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Nonlinear Klein-Gordon equations coupled with

Born-Infeld type equations ∗

Pietro d’Avenia & Lorenzo Pisani

Abstract

In this paper we prove the existence of infinitely many radially sym-
metric standing waves in equilibrium with their own electro-magnetic field.
The interaction is described by means of the minimal coupling rule; on
the other hand the Lagrangian density for the electro-magnetic field is the
second order approximation of the Born-Infeld Lagrangian density.

1 Electrically charged fields

Let us consider the nonlinear Klein-Gordon equation

ψtt −∆ψ +m2
0ψ − |ψ|

p−2
ψ = 0, (1.1)

where ψ = ψ (x, t) ∈ C, x ∈ R3, t ∈ R, m0 is a real constant and p > 2. It
is known that (1.1) can be used to develop the theory of electrically charged
fields (see [8]). Of course we can study the interaction of ψ with its own electro-
magnetic field as it has been done in [2]. As usual, the electro-magnetic field is
described by the gauge potential (φ,A)

φ : R3 × R→ R, A : R3 × R→ R
3.

Indeed, from (φ,A), we obtain the electric field

E = −∇φ−At (1.2)

and the magnetic induction field

B = ∇×A. (1.3)
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The interaction of ψ with the electro-magnetic field is described by the min-
imal coupling rule, that is the formal substitution

∂

∂t
7−→ ∂

∂t
+ ieφ (1.4)

∇ 7−→ ∇− ieA (1.5)

where e is the electric charge.
We recall that (1.1) is the Euler-Lagrange equation with respect to the La-

grangian density

LNLKG =
1
2

[∣∣∂ψ
∂t

∣∣2 − |∇ψ|2 −m2
0 |ψ|

2
]

+
1
p
|ψ|p . (1.6)

Then, by (1.4) and (1.5), the Lagrangian density (1.6) becomes

L0 =
1
2

[∣∣∂ψ
∂t

+ ieφψ
∣∣2 − |∇ψ − ieAψ|2 −m2

0 |ψ|
2
]

+
1
p
|ψ|p .

The total action of the system is the sum

S =
∫∫

(L0 + Le.m.f.) dxdt (1.7)

where Le.m.f. is the Lagrangian density of the electro-magnetic field. In the
classical Maxwell theory, with a suitable choice of constants, we have

Le.m.f. = LM =
1

8π

(
|E|2 − |B|2

)
.

The existence of infinitely many solutions for the Euler-Lagrange equations as-
sociated to

S =
∫∫

(L0 + LM) dxdt

has been proved by Benci and Fortunato in [2].
We recall that Maxwell equations coupled with Schrödinger or Dirac equa-

tions have been studied respectively in [1], [5], [6] and in [7]. It is well known
that the classical theory has two difficulties arising from the divergence of en-
ergy (see the first section of [9]). An attempt to avoid this divergence is the
Born-Infeld theory, where

LBI =
b2

4π

(
1−

√
1− 1

b2
(
|E|2 − |B|2

))
(1.8)

being b� 1 the so-called Born-Infeld parameter (see [4]).
In [9], the authors consider the second order expansion of (1.8) for

β =
1

2b2
→ 0.
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They obtain the Lagrangian density

L1 =
1

4π

[
1
2

(
|E|2 − |B|2

)
+
β

4

(
|E|2 − |B|2

)2
]

and they prove some existence results of finite-energy electrostatic solutions.
In this paper we consider

Le.m.f. = L1.

So the total action we study is

S =
∫∫

(L0 + L1) dxdt. (1.9)

As in [2], we consider
ψ (x, t) = u (x, t) eiS(x,t)

with u, S ∈ R; therefore
S = S (u, S, φ,A)

and the explicit expression of the Lagrangian densities is

L0 =
1
2

{
u2
t − |∇u|

2 −
[
|∇S − eA|2 − (St + eφ)2 +m2

0

]
u2
}

+
1
p
|u|p ,

L1 =
1

4π

[
1
2

(
|At +∇φ|2 − |∇ ×A|2

)
+
β

4

(
|At +∇φ|2 − |∇ ×A|2

)2
]
.

