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Stabilization of heteregeneous Maxwell’s

equations by linear or nonlinear boundary

feedbacks ∗

Matthias Eller, John E. Lagnese, & Serge Nicaise

Abstract

We examine the question of stabilization of the (nonstationary) hetere-
geneous Maxwell’s equations in a bounded region with a Lipschitz bound-
ary by means of linear or nonlinear Silver-Müller boundary condition.
This requires the validity of some stability estimate in the linear case that
may be checked in some particular situations. As a consequence we get an
explicit decay rate of the energy, for instance exponential, polynomial or
logarithmic decays are available for appropriate feedbacks. Based on the
linear stability estimate, we further obtain certain exact controllability
results for the Maxwell system.

1 Introduction

Let Ω be a bounded domain of R3 with a Lipschitz boundary Γ. In that domain
we consider (non-stationary) Maxwell’s equations with a nonlinear boundary
condition:

ε
∂E

∂t
− curlH = 0 in Q := Ω×]0,+∞[,

µ
∂H

∂t
+ curlE = 0 in Q,

div(εE) = div(µH) = 0 in Q,

H × ν + g(E × ν)× ν = 0 on Σ := Γ×]0,+∞[,
E(0) = E0,H(0) = H0 in Ω.

(1.1)

Above and below ε and µ are real, positive functions of class L∞(Ω), ν is the
exterior unit normal vector to Γ. The function g : R3 → R

3 is assumed to be
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continuous and satisfies

(g(E)− g(F )) · (E − F ) ≥ 0,∀E,F ∈ R3 (monotonicity), (1.2)
g(0) = 0, (1.3)

g(E) · E ≥ m|E|2,∀E ∈ R3 : |E| ≥ 1, (1.4)

|g(E)| ≤M(1 + |E|),∀E ∈ R3, (1.5)

for some positive constants m,M .
The system (1.1) occurs in electromagnetic theory in which E(x, t), H(x, t)

are the electric and magnetic fields at the point x ∈ Ω at time t, and ε(x), µ(x)
are the electric permittivity and magnetic permeability, respectively, at point x.
When g(ξ) ≡ ξ, the boundary condition occuring in (1.1) is the classical Silver-
Müller boundary condition and has its own interest. The classical Silver-Müller
boundary condition is a first order approximation to the so-called “transpar-
ent” boundary condition. The latter boundary condition, which is non-local,
corresponds to the complete transmission of electromagnetic waves through the
boundary Γ while the Silver-Müller boundary condition, although dissipative,
allows for reflexions back into the region Ω. This system with Silver-Müller
boundary condition has attracted the attention of many authors and stability
results were obtained under different geometrical conditions in [2, 12, 25] when
ε = µ = 1. For smooth coefficients ε, µ and g not necessarily linear, explicit
decay rates for solutions of (1.1) were recently given in [8] when Ω is a connected
domain with a smooth boundary Γ consisting of a single connected component.

The aims of our paper are multiple and may be summarized as follows:
First we concentrate our attention to the linear case. We give a necessary and
sufficient condition for exponential decay of the energy

E(t) =
1
2

∫
Ω

(ε|E(x, t)|2 + µ|H(x, t)|2) dx

of the solutions of (1.1) in the case of Silver-Müller boundary condition. This
condition is actually the validity of a kind of stability estimate that we call
the (ε, µ)-stability estimate. The second aim is to check this stability estimate
in some particular cases, in other words find sufficient conditions ensuring the
validity of the aforementioned stability estimate. The nonsmooth case will re-
quire special attention since standard regularity results fail [3, 6, 7, 5, 20]. In a
third step we use the so-called Russell’s principle “controllability via stability”
to obtain new controllability results for Maxwell’s equations extending former
results from [26, 15, 16, 22, 12, 23, 24]. Finally, for the general system (1.1)
using Liu’s principle [19], based on the above Russell’s principle and then on
the (ε, µ)-stability estimate, and with the help of a new integral inequality [8],
we give sufficient conditions on g which lead to an explicit decay rate of the
energy. The main interest of this approach is that the controllability results
in the linear case as well as the stabilization results with general feedbacks are
only based on the (ε, µ)-stability estimate, an estimate which may be obtained
by different techniques, like the multiplier method [12, 21], microlocal analysis
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[25], combinations of them [8] or any method entering in a linear framework (like
nonharmonic analysis for instance, see [14]). In other words any method proving
the (ε, µ)-stability estimate directly yields the above mentioned controllability
and stability results.

The schedule of the paper is the following one: Well-posedness of problem
(1.1) is analyzed in section 2 under the above assumptions on Ω, ε and µ and ap-
propriate conditions on g. Section 3 is devoted to the proof of the equivalence
between the (ε, µ)-stability estimate and exponential stability of (1.1) in the
case of Silver-Müller boundary condition, we further check this (ε, µ)-stability
estimate in some particular situations. We give in section 4 some exact control-
lability results based on the (ε, µ)-stability estimate. Section 5 is devoted to the
stability results of (1.1) for general nonlinear feedbacks g.

2 Well-posedness of the problem

The main goal of this section is to show the well-posedness of problem (1.1) un-
der appropriate conditions on the mapping g using nonlinear semigroup theory.
To this end we introduce the Hilbert spaces (see e.g. [16, 23])

J(Ω, ε) = {E ∈ L2(Ω)3|div(εE) = 0 in Ω}, (2.1)
H = J(Ω, ε)× J(Ω, µ), (2.2)

equipped with their natural norm induced by the inner product

(E,E′)ε =
∫

Ω

ε(x)E(x) · E′(x) dx,∀E,E′ ∈ J(Ω, ε),((
E
H

)
,

(
E′

H ′

))
H

= (E,E′)ε + (H,H ′)µ,∀
(
E
H

)
,

(
E′

H ′

)
∈ H.

Now define the (nonlinear) operator A from H into itself as follows:

D(A) = {
(
E
H

)
∈ H| curlE, curlH ∈ L2(Ω)3; (2.3)

E × ν,H × ν ∈ L2(Γ)3 satisfying
H × ν + g(E × ν)× ν = 0 on Γ}, (2.4)

A

(
E
H

)
=
(
−ε−1 curlH
µ−1 curlE

)
,∀
(
E
H

)
∈ D(A). (2.5)

Let us notice that the boundary conditions (2.4) is meaningful due to the
assumption (1.5): Indeed the properties E × ν,H × ν ∈ L2(Γ)3 and (1.5) give a
meaning to the boundary condition (2.4) as an equality in L2(Γ)3.

