τM. (2.11)

The estimates in (2.10),(2) imply the convergence of the relaxation solutions
(uτ , vτ ) as the relaxation parameter τ goes to zero. Let the limit be (u, v).
Then v = H(u), a.e. from (2). Adding two equations in (2.8) together, we
obtain

(c(uτ )1/m)t + (vτ −A(uτ ))t = c∆uτ . (2.12)
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This implies that (let u1/m = w)

wt = ∆wm. (2.13)

Since v = H(u), a.e. and H(u) = cu1/m − u, then from (2.10), w = u1/m

satisfies the estimates in (1.18). Theorem 1.3 is proved.

Remark 1 The first strong and local regularity Lp estimate of wt for the
solution w of the porous media equation (31) was obtained by Bénilan in [2].
Here we extended the estimates to the whole RD space both for wt and for wxi .

Remark 2 In Theorem 1.3, we only consider the bounded variation solution
for the most typical degenerate parabolic model, i.e. the porous medium equa-
tion. In fact, from its proof, we can see that the results are still true for more
general degenerate parabolic equation of the form

G(w)t + F (x, t, w,wxi) = ∆w, (2.14)

where the nonlinear function G(w) is smooth and G′(w) > c > 0 for a constant
c. For instance, the singular nonlinear partial differential equation

β(u(x, t))t 3 ∆u(x, t), (x, t) ∈ Q = Ω× (0, T ),
u(x, t) = 0, (x, t) ∈ ∂Q = ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,
(2.15)

where Ω is a bounded smooth domain in RD(D ≥ 1), u0 is a given smooth
function, and β is the multivalued mapping

β(x) =

 ax− 1, x ≤ 0 (a > 0)
(−1, 1), x = 0,
bx+ 1, x ≥ 0 (b > 0).

(2.16)

Equations (2.15), (2.16) are a formulation of the classical two-phase Stefan prob-
lem, describing the flow of heat within a substance (say water) which changes
phase (melts or freezes) at the temperature zero. The constants a and b denote
the respective thermal conductivities in the ice and water regions, and the jump
in β at zero corresponds to the latent heat of fusion. The temperature is

T =

 u/b, u > 0,
0, u = 0,
u/a, u < 0.

(2.17)

The continuity of a unique weak solution of (2.15),(2.16) for all D ≥ 1 was
obtained by Caffarelli and Evan [5]. Here if we omit the region Ω and consider
the solution in whole space, then the solution for the Cauchy problem of two-
phase Stefan problem has BV bounded from Theorem 1.3.
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