The Euler-Lagrange equations associated to (1.9) are

dS [δu] = 0 (1.10)
dS [δS] = 0 (1.11)
dS [δφ] = 0 (1.12)
dS [δA] = 0. (1.13)

By standard calculations, we get

�u+
[
|∇S − eA|2 − (St + eφ)2 +m2

0

]
u− |u|p−2

u = 0 (1.14)

∂

∂t

[
(St + eφ)u2

]
−∇

[
(∇S − eA)u2

]
= 0 (1.15)

∇ ·
[(

1 + β |At +∇φ|2 − β |∇ ×A|2
)

(At +∇φ)
]

= 4πe (St + eφ)u2 (1.16)

∂

∂t

[(
1 + β |At +∇φ|2 − β |∇ ×A|2

)
(At +∇φ)

]
+∇×

[(
1 + β |At +∇φ|2 − β |∇ ×A|2

)
(∇×A)

]
= 4πe (∇S − eA)u2.

(1.17)
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From the physical point of view, it may be interesting to introduce the
following notation: we set

ρ = −e (St + eφ)u2, (1.18)

J = e (∇S − eA)u2. (1.19)

Taking into account (1.2) and (1.3), the equations (1.15), (1.16) and (1.17)
become respectively

∂ρ

∂t
+∇J = 0 (1.20)

∇
[(

1 + β
(
|E|2 − |B|2

))
E
]

= 4πρ (1.21)

∇×
[(

1 + β
(
|E|2 − |B|2

))
B
]
− ∂

∂t

[(
1 + β

(
|E|2 − |B|2

))
E
]

= 4πJ.

(1.22)

We notice that (1.18) and (1.19) are good definitions respectively of charge
density and current density, indeed the continuity equation (1.20) is satisfied.

Equations (1.21) and (1.22) are formally identical to equations (24) and (25)
of [9], indeed they replace the second pair of Maxwell equations when we use
the second order approximation of the Born-Infeld Lagrangian density.

2 Statement of the main result

In this paper we look for solutions of (1.14)-(1.17) such that

u = u (x) ,
S = ωt,

φ = φ (x) , (2.1)
A = 0. (2.2)

We recall that solutions
ψ (x, t) = u (x) eiωt

are called standing waves. On the other hand, (2.1) and (2.2) characterize a
purely electrostatic field.

With the above ansatz, equations (1.15) and (1.17) are identically satisfied;
(1.14) and (1.16) take the form

−∆u+
[
m2

0 − (ω + φ)2
]
u− |u|p−2

u = 0 (2.3)

∆φ+ β∆4φ = 4π (ω + φ)u2, (2.4)

where we have taken e = 1. Now we can state our main result.
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Theorem 1 If |ω| < |m0| and 4 < p < 6, the system of equations (2.3) and
(2.4) has infinitely many solutions (u, φ) such that∫

R3
|u|2 dx+

∫
R3
|∇u|2 dx < +∞ (2.5)∫

R3
|∇φ|2 dx+

∫
R3
|∇φ|4 dx < +∞. (2.6)

Moreover the fields u and φ are radially symmetric.

The fact that u ∈ H1
(
R

3
)

is radially symmetric implies that u decays to
0 at infinity (see [12]), then ψ (x, t) = u (x) eiωt can be called solitary wave .
Moreover, from (2.6) we deduce that the electrostatic field E = −∇φ has finite
energy (in the sense of [9]).

3 Variational setting

Let H1(R3) denote the usual Sobolev space with norm

‖u‖H1 =
(∫

R3
|u|2 dx+

∫
R3
|∇u|2 dx

)1/2

and D denote the completion of C∞0
(
R

3
)

with respect to the norm

‖φ‖D = ‖∇φ‖L2 + ‖∇φ‖L4 .