We then see that formally problem (1.1) is equivalent to

∂U

∂t
+AU = 0,

U(0) = U0,
(2.6)
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when U =
(
E
H

)
and U0 =

(
E0

H0

)
.

We shall prove that this problem (2.6) has a unique solution using nonlinear
semigroup theory (see e.g. [27]) by showing that A is a maximal monotone
operator adapting an argument from section 3 of [8]. But first we recall a
density result from [4] allowing integration by parts.

Theorem 2.1 ([4]) Introduce the Hilbert space

W = {E ∈ L2(Ω)3| curlE ∈ L2(Ω)3 and E × ν ∈ L2(Γ)3}, (2.7)

with the norm

||E||2W =
∫

Ω

(|E|2 + | curlE|2)dx+
∫

Γ

|E × ν|2dσ.

Then H1(Ω)3 is dense in W .

Lemma 2.2 For all
(
E
H

)
∈ D(A), one has

∫
Ω

(curlE ·H − curlH · E) dx =
∫

Γ

H × ν · Edσ. (2.8)

Proof: We first remark that (2.8) holds for all
(
E
H

)
in H1(Ω)3 ×H1(Ω)3

owing to Green’s formula. By density (see Theorem 2.1) it still holds in W ×W .
We conclude since D(A) is clearly continuously embedded into W ×W . �

We next prove the following density result, which is closely related to Lemma
2.3 of [23].

Lemma 2.3 If g(0) = 0, the domain of the operator A is dense in H.

Proof: Let us denote by Pε the projection on J(Ω, ε) in L2(Ω)3 endowed with
the inner product (·, ·)ε. As D(Ω)3 is dense in L2(Ω)3, PεD(Ω)3 is dense in
J(Ω, ε). Consequently PεD(Ω)3 × PµD(Ω)3 is dense in H = J(Ω, ε)× J(Ω, µ).

Moreover as in Lemma 2.3 of [23] we can show that for any χ ∈ D(Ω)3, we
have

curl(Pεχ) = curlχ in Ω,
Pεχ× ν = 0 on Γ.

Since g(0) = 0, we conclude that

PεD(Ω)3 × PµD(Ω)3 ⊂ D(A).

Therefore the above density result implies that D(A) is dense in H. �
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Remark 2.4 We notice that the above arguments also show that for any χ ∈
C∞(Ω̄)3, we have

curl(Pεχ) = curlχ in Ω,
Pεχ× ν = χ× ν on Γ.

Lemma 2.5 Under the above assumptions on g, A is a maximal monotone
operator.

Proof: We start with the monotonicity: A is monotone if and only if

(AU −AV,U − V )H ≥ 0,∀U, V ∈ D(A).

From the definition ofA and the inner product inH, we see that this is equivalent
to ∫

Ω

{curl(E − E′) · (H −H ′)− (E − E′) · curl(H −H ′)} dx ≥ 0,

for all
(
E
H

)
,

(
E′

H ′

)
∈ D(A). Lemma 2.2 yields equivalently

∫
Γ

(H −H ′)× ν · (E − E′) dσ ≥ 0,∀
(
E
H

)
,

(
E′

H ′

)
∈ D(A).

Using the boundary condition (2.4), we arrive at∫
Γ

(g(E × ν)− g(E′× ν)) · (E × ν −E′× ν) dσ ≥ 0,∀
(
E
H

)
,

(
E′

H ′

)
∈ D(A).

We then conclude using the monotonicity assumption on g (assumption (1.2)).

Let us now pass to the maximality. This means that for all
(
F
G

)
in H,

we are looking for
(
E
H

)
in D(A) such that

(I +A)
(
E
H

)
=
(
F
G

)
. (2.9)

Formally, we then have
H = G− µ−1 curlE, (2.10)

and
εE + curl(µ−1 curlE) = εF + curlG. (2.11)

This last equation in E will have a unique solution by adding a boundary
condition on E. Indeed using the identity (2.10), we see that (2.4) is formally
equivalent to

−µ−1 curlE × ν + g(E × ν)× ν = −G× ν on Γ. (2.12)
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We now remark that the variational formulation of problem (2.11)-(2.12) is
the following one: Find E ∈Wε such that

a(E,E′) =
∫

Ω

{εF · E′ +G · curlE′} dx,∀E′ ∈Wε, (2.13)

where the Hilbert space Wε is defined by

Wε = {E ∈ L2(Ω)3| curlE ∈ L2(Ω)3,div(εE) ∈ L2(Ω) and E × ν ∈ L2(Γ)3},

with the norm

||E||2Wε
=
∫

Ω

(|E|2 + | curlE|2 + |div(εE)|2)dx+
∫

Γ

|E × ν|2dσ.

and the form a is defined by

a(E,E′) =
∫

Ω

{µ−1 curlE · curlE′ + εE · E′ + sdiv(εE) div(εE′)} dx

+
∫

Γ

g(E × ν) · E′ × ν dσ,

s > 0 being a parameter appropriately chosen later on.
We now introduce the mapping

A : Wε →W ′ε : u→ Au,

where Au(v) = a(u, v). As the right-hand side of (2.13) defines an element of
W ′ε, the solvability of (2.13) is equivalent to the surjectivity of A. For that
purpose we make use of Corollary 2.2 of [27] which proves that A is surjective
if A is monotone, hemicontinuous, bounded and coercive. It then remains to
check these properties.

From the monotonicity of g, we directly check that A is monotone. Moreover
the continuity of g leads to the hemicontinuity of A while the properties (1.5)
of g implies the boundedness of A. It then remains to show that A is coercive,
i.e.,

AE(E)
||E||Wε

→ +∞ as ||E||Wε → +∞.

From the definition of A it is equivalent to

a(E,E)
||E||Wε

→ +∞ as ||E||Wε → +∞. (2.14)

For a fixed E ∈Wε we set

Γ+ = {x ∈ Γ : |(E × ν)(x)| > 1},Γ− = {x ∈ Γ : |(E × ν)(x)| ≤ 1}.

The properties of g imply that

a(E,E) ≥
∫

Ω

{µ−1| curlE|2 + ε|E|2 + s|div(εE)|2} dx+m

∫
Γ+
|E × ν|2 dσ.
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Moreover from the definition of Γ−, we have

||E||2Wε
≤
∫

Ω

(|E|2 + | curlE|2 + |div(εE)|2)dx+
∫

Γ+
|E × ν|2dσ + |Γ|.

These two inequalities show that there exists a positive constant β (independent
on E) such that

a(E,E) ≥ β(||E||2Wε
− |Γ|).

Consequently we have

a(E,E)
||E||Wε

≥ β(||E||Wε
− |Γ|
||E||Wε

),

which leads to (2.14).
At this stage we need to show that the solution E ∈ Wε of (2.13) and H

given by (2.10) are such that the pair
(
E
H

)
belongs to D(A) and satisfies

(2.9). We first show that εE is divergence free (compare with Theorem 7.1 of
[6]) by taking test functions E′ = ∇φ with φ ∈ D(∆Dir

ε ), where D(∆Dir
ε ) is the

domain of the operator ∆Dir
ε with Dirichlet boundary conditions defined by

D(∆Dir
ε ) = {φ ∈

◦
H1(Ω)|∆εφ := div(ε∇φ) ∈ L2(Ω)},

∆Dir
ε φ = ∆εφ,∀φ ∈ D(∆Dir

ε ).

In that case (2.13) becomes (the boundary term disappears since φ is zero on
Γ) ∫

Ω

{εE · ∇φ+ sdiv(εE)∆εφ} dx =
∫

Ω

εF · ∇φ dx,∀φ ∈ D(∆Dir
ε ).

Since εE and εF have a divergence in L2(Ω), by Green’s formula in the above
left-hand side and right-hand side (allowed since φ is in H1(Ω), see for instance
[1]), we obtain ∫

Ω

div(εE){φ+ s∆εφ} dx = 0,∀φ ∈ D(∆Dir
ε ),

since εF is divergence free. Taking s > 0 such that −s−1 is not an eigenvalue
of ∆Dir

ε (always possible since ∆Dir
ε is a negative selfadjoint operator with a

discrete spectrum), we conclude that

div(εE) = 0 in Ω.

Using this fact and the identity (2.10), we see that (2.13) is equivalent to∫
Ω

{εE · E′ −H · curlE′} dx+
∫

Γ

g(E × ν) · E′ × ν dσ

=
∫

Ω

εF · E′ dx,∀E′ ∈Wε.
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Taking first test functions E′ = Pεχ with χ ∈ D(Ω)3 by Lemma 2.3 we get

εE − curlH = εF in D′(Ω).

This means that the first identity in (2.9) holds since the above identity yields
curlH ∈ L2(Ω).

Now taking test functions E′ = Pεχ with χ ∈ C∞(Ω̄)3 by Remark 2.4 and
Green’s formula (see Lemma 2.2), we get (2.4).

Finally from (2.10) and the fact that µG is divergence free, µH is also
divergence free. �

Nonlinear semigroup theory [27] allows to conclude the following existence
results:

Corollary 2.6 If g satisfies the assumptions of Lemma 2.5, for all
(
E0

H0

)
∈

H, the problem (1.1) admits a unique (weak) solution
(
E
H

)
∈ C(R+,H). If

moreover
(
E0

H0

)
∈ D(A), the problem (1.1) admits a unique (strong) solution(

E
H

)
∈W 1,∞(R+,H) ∩ L∞(R+, D(A)).

We finish this section by showing the dissipativity of our system.

Lemma 2.7 If g satisfies the assumptions of Lemma 2.5, then the energy

E(t) =
1
2

∫
Ω

{ε|E(t, x)|2 + µ|H(t, x)|2} dx (2.15)

is non-increasing and

E(S)− E(T ) =
∫ T

S

∫
Γ

g(E(t)× ν) · E(t)× ν dσdt, ∀0 ≤ S < T <∞. (2.16)

Moreover for
(
E0

H0

)
∈ D(A), we have

E ′(t) = −
∫

Γ

g(E(t)× ν) · E(t)× ν dσ. (2.17)

Proof: Since D(A) is dense in H it suffices to show (2.17). For
(
E0

H0

)
∈

D(A), we have

E ′(t) =
∫

Ω

{εE(t, x) · E′(t, x) + µH(t, x) ·H ′(t, x)} dx.
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By (1.1), we get

E ′(t) =
∫

Ω

{E(t, x) · curlH(t, x)−H(t, x) · curlE(t, x)} dx

= −
(
A

(
E(t)
H(t)

)
,

(
E(t)
H(t)

))
H
.

We conclude by Lemma 2.5. �

3 Exponential stability in the linear case

In this section we find a necessary and sufficient condition for exponential sta-
bility in the linear case (i.e. when g(E) = E). This condition is the validity of
a stability estimate that will be checked in some particular cases.

We start with the following definition.

Definition 3.1 We say that Ω satisfies the (ε, µ)-stability estimate if there exist
T > 0 and two non negative constants C1, C2 (which may depend on T ) with
C1 < T such that∫ T

0

E(t) dt ≤ C1E(0) + C2

∫ T

0

∫
Γ

|H(t)× ν|2 dσdt, (3.1)

for all solutions
(
E(t)
H(t)

)
of (1.1) with g(E) = E.

Let us give an equivalent formulation of that property:

Lemma 3.2 Ω satisfies the (ε, µ)-stability estimate if and only if there exist
T > 0 and a positive constant C (which may depend on T ) such that

E(T ) ≤ C
∫ T

0

∫
Γ

|H(t)× ν|2 dσdt, (3.2)

for all solutions
(
E(t)
H(t)

)
of (1.1) with g(E) = E.

Proof: ⇒: Since E(t) is non-increasing, the estimate (3.1) implies that

TE(T ) ≤ C1E(0) + C2

∫ T

0

∫
Γ

|H(t)× ν|2 dσdt.

By Lemma 2.7 we get

TE(T ) ≤ C1E(T ) + (C1 + C2)
∫ T

0

∫
Γ

|H(t)× ν|2 dσdt.
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This yields (3.2) with C = C1+C2
T−C1

.
⇐: From the monotonicity of E we may write∫ T

0

E(t) dt ≤ TE(0).

Again Lemma 2.7 yields∫ T

0

E(t) dt ≤ T

2
E(0) +

T

2
(E(T ) +

∫ T

0

∫
Γ

|H(t)× ν|2 dσdt).

Using the assumption (3.2) we obtain∫ T

0

E(t) dt ≤ T

2
E(0) +

T

2
(1 + C)

∫ T

0

∫
Γ

|H(t)× ν|2 dσdt,

which is nothing else than (3.1). �

We now show that the (ε, µ)-stability estimate is equivalent to the exponen-
tial stability for a linear feedback.

Theorem 3.3 Ω satisfies the (ε, µ)-stability estimate if and only if there exist
two positive constants M and ω such that

E(t) ≤Me−ωtE(0), (3.3)

for all solutions
(
E(t)
H(t)

)
of (1.1) with g(E) = E.