If D1,2
(
R

3
)

denotes the completion of C∞0
(
R

3
)

with respect to the norm

‖φ‖D1,2 = ‖∇φ‖L2 ,

it is obvious that D is continuously embedded in D1,2
(
R

3
)
. On the other

hand, by well known Sobolev inequality, D1,2
(
R

3
)

is continuously embedded in
L6
(
R

3
)
.

Moreover it can be easily proved thatD is continuously embedded in L∞
(
R

3
)

(see Proposition 8 of [9]).
Consider the functional

F (u, φ)

=
∫ [

1
2
|∇u|2 − 1

8π
|∇φ|2 +

1
2

(
m2

0 − (ω + φ)2
)
u2 − β

16π
|∇φ|4 − 1

p
|u|p

]
dx.

For the rest of this article, the integration domain is R3. By the above remarks,
for every (u, φ) ∈ H1

(
R

3
)
×D

F (u, φ) ∈ R.

Proposition 2 The functional F is C1 on H1
(
R

3
)
×D and its critical points

are solutions of (2.3) and (2.4) and satisfy (2.5) and (2.6).
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Proof. Let F ′u (u, φ) and F ′φ (u, φ) denote the partial derivatives of F at (u, φ) ∈
H1
(
R

3
)
×D. For every v ∈ H1

(
R

3
)

and w ∈ D,

F ′u (u, φ) [v] =
∫ {

(∇u | ∇v) +
[
m2

0 − (ω + φ)2
]
uv − |u|p−2

uv
}
dx (3.1)

F ′φ (u, φ) [w] = −
∫ {

1
4π

((
1 + β |∇φ|2

)
∇φ | ∇w

)
+ (ω + φ)u2w

}
dx. (3.2)

Using standard computations we show that F ′u and F ′φ are continuous; therefore
F is C1 on H1

(
R

3
)
×D. Moreover, from (3.1) and (3.2) we get obviously that

the critical points of F are solutions of (2.3) and (2.4). �

The functional F is strongly indefinite, i.e. it is unbounded from above and
from below, even modulo compact perturbations. Following [2] we are going to
study a functional of the only variable u whose critical points give rise to critical
points of F .

Lemma 3 For every u ∈ H1
(
R

3
)

there exists a unique φ = Φ [u] ∈ D solution
of (2.4).

Proof. For every fixed u ∈ H1
(
R

3
)
, the solutions of (2.4) are critical points

of the functional

I (φ) =
∫ {

1
8π
|∇φ|2 +

β

16π
|∇φ|4 + ωu2φ+

1
2
φ2u2

}
dx (3.3)

defined on D. This functional is coercive; indeed, by the continuous embedding
of D in L∞

(
R

3
)
,

I (φ) ≥ 1
8π
‖∇φ‖2L2 +

β

16π
‖∇φ‖4L4 − c

∥∥u2
∥∥
L1 (‖∇φ‖L2 + ‖∇φ‖L4) .

Furthermore I is weakly lower semicontinuous since each term in (3.3) is contin-
uous and convex. Therefore I admits a global minimum. The solution of (2.4)
is unique because the operator

A = −∆− β∆4 + 4πu2

is strictly monotone. �

By Lemma 3 we can consider the map

Φ : H1
(
R

3
)
→ D

which is implicitly defined by F ′φ (u, φ) = 0.
From standard arguments we deduce that the map Φ is C1. Fixed u ∈

H1
(
R

3
)
, since Φ [u] is the solution of (2.4), we have〈

1
4π

∆Φ [u] +
β

4π
∆4Φ [u]− Φ [u]u2,Φ [u]

〉
=
〈
ωu2,Φ [u]

〉
,
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i.e.

− 1
4π

∫
|∇Φ [u]|2 dx− β

4π

∫
|∇Φ [u]|4 dx−

∫
(Φ [u])2

u2dx = ω

∫
u2Φ [u] dx.

(3.4)
Now we consider the functional

J : H1
(
R

3
)
→ R, J (u) = F (u,Φ [u]) .