Proof: Let us start with the necessity of (3.3): By (3.2) and the identity (2.16)
of Lemma 2.7 we have

E(T ) ≤ C(E(0)− E(T )).

This estimate is equivalent to

E(T ) ≤ γE(0),

with γ = C
1+C which is < 1.

Applying this argument on [(m− 1)T,mT ], for m = 1, 2, · · · (which is valid
since Maxwell’s system is invariant by a translation in time), we will get

E(mT ) ≤ γE((m− 1)T ) ≤ · · · ≤ γmE(0),m = 1, 2, · · ·

Therefore we have

E(mT ) ≤ e−ωmTE(0),m = 1, 2, · · ·

with ω = 1
T ln 1

γ > 0. For an arbitrary positive t, there exists one positive
integer m such that (m − 1)T < t ≤ mT . By the nonincreasing property of E ,
we conclude that

E(t) ≤ E((m− 1)T ) ≤ e−ω(m−1)TE(0) ≤ 1
γ
e−ωtE(0).
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Let us pass to the sufficiency: From the boundary condition (2.4) and Lemma
2.7, for any T > 0, we may write∫ T

0

∫
Γ

|H(t)× ν|2 dσdt =
∫ T

0

∫
Γ

|E(t)× ν|2 dσdt

= E(0)− E(T ).

With the help of (3.3), we get∫ T

0

∫
Γ

|H(t)× ν|2 dσdt ≥ E(0)(1−Me−ωT ). (3.4)

The exponential decay (3.3) also implies∫ T

0

E(t)dt ≤ME(0)
1− e−ωT

ω
.

Consequently for all C1 > 0, we may write∫ T

0

E(t)dt ≤ C1E(0) +
(
M(1− e−ωT )

ω
− C1

)
E(0). (3.5)

Choosing T large enough so that 1−Me−ωT > 0 and C1 < min{M(1−e−ωT )
ω , T},

(3.4) and (3.5) yield (3.1) with

C2 =
(
M(1− e−ωT )

ω
− C1

)
(1−Me−ωT )−1.

�
Let us now give some examples of domains satisfying the (ε, µ)-stability es-

timate for some particular coefficients ε and µ. More precisely we assume that
Ω is a Lipschitz polyhedron, in the sense that Ω is a bounded, simply connected
Lipschitz domain with piecewise plane boundary. We further suppose that Ω is
occupied by an electromagnetic medium of piecewise constant electric permit-
tivity ε and piecewise constant magnetic permeability µ, i. e., we assume that
there exists a partition P of Ω in a finite set of Lipschitz polyhedra Ω1, · · · ,ΩJ
such that on each Ωj , ε = εj and µ = µj , where εj and µj are positive constants.

We first start with examples inspired from [11, 21]. For that purpose we
make the following definition.

Definition 3.4 We say that Ω is (ε, µ)-substarlike if there exists ϕ∈W 2,∞(Ω)
satisfying

∆ϕ(x)|ξ|2 − 2(D2ϕ(x)ξ) · ξ ≥ α|ξ|2,∀ξ ∈ R3,∀ a.e. x ∈ Ω, (3.6)
∂ϕ

∂ν
> 0 on Γ, (3.7)

∂ϕ

∂νiF
(εiF − εi′F ) ≤ 0 on F,∀F ∈ Fint, (3.8)

∂ϕ

∂νiF
(µiF − µi′F ) ≤ 0 on F,∀F ∈ Fint, (3.9)
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for some positive real number α. Hereabove and below, for any interior interface
F (written in short F ∈ Fint) the different indices iF and i′F are such that
F = Ω̄iF ∩ Ω̄i′F and are fixed once and for all. For a fixed subdomain Ωj, νj is
the exterior unit normal vector along its boundary.

Before giving some examples of domains being (ε, µ)-substarlike, let us show
that this (geometrical) property and a density result (which could be interpreted
as a geometrical property, cf. [20]) guarantee that Ω satisfies the (ε, µ)-stability
estimate. To formulate that result we recall that the space PH1(Ω,P) of piece-
wise H1 (scalar) function in Ω is defined by

PH1(Ω,P) := {u ∈ L2(Ω)|u|Ωj ∈ H
1(Ωj),∀j = 1, · · · , J}.

Theorem 3.5 If Ω is (ε, µ)-substarlike, PH1(Ω,P)3 ∩Wε is dense in Wε and
PH1(Ω,P)3 ∩Wµ is dense in Wµ, then Ω satisfies the (ε, µ)-stability estimate.

Proof: It suffices to show that the estimate (3.1) holds for any strong solution(
E(t)
H(t)

)
of (1.1) with g(E) = E and appropriate constants T,C1, C2.

Fixing a function ϕ ∈W 2,∞(Ω) from Definition 3.4 we define the multiplier
m = ∇ϕ. We now prove that the following estimate holds for all t ≥ 0:

E(t) ≤ 1
α

∫
Ω

εµ
d

dt
{(E ×H) ·m} dx+

R1

2α
I0
ext, (3.10)

where we set

I0
ext =

∫
Γ

(µ|H × ν|2 + ε|E × ν|2) dσ,

R1 = max
x∈Γ

|m(x) · ν(x)|2 + |m(x)|2

2m(x) · ν(x)
.

The proof of that estimate follows the line of Lemma 8.20 of [13] but adapted
to our setting. Indeed starting from

I :=
∫

Ω

εµ
d

dt
{(E ×H) ·m} dx

and using the first two identities of (1.1) we get

I =
∫

Ω

{µ(curlH ×H) ·m+ ε(curlE × E) ·m} dx.

Assume for a moment that E (resp. H) belongs to PH1(Ω,P)3 ∩ Wε (resp.
PH1(Ω,P)3 ∩Wµ). Using the standard identity

curlH ×H = (H · ∇)H − 1
2
∇|H|2,
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we obtain

I = −1
2

∫
Ω

{
µ∇|H|2 ·m+ ε∇|E|2 ·m

}
dx+ Iµ(H) + Iε(E),

where for shortness we have set

Iµ(H) =
∫

Ω

µ ((H · ∇)H) ·mdx.

Using Green’s formula we get

I =
1
2

∫
Ω

{
µ|H|2 + ε|E|2

}
divmdx (3.11)

− 1
2

∫
Γ

(ε|E|2 + µ|H|2)(m · ν) dσ

− 1
2

∑
F∈Fint

∫
F

[ε|E|2 + µ|H|2]F (m · νiF ) dσ

+Iµ(H) + Iε(E),

where [h]F means the jump of the function h through the interface F , i.e.,
[h]F = hiF − hi′F .

Using Green’s formula we also transform Iµ(H) as follows:

Iµ(H) = −
3∑

i,j=1

∫
Ω

µHi∂j(miHj) dx

+
∫

Γ

µ(H · ν)(H ·m) dσ

+
∑

F∈Fint

∫
F

[µ(H · νiF )(H ·m)]F dσ.

Leibniz’s rule yields

Iµ(H) = −
3∑

i,j=1

∫
Ω

µHiHj∂jmi dx−
∫

Ω

H ·mdiv(µH) dx

+
∫

Γ

µ(H · ν)(H ·m) dσ

+
∑

F∈Fint

∫
F

[µ(H · νiF )(H ·m)]F dσ.

Inserting this identity into (3.11) and introducing the 3× 3 matrix

M = divmI − 2Dm,

we have obtained

2I =
∫

Ω

(µMH ·H + εME · E) dx− 2I0 − Iε,int(E)− Iµ,int(H)− Iext, (3.12)
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where we have set

Iµ,int(H) =
∑

F∈Fint

∫
F

{
[µ|H|2]F (m · νiF )− 2[µ(H · νiF )(H ·m)]F

}
dσ,

Iext =
∫

Γ

{m · ν(ε|E|2 + µ|H|2)− 2ε(m · E)(E · ν)

−2µ(m ·H)(H · ν)} dσ,

I0 =
∫

Ω

(E ·mdiv(εE) +H ·mdiv(µH)) dx.

From the assumption (3.8) (resp. (3.9)) as well as the properties of E (resp.
H) through the interior interfaces we readily show that Iε,int(E) ≤ 0 (resp.
Iµ,int(H) ≤ 0). Combined with (3.12) we get

2I ≥
∫

Ω

(µMH ·H + εME · E) dx− 2I0 − Iext.

At this stage we remark that the assumption (3.7) guarantees that m ·ν > 0
on Γ, therefore by Lemma 8.21 of [13] we get

Iext ≤ R1I
0
ext,

Finally by the assumption (3.6) we arrive at

2I ≥ α
∫

Ω

(µ|H|2 + ε|E|2) dx− 2I0 −R1I
0
ext.

By the density assumptions this inequality remains valid in Wε ×Wµ and,
therefore, for any strong solution of (1.1) since D(A) is continuously embedded
into Wε ×Wµ. From the property div(εE) = div(µH) = 0 it actually reduces
to (3.10).

We now take advantage of the estimate (3.10). From the boundary condition
(2.4) (recalling that g(E) = E) we have

I0
ext ≤M

∫
Γ

|H × ν|2 dσ, (3.13)

where M = maxx∈Γ max{µ(x), ε(x)}. Integrating the estimate (3.10) from 0 to
T and taking into account (3.13) we have∫ T

0

E(t) dt ≤ 1
α

∫
Ω

εµ {(E(T )×H(T ))− (E(0)×H(0))} ·mdx (3.14)

+
R1M

2α

∫
ΣT

|H × ν|2 dσ.

Since we readily check that∣∣∣∣∫
Ω

εµ(E(t)×H(t)) ·mdx

∣∣∣∣ ≤ CE(t) ≤ CE(0),
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with C = (maxj µjεj) maxx∈Ω |m(x)| (which is independent of T ), we arrive at∫ T

0

E(t) dt ≤ 2C
α
E(0) +

R1M

2α

∫
ΣT

|H × ν|2 dσ. (3.15)

This proves the estimate (3.1) by choosing T large enough, i.e., T > 2C
α . �

Remark 3.6 We gave in [20, Thm 5.1] sufficient conditions on Ω,P and εj im-
plying the density of PH1(Ω,P)3∩Wε into Wε, in particular this density always
holds in the homogeneous case i.e. εj = ε1, for all j = 1, · · · , J . Examples of
non-homogeneous structures satisfying these conditions are easily built.

We now give some examples of domains which are (ε, µ)-substarlike:

Example 3.7 Assume that the domain Ω is strictly star-shaped with respect
to the origin 0 and that the subdomains are nested in the following sense: the
origin belongs to Ω1 and

Ω̄j ∩ Ω̄j+1 = ∂Ωj \ ∂Ωj−1,∀j ≥ 2.

Then ϕ(x) = |x|2/2 directly satisfies (3.6) and (3.7), while (3.8) and (3.9) are
equivalent to

εj ≤ εj+1 and µj ≤ µj+1 ∀j = 1, · · · , J.

Example 3.8 Assume that the domain Ω is strictly star-shaped with respect
to the origin 0 and that the subdomains are around the origin in the sense that
the origin belongs to the boundary of all subdomains Ωj . Then ϕ(x) = |x|2/2
directly satisfies (3.6) and (3.7), while (3.8) and (3.9) are trivially satisfied.

For these two above examples, particular partitions can be given for which in
addition to the above assumptions, the density results hold for adequate choice
of εj and µj .

An example of a non star-shaped domain which is (ε, µ)-substarlike is now
built using arguments similar to those in [21]. Indeed we remark that a domain
Ω is (ε, µ)-substarlike if there exists φ ∈ W 2,∞(Ω) satisfying (3.7), (3.8) and
(3.9), as well as

∆ϕ = 1, in Ω, (3.16)

λ3(ϕ) <
1
2
, (3.17)

where λi(ϕ), i = 1, 2, 3, denote the eigenvalues of the matrix D2ϕ enumerated
in increasing order.

Indeed if such a function exists we see that

∆ϕ(x)|ξ|2 − 2(D2ϕ(x)ξ) · ξ ≥ (1− 2λ3(ϕ))|ξ|2,∀ξ ∈ R3,∀ a.e. x ∈ Ω,

which directly yields (3.6).
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In [21] the assumption (3.17) is replaced by the stronger one

λ1(ϕ) > 1/4. (3.18)

Indeed this assumption yields (3.17) since

λ3(ϕ) = 1− λ1(ϕ)− λ2(ϕ) ≤ 1− 2λ1(ϕ).

The advantage of (3.18) is that it is easier to check.

Example 3.9 We first take the 2D domain Ω̃ with vertices A = (−1− δ/2, y1),
B = (1 − δ/2, y1), C = (1 − δ/2,−δ), D = (1 + δ/2,−δ), E = −A, F = −B,
G = −C, H = −D with δ > 0 such that δ < 2. We define the function ϕ̃ defined
by

ϕ̃(x) =
1
4
|x|2 + P (x),

where P = <f when f is the holomorphic function

f(z) =
1
2
ηi
z2

z0
,

with z0 = −1 + iδ. Then one readily checks that for δ small enough ϕ̃ satisfies
(3.7), (3.16) as well as (3.18). Moreover taking an interface I on the line x = −1
one checks that

∂ϕ̃

∂x1
< 0 on I.