Using (3.4) we obtain

J (u) =
1
2

∫
|∇u|2 dx+

1
2
(
m2

0 − ω2
) ∫

u2dx+
1
2

∫
(Φ [u])2

u2dx+

+
1

8π

∫
|∇Φ [u]|2 dx+

3
16π

β

∫
|∇Φ [u]|4 dx− 1

p

∫
|u|p dx.

Remark 4 Since F and Φ are C1, also J is C1. Moreover, if u ∈ H1
(
R

3
)

is a
critical point of J , then (u,Φ [u]) is a critical point of F (see Proposition 7 of
[2]).

Thus, to get solutions of our problem, we look for critical points of J . For
every a ∈ R3 and v : R3 → R, we set

va (x) = v (x+ a) . (3.5)

Lemma 3 implies that for every u ∈ H1
(
R

3
)
,

Φ [ua] = (Φ [u])a ;

therefore J (ua) = J (u).
Since J is invariant under translations (3.5), there is still lack of compactness.

For this reason we restrict J to the subspace

H1
r

(
R

3
)

=
{
u ∈ H1

(
R

3
)
u = u (|x|)

}
which is a natural constraint for J in the sense of following lemma.

Lemma 5 If u ∈ H1
r

(
R

3
)

is a critical point of JH1
r (R3), then u is a critical

point of J .

Proof. For every field v defined almost everywhere in R3 and for every g ∈
O (3) we set

(Tgv) (x) = v (gx) . (3.6)

Of course (3.6) defines an action of O (3) on H1
(
R

3
)
.

Since H1
r

(
R

3
)

is the set of fixed points for this action, by the well known
Principle of Symmetric Criticality (see [10]), it is enough to prove that J is
Tg-invariant, i.e. for every u ∈ H1

(
R

3
)

and g ∈ O (3)

J (Tgu) = J (u) . (3.7)
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The main point is to prove that, for every u ∈ H1
(
R

3
)

Φ [Tgu] = TgΦ [u] . (3.8)

It is well known that
∆TgΦ [u] = Tg (∆Φ [u]) .

Analogously one can show that

∆4TgΦ [u] = Tg (∆4Φ [u]) .

Then it is simple to verify that Φ [Tgu] and TgΦ [u] solve the same equation

∆φ+ β∆4φ = 4π (ω + φ) (Tgu)2
.

Therefore we obtain (3.8). So, by the Tg-invariance of the norms in H1
(
R

3
)
, D

and Lp
(
R

3
)

we get (3.7). �

4 Proof of Theorem 1

By Proposition 2, Remark 4 and Lemma 5, the thesis of Theorem 1 will follow
if we show that the functional J has infinitely many critical points on H1

r

(
R

3
)
.

First of all we prove that on H1
r

(
R

3
)

there is no lack of compactness. Indeed
the following lemma holds true.

Lemma 6 If |ω| < |m0| and 4 < p < 6, the functional JH1
r (R3) satisfies the

Palais-Smale condition.

Proof. Let {un} ⊂ H1
r

(
R

3
)

be a Palais-Smale sequence, i.e. J (un) = Mn is
bounded and

J ′H1
r (R3) (un) = εn → 0

in
(
H1
r

(
R

3
))′ (the dual space of H1

r

(
R

3
)
).

We want to prove that {un} contains a convergent subsequence. From the
definition of J we have that

J ′ (un) = F ′u (un,Φ [un]) + F ′φ (un,Φ [un]) Φ′ [un] = F ′u (un,Φ [un]) = εn

since F ′φ (un,Φ [un]) = 0. Then

J(un)− 1
p
〈J ′ (un) , un〉 = J (un)− 1

p
〈F ′u (un,Φ [un]) , un〉

=
(

1
2
− 1
p

)∫
|∇un|2 dx+

(
1
2
− 1
p

)(
m2

0 − ω2
) ∫

u2
ndx+

+
(

1
2

+
1
p

)∫
(Φ [un])2

u2
ndx+

2
p
ω

∫
Φ [un]u2

ndx+

+
1

8π

∫
|∇Φ [un]|2 dx+

3
16π

β

∫
|∇Φ [un]|4 dx.
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On the other hand

J (un)− 1
p
〈J ′ (un) , un〉 = Mn −

1
p
〈εn, un〉 .