Defining Ω̃1 = Ω̃∩{x : x1 < −1} and Ω̃2 = Ω̃∩{x : x1 > −1}, we see that (3.8)
and (3.9) hold if

ε1 ≤ ε2 and µ1 ≤ µ2.

Extending this domain into a prism Ω = Ω̃×] − 1, 1[ divided by the two
subdomains Ωj = Ω̃j×]− 1, 1[, we check that

ϕ(x) = ϕ̃(x1, x2) + x2
3/4,

satisfies (3.7), (3.16) (3.18) and (3.8) and (3.9) under the above assumptions on
ε and µ.

Note further that for this example the density of PH1(Ω,P)3 ∩Wε (resp.
PH1(Ω,P)3 ∩Wµ) into Wε (resp. into Wµ) always holds.

All these examples are based on the multiplier technique, we finish this
section by giving one coming from microlocal analysis which, up to now, is only
applicable for smooth coefficients ε and µ.

Example 3.10 Suppose that Ω is a connected domain with a smooth boundary
Γ consisting of a single connected component and assume that ε = µ = 1. Then
Ω satisfies the (1, 1)-stability estimate. Indeed thanks to Lemma 4.1 of [25] the
estimate (3.1) holds with C1 = 0 provided the set kerA is reduced to {0}, this
last property being proved using Proposition 3.18 of [1].

Note that this example could be deduced from Proposition 4.1 of [8] but
there the estimate (3.1) is obtained using the multiplier technique as well as
microlocal analysis.
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4 Exact controllability results

Using the results of the previous section we deduce the exact controllability
of the heterogeneous Maxwell’s system, thereby extending earlier results from
[16, 12, 21, 23]. More precisely for all (E0,H0) ∈ H, we are looking for a time
T > 0 and a control J ∈ L2(Γ×]0, T [)3 such that the solution (E,H) of

ε
∂E

∂t
− curlH = 0 in QT := Ω×]0, T [,

µ
∂H

∂t
+ curlE = 0 in QT ,

div(εE) = div(µH) = 0 in QT ,

H × ν = J on ΣT := Γ×]0, T [,
E(0) = E0,H(0) = H0 in Ω,

(4.1)

satisfies
E(T ) = H(T ) = 0. (4.2)

Theorem 4.1 If Ω satisfies the (ε, µ)-stability estimate, then for T > 0 suffi-
ciently large, for all (E0,H0) ∈ H there exists a control J ∈ L2(ΣT )3 satisfying

J · ν = 0 on ΣT , (4.3)

such that the solution (E,H) ∈ C([0, T ],H) of (4.1) is at rest at time T , i.e.,
satisfies (4.2).

Proof: In fact, it follows as in Theorem 1.1 of [17] that the estimate (3.2) of
Lemma 3.2 implies the observability estimate

‖(Φ0,Ψ0)‖2H ≤ C
∫ T

0

∫
Γ

|Φ(t)× ν|2dσdt, ∀(Φ0,Ψ0) ∈ F , (4.4)

with the same T and C as in (3.2), where (Φ,Ψ) is the solution of

ε
∂Φ
∂t
− curl Ψ = 0 in QT ,

µ
∂Ψ
∂t

+ curl Φ = 0 in QT ,

div(εΦ) = div(µΨ) = 0 in QT ,

Ψ× ν = 0 on ΣT ,
Φ(T ) = Φ0,Ψ(T ) = Ψ0 in Ω,

and where
F = {(Φ0,Ψ0) ∈ H : Φ× ν|ΣT ∈ L2(ΣT )3}.

As is well-known, the observability estimate (4.4) implies exact controllability
of (4.1) in time T . The control J of minimum norm in L2(ΣT )3 that steers
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the solution of (4.1) from (E0,H0) to (0, 0) at time T is constructed according
to J.-L. Lions’ Hilbert Uniqueness Method. However, for purposes of deriving
our decay rates for the nonlinear system (1.1), we shall need to work with the
control constructed according to Russell’s principle that steers the solution of
(4.1) from (E0,H0) to (0, 0). The control time T for this control will in general
be greater than the T appearing in the observability estimate (4.4), however.

Although the construction of a feasible control via Russell’s principle is quite
standard, we include it for the sake of completeness. Moreover for further pur-
poses we prefer to solve the inverse problem: Given (P0, Q0) ∈ H, we are looking
for K ∈ L2(ΣT )3 satisfying (4.3) such that the solution (P,Q) ∈ C([0, T ],H) of

ε
∂P

∂t
− curlQ = 0 in QT ,

µ
∂Q

∂t
+ curlP = 0 in QT ,

div(εP ) = div(µQ) = 0 in QT ,

Q× ν = K on ΣT ,
P (T ) = P0, Q(T ) = Q0 in Ω,

(4.5)

satisfies

P (0) = Q(0) = 0. (4.6)

Indeed if the above problem has a solution the conclusion follows by setting

E(t) = −P (T − t),H(t) = Q(T − t).

We solve problem (4.5) and (4.6), using a backward and an inward Maxwell
system with Silver-Müller boundary conditions: First given (F0, I0) in H, we
consider (F, I) ∈ C([0, T ],H) the unique solution of

ε
∂F

∂t
− curl I = 0 in QT ,

µ
∂I

∂t
+ curlF = 0 in QT ,

div(εF ) = div(µI) = 0 in QT ,

I × ν − (F × ν)× ν = 0 on ΣT ,
F (T ) = F0, I(T ) = I0 in Ω.

(4.7)

Its existence follows from Corollary 2.6 by setting Ẽ(t) = −F (T −t) and H̃(t) =
I(T − t). Moreover applying Theorem 3.3 to (Ẽ(t), H̃(t)) we get

E(F (t), I(t)) ≤Me−ω(T−t)E(F0, I0). (4.8)

Second we consider (G, J) ∈ C([0, T ],H) the unique solution of (whose ex-
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istence and uniqueness still follow from Corollary 2.6)

ε
∂G

∂t
− curlJ = 0 in QT ,

µ
∂J

∂t
+ curlG = 0 in QT ,

div(εG) = div(µJ) = 0 in QT ,

J × ν + (G× ν)× ν = 0 on ΣT ,
G(0) = F (0), J(0) = I(0) in Ω.

(4.9)

We now take P = G− F and Q = J − I. From (4.7) and (4.9), the pair (P,Q)
satisfies (4.5) with

K = −(G× ν)× ν − (F × ν)× ν. (4.10)

Let us further consider the mapping Λ from H to H defined by

Λ((F0, I0)) = (G(T ), J(T )).

We show that for T > 0 such that d := Me−ωT < 1, the mapping Λ − I
is invertible by proving that ||Λ||L(H,H) < 1. Indeed using successively the
definition of Λ, Lemma 2.7, the initial conditions of problem (4.9) and the
estimate (4.8) we have

||Λ((F0, I0))||2H = 2E((G(T ), J(T ))) ≤ 2E((G(0), J(0)))
≤ 2E((F (0), I(0))) ≤ 2Me−ωTE(F0, I0) = d||(F0, I0)||2H.

Consequently ||Λ||L(H,H) ≤
√
d < 1.

Since Λ−I is invertible for any (P0, Q0) ∈ H, there exists a unique (F0, I0) ∈
H such that

(P0, Q0) = (P (T ), Q(T )) = (G(T ), J(T ))− (F (T ), I(T )) = (Λ− I)(F0, I0).
(4.11)

The proof will be complete if we can show that K ∈ L2(ΣT )3. For that
purpose, we remark that Lemma 2.7 (identity (2.16) applied to (Ẽ, H̃) and
(G, J)) yields

E((F (T ), I(T ))− E((F (0), I(0)) =
∫

ΣT

|F (t)× ν|2 dσdt,

E((G(0), J(0))− E((G(T ), J(T )) =
∫

ΣT

|G(t)× ν|2 dσdt.

Summing these two identities and using the initial conditions of problem (4.9),
the final conditions of (4.7) and the definition of Λ, we obtain∫

ΣT

(|F × ν|2 + |G× ν|2) dσdt = E((F (T ), I(T ))− E((G(T ), J(T ))

≤ 1
2
||(F0, I0)||2H
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Using the identity (4.11) and the boundedness of (I −Λ)−1 we finally arrive at
the estimate∫

ΣT

(|F × ν|2 + |G× ν|2) dσdt ≤ 1
2
||(I − Λ)−1(P0, Q0)||2H (4.12)

≤ 1
2(1−

√
d)2
||(P0, Q0)||2H.

This proves that K given by (4.10) belongs to L2(ΣT )3. �

Remark 4.2 The sufficient conditions on Ω, ε, µ given in section 3 which guar-
antee that Ω satisfies the (ε, µ)-stability estimate are weaker than those found in
[23, §6.2] to insure the validity of some observation estimates (leading to exact
controllability results). Consequently the conjunction of Theorem 4.1 with the
results from section 3 improves some exact controllability results from [23].

5 Stability in the nonlinear case

Liu’s principle [19] consists in estimating the energy of the direct system by
boundary terms using a retrograde system with final data equal to the final
data of the direct system. These boundary terms are then estimated using
Russell’s principle and the properties of g. For our system the application of
this principle is essentially based on the validity of the (ε, µ)-stability estimate.
In a second step we use a new integral inequality to deduce decay rates of the
energy using appropriate nonlinear feedbacks g.

We start with the new integral inequality obtained similarly to Theorem 9.1
of [13] and proved in detail in [8].

Theorem 5.1 Let E : [0,+∞)→ [0,+∞) be a non-increasing mapping satisfy-
ing ∫ ∞

S

φ(E(t)) dt ≤ TE(S),∀S ≥ 0, (5.1)

for some T > 0 and some strictly increasing convex mapping φ from [0,+∞) to
[0,+∞) such that φ(0) = 0. Then there exist t1 > 0 and c1 depending on T and
E(0) such that

E(t) ≤ φ−1

(
ψ−1(c1t)
c1Tt

)
,∀t ≥ t1, (5.2)

where ψ is defined by

ψ(t) =
∫ 1

t

1
φ(s)

ds,∀t > 0. (5.3)

Remark 5.2 Theorem 5.1 yields exactly the same decay rate as in Theorem
9.1 of [13] when φ(t) = t1+α for some α > 0 (case leading to polynomial decay).

We now give the consequence of this result to our Maxwell system.
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Theorem 5.3 Assume that g satisfies the assumptions of Lemma 2.5 as well
as

|E|2 + |g(E)|2 ≤ G(g(E) · E),∀|E| ≤ 1, (5.4)

for some concave strictly increasing function G : [0,∞) → [0,∞) such that
G(0) = 0. If Ω satisfies the (ε, µ)-stability estimate, then there exist c2, c3 > 0
and T1 > 0 (depending on T , E(0) and |Γ|) such that

E(t) ≤ c3G
(
ψ−1(c2t)
c2T 2|Γ|t

)
,∀t ≥ T1, (5.5)

for all solution
(
E(t)
H(t)

)
of (1.1), where ψ is given by (5.3) for φ defined by

φ(s) = T |Γ|G−1(
s

c3
). (5.6)

Proof: Thanks to Lemma 2.3 it suffices to prove (5.5) for data in D(A). In

that case let
(
E(t)
H(t)

)
be the solution of (1.1) and consider (P,Q) the solution

of problem (4.5) and (4.6) with P0 = E(T ) and Q0 = H(T ) with T > 0
sufficiently large (whose existence was established in Theorem 4.1). By (1.1)
and (4.5) we may write

0 =
∫
QT

{εP · (E′ − ε−1 curlH) + µQ · (H ′ + µ−1 curlE)

+εE · (P ′ − ε−1 curlQ) + µH · (Q′ + µ−1 curlP )} dxdt.

By integration by parts in t and Lemma 2.2 this identity becomes

0 =
[∫

Ω

(εP (t) · E(t) + µQ(t) ·H(t)) dx
]T

0

+
∫

ΣT

{(H × ν) · P + (Q× ν) · E} dσdt.

Using the boundary and initial/final conditions in (1.1) and (4.5), we obtain

E(T ) = −1
2

∫
ΣT

{g(E × ν) · P × ν + E ·K} dσdt.

Since K is a tangential vector, we may write E ·K = Eτ ·K, where the subscript
τ denotes the tangential component. Since |Eτ | = |E × ν|, Cauchy-Schwarz’s
inequality in R3 allows us to transform the last estimate into

E(T ) ≤ 1
2

∫
ΣT

{|g(E × ν)||P × ν|+ |E × ν||K|} dσdt. (5.7)
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Let us remark that the estimate (4.12) and the final conditions on (P,Q)
yield ∫

ΣT

(|F × ν|2 + |G× ν|2) dσdt ≤ 1
(1−

√
d)2
E(T ).