Hence we can write

c1

∫
|∇un|2 dx+ c2

∫
u2
ndx+An = Mn −

1
p
〈εn, un〉 (4.1)

where

An =
1

8π

∫
|∇Φ [un]|2 dx+

3
16π

β

∫
|∇Φ [un]|4 dx+ (4.2)

+
(

1
2

+
1
p

)∫
(Φ [un])2

u2
ndx+

2
p
ω

∫
Φ [un]u2

ndx

and c1, c2 are positive constants.
Equation (3.4) holds also for the pair (un,Φ [un]) and so

An =
1

4π

(
1
2
− 2
p

)∫
|∇Φ [un]|2 dx+

β

4π

(
3
4
− 2
p

)∫
|∇Φ [un]|4 dx+

+
(

1
2
− 1
p

)∫
(Φ [un])2

u2
ndx. (4.3)

Then, since 4 < p < 6, there exists c3 > 0 such that

An ≥ c3
(∫
|∇Φ [un]|2 dx+

∫
|∇Φ [un]|4 dx+

∫
(Φ [un])2

u2
ndx

)
. (4.4)

Thus, being An ≥ 0, from (4.1) we obtain that {un} is bounded in H1
r

(
R

3
)
.

Moreover, the equation (4.1) implies that {An} is bounded and so, from (4.4),
also {Φ [un]} is bounded in D. Hence, up to subsequence,

un ⇀ u in H1
r

(
R

3
)

Φ [un] ⇀ Φ̄ in D.

Now we prove that un → u in H1
r (R3). We know that

−∆un +
[
m2

0 − (ω + Φ [un])2
]
un − |un|p−2

un = εn,

i.e.

−∆un +
(
m2

0 − ω2
)
un = 2ωΦ [un]un + (Φ [un])2

un + |un|p−2
un + εn.

Let L : H1
r

(
R

3
)
→
(
H1
r

(
R

3
))′ be the isomorphism

Lu = −∆u+
(
m2

0 − ω2
)
u.
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Then

un = 2ωL−1 (Φ [un]un) + L−1
(

(Φ [un])2
un

)
+ L−1

(
|un|p−2

un

)
+ L−1 (εn) .

(4.5)
To prove the strong convergence of {un} , it is sufficient to prove the strong

convergence of each term in the right hand side of (4.5). Obviously the se-
quence

{
L−1 (εn)

}
converges strongly. Since H1

r

(
R

3
)

is compactly embedded
into Lq

(
R

3
)

for 2 < q < 6 (see [12], [3]), we have that

Lp
′ (
R

3
)

is compactly embedded into
(
H1
r

(
R

3
))′

, (4.6)

where p′ = p
p−1 is the conjugate exponent of p. Thus, if we set

vn = |un|p−2
un

an easy calculation shows that

‖vn‖Lp′ = ‖un‖p−1
Lp . (4.7)

Since {un} is bounded in H1
r

(
R

3
)
, from Sobolev embedding theorem, it is

bounded in Lp
(
R

3
)

and so, by (4.7), we have that {vn} is bounded in Lp
′ (
R

3
)
.

Then, up to subsequence, {vn} converges weakly in Lp
′ (
R

3
)

and, by (4.6),
converges strongly in

(
H1
r

(
R

3
))′. So we conclude that

{
L−1(|un|p−2un)

}
con-

verges strongly in H1
r

(
R

3
)
.

Finally, it remains to show the strong convergence of
{
L−1 (Φ [un]un)

}
and{

L−1
(

(Φ [un])2
un

)}
. Since H1

r

(
R

3
)

is compactly embedded into L3
(
R

3
)
,

we have that L3/2
(
R

3
)

is compactly embedded into
(
H1
r

(
R

3
))′and then it is

sufficient to prove that {Φ [un]un} and
{

(Φ [un])2
un

}
are bounded in L3/2

(
R

3
)
.