This estimate, the definition (4.10) of K, of P (P = G − F ) and Cauchy-
Schwarz’s inequality lead to∫

ΣT

|K|2 dσdt ≤ 2
(1−

√
d)2
E(T ) (5.8)∫

ΣT

|P × ν|2 dσdt ≤ 2
(1−

√
d)2
E(T ). (5.9)

We now estimate each term of the right-hand side of (5.7) as follows: Intro-
duce

Σ+
T = {(x, t) ∈ ΣT ||E(x, t)× ν(x)| > 1},

Σ−T = {(x, t) ∈ ΣT ||E(x, t)× ν(x)| ≤ 1}.

By Cauchy-Schwarz’s inequality we may write∫
Σ+
T

|g(E × ν)||P × ν| dσdt ≤ (
∫

Σ+
T

|P × ν|2 dσdt) 1
2 (
∫

Σ+
T

|g(E × ν)|2 dσdt) 1
2 .

The assumptions (1.4), (1.5) and the estimate (5.9) lead to∫
Σ+
T

|g(E × ν)||P × ν| dσdt ≤ c4E(T )
1
2 (
∫

Σ+
T

(E × ν) · g(E × ν) dσdt)
1
2 ,

for some positive constant c4. By (2.16) we arrive at∫
Σ+
T

|g(E × ν)||P × ν| dσdt ≤ c4E(T )
1
2 (E(0)− E(T ))

1
2 . (5.10)

Similarly by Cauchy-Schwarz’s inequality, the estimate (5.9) and the as-
sumption (5.4) we have∫

Σ−T

|g(E × ν)||P × ν| dσdt≤(
∫

ΣT

|P × ν|2 dσdt) 1
2(
∫

Σ−T

|g(E × ν)|2 dσdt) 1
2

≤
√

2
1−
√
d
E(T )

1
2 (
∫

Σ−T

G((E × ν) · g(E × ν)) dσdt)
1
2 .

Jensen’s inequality then yields∫
Σ−T

|g(E × ν)||P × ν| dσdt ≤
√

2
1−
√
d
|ΣT |

1
2 E(T )

1
2 ·

(
G

(
1
|ΣT |

∫
Σ−T

(E × ν) · g(E × ν) dσdt

)) 1
2

.
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By (2.16), we arrive at∫
Σ−T

|g(E × ν)||P × ν| dσdt ≤
√

2|ΣT |
1
2 E(T )

1
2

1−
√
d

(
G

(
E(0)− E(T )
|ΣT |

)) 1
2

. (5.11)

We proceed similarly for the second term of the right-hand side of (5.7).
First Cauchy-Schwarz’s inequality yields∫

Σ−T

|E × ν||K| dσdt ≤ (
∫

Σ−T

|K|2 dσdt) 1
2 (
∫

Σ−T

|E × ν|2 dσdt) 1
2 .

The assumption (5.4) and the estimate (5.8) directly lead to∫
Σ−T

|E × ν||K| dσdt ≤
√

2
1−
√
d
E(T )

1
2 (
∫

ΣT

G ((E × ν) · g(E × ν)) dσdt)
1
2 .

Again Jensen’s inequality and (2.16) yield∫
Σ−T

|E × ν||K| dσdt ≤
√

2
1−
√
d
|ΣT |

1
2 E(T )

1
2

(
G

(
E(0)− E(T )
|ΣT |

)) 1
2

. (5.12)

The assumption (1.4), the estimate (5.8) and (2.16) lead similarly to∫
Σ+
T

|E × ν||K| dσdt ≤ c5E(T )
1
2 (E(0)− E(T ))

1
2 , (5.13)

for some constant c5.
The estimates (5.10), (5.11), (5.12) and (5.13) into the estimate (5.7) give

E(T )
1
2 ≤ c6{(E(0)− E(T ))

1
2 +

(
G
(
|Γ|−1T−1(E(0)− E(T ))

)) 1
2 },

for some positive constant c6 (depending on T and |Γ|). This finally leads to

E(0) = E(0)− E(T ) + E(T )
≤ max{1, c6}{(E(0)− E(T )) +G

(
|Γ|−1T−1(E(0)− E(T ))

)
}.

As E(0)−E(T )
T |Γ| ≤ E(0)

T |Γ| , the concavity of G yields a constant c7 (depending contin-
uously on T , E(0) and |Γ|) such that

E(0)− E(T )
T |Γ|

≤ c7G(
E(0)− E(T )

T |Γ|
).

These two estimates lead to

E(0) ≤ c3G(
E(0)− E(T )

T |Γ|
),

for some c3 > 0 (depending on T , E(0) and |Γ|).
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Using this argument in [t, t+ T ] instead of [0, T ] we have shown that

E(t) ≤ φ−1(E(t)− E(t+ T )),∀t ≥ 0, (5.14)

when we recall that φ was defined by (5.6).
We conclude by Theorem 5.1 since Lemma 5.1 of [8] shows that the estimate

(5.14) guarantees that E actually satisfies (5.1). �

Corollary 5.4 Assume that g satisfies the assumptions of Lemma 2.5 as well
as

|E|q+1 + |g(E)|q+1 ≤ c8g(E) · E,∀|E| ≤ 1, (5.15)

for some positive constant c8 and q ≥ 1. If Ω satisfies the (ε, µ)-stability estimate
and q = 1, then there exist two positive constants K and ω which may depend
on T, |Γ| and E(0) such that

E(t) ≤ Ke−ωtE(0), (5.16)

for all solution
(
E(t)
H(t)

)
of (1.1).

If Ω satisfies the (ε, µ)-stability estimate and q > 1, then there exist a positive
constant K1 which may depend on T, |Γ| and E(0) such that

E(t) ≤ K1(1 + t)−
2
q−1 , (5.17)

for all solution
(
E(t)
H(t)

)
of (1.1).

Examples of functions g leading to an explicit decay rate (5.5) are given in
[8]. Let us give the following illustration (compare with Examples 2.1 and 2.2
of [8])

Example 5.5 Suppose that g satisfies (1.5) and (1.2) to (1.4) as well as

E · g(E) ≥ c0|E|p+1, |g(E)| ≤ C0|E|α,∀|E| ≤ 1, (5.18)

for some positive constants c0, C0, α ∈ (0, 1] and p ≥ α. Then g satisfies (5.15)
with q = p+1

α − 1 (which is ≥ 1). By Corollary 5.4 we get an exponential decay
if p = α = 1 and the decay t−

2α
p+1−2α if p + 1 > 2α. A function g satisfying all

these assumptions is given by

g(E) =
{
|E|α−1E if |E| ≤ 1,
E if |E| ≥ 1,

for some α ∈ (0, 1]. In that case (5.18) holds for p = α.
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