By Hölder inequality∥∥∥(Φ [un])2
un

∥∥∥
L3/2
≤ ‖Φ [un]‖3L6 ‖un‖3/2L3

‖Φ [un]un‖L3/2 ≤ ‖Φ [un]‖L6 ‖un‖L2 .

Hence, being {un} and {Φ [un]} bounded respectively in H1
r

(
R

3
)

and D and
from well known Sobolev inequalities, we conclude that {Φ [un]un} and
{(Φ[un])2un} are bounded in L3/2(R3). �

Since J is even and JH1
r (R3) satisfies the Palais-Smale condition, the exis-

tence of infinitely many critical points follows from the equivariant version of
the mountain pass theorem (Theorem 9.12 of [11]). Let JH1

r (R3) satisfy the
geometrical assumptions:

(G1) There exists α, ρ > 0 such that for every u ∈ H1
r

(
R

3
)

with ‖u‖H1
r

= ρ

J (u) ≥ α
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(G2) For every finite dimensional subspace V of H1
r

(
R

3
)

there exists R > 0
such that for every u ∈ H1

r

(
R

3
)

with ‖u‖H1
r
≥ R

J (u) ≤ 0.

Then we deduce that JH1
r (R3) has infinitely many critical points. Therefore we

are left to prove the geometrical assumptions (G1) and (G2).
In the sequel ci denotes a positive constant. From the definition of J , for

every u ∈ H1
r

(
R

3
)

J (u) ≥ c1 ‖u‖2H1 − c2 ‖u‖pLp .

Since 4 < p < 6, by well known Sobolev inequalities, we obtain (G1).
As to (G2), let V be a finite dimensional subspace of H1

r

(
R

3
)
. For every

u ∈ V
J (u) ≤c3 ‖u‖2H1 +

1
8π
‖∇φ [u]‖2L2 +

3
16π

β ‖∇φ [u]‖4L4 +

+
1
2
‖φ [u]u‖2L2 −

1
p
‖u‖pLp .

(4.8)

We know that

1
4π
‖∇φ [u]‖2L2 +

β

4π
‖∇φ [u]‖4L4 + ‖φ [u]u‖2L2 = −ω

∫
u2φ [u] dx.

Moreover, by Hölder and Sobolev inequalities∣∣∣∣ω ∫ u2φ [u] dx
∣∣∣∣ ≤ c4 ‖u‖2L12/5 ‖φ [u]‖L6 ≤ c5 ‖u‖2L12/5 ‖∇φ [u]‖L2

and so

1
4π
‖∇φ [u]‖2L2 +

β

4π
‖∇φ [u]‖4L4 + ‖φ [u]u‖2L2 ≤ (4.9)

≤ c5 ‖u‖2L12/5 ‖∇φ [u]‖L2 .

Then
1

4π
‖∇φ [u]‖L2 ≤ c5 ‖u‖2L12/5 (4.10)

being
1

4π
‖∇φ [u]‖2L2 ≤ c5 ‖u‖2L12/5 ‖∇φ [u]‖L2 . (4.11)

Thus, from (4.9), (4.10) and (4.11)

1
4π
‖∇φ [u]‖2L2 ≤ c25 ‖u‖

4
L12/5

β

4π
‖∇φ [u]‖4L4 ≤ c25 ‖u‖

4
L12/5

‖φ [u]u‖2L2 ≤ c25 ‖u‖
4
L12/5 .
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Hence, from (4.8),

J (u) ≤c3 ‖u‖2H1 +
c25
2
‖u‖4L12/5 +

c25
2
‖u‖4L12/5 +

3
4
c25 ‖u‖

4
L12/5 +

− 1
p
‖u‖pLp = c3 ‖u‖2H1 +

7
4
c25 ‖u‖

4
L12/5 −

1
p
‖u‖pLp

and, since V is finite dimensional and p > 4, we obtain (G2).
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