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Oscillation criteria for a class of nonlinear partial

differential equations ∗

Robert Mař́ık

Abstract

This paper presents sufficient conditions on the function c(x) to ensure
that every solution of partial differential equation

n∑
i=1

∂

∂xi
Φp(

∂u

∂xi
) +B(x, u) = 0, Φp(u) := |u|p−1 sgnu. p > 1

is weakly oscillatory, i.e. has zero outside of every ball in Rn. The main
tool is modified Riccati technique developed for Schrödinger operator by
Noussair and Swanson [11].

1 Introduction

In the oscillation theory of linear second order ordinary differential equation

y′′ + q(x)y = 0 (1)

plays an important role the associated Riccati equation

v′ + c(x) + v2 = 0 (2)

which can be obtained from (1) by substitution v(x) = y′(x)
y(x) , y(x) being a

nonzero solution of (1), see e.g. [12]. The use of this substitution, the so-called
Riccati technique, has been later developed also for various types of equations,
namely discrete, half–linear, Schrödinger and also equations with p−Laplacian,
see [6, 7, 8, 9, 10, 11, 13].

In this paper we will study the partial differential equation

n∑
i=1

∂

∂xi
Φp
( ∂u
∂xi

)
+B(x, u) = 0, (3)

where Φp(u) := |u|p−1 sgnu, p > 1. The nonlinearity B(x, u) : Rn × R → R is
continuous function odd with respect to the second variable, i.e.
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2 Oscillation criteria for nonlinear PDE EJDE–2002/28

(i) B(x,−u) = −B(x, u) for all x ∈ Rn and u ∈ R.

Hence if the function u(x) solves (3), then the function −u(x) is also solution
of (3).

Futhermore we suppose that there exist real-valued functions c(x) ∈ C(Rn),
ϕ(u) ∈ C1(R) such that the following conditions hold

(ii) B(x, u) ≥ c(x)ϕ(u) for all u > 0

(iii) ϕ(u) > 0 for u > 0,

(iv) there exists k > 0 such that ϕq−2(u)ϕ′(u) ≥ k for u > 0, where q is the
conjugate number to p, i.e., q = p

p−1 > 1

A significant particular case of (3) we obtain for B(x, u) = c(x)Φp(u). In this
case k = p− 1 holds in (iv) and (3) has the form

n∑
i=1

∂

∂xi
Φp
( ∂u
∂xi

)
+ c(x)Φp(u) = 0, (4)

The study of this equation is motivated by the fact that it is Euler–Lagrange
equation for the p−degree functional

Fp(u; Ω) :=
∫

Ω

[ n∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣p − c(x)|u(x)|p

]
dx

=
∫

Ω

[
‖∇u‖pp − c(x)|u|p

]
dx.

Equation (4) has been investigated in a series of papers of G. Bognár [1, 2, 3]
where the basic properties of the eigenvalue problem have been established. The
Picone–type identity and Riccati–type substitution for (4) has been recently
introduced by O. Došlý [5].

If p = 2 then (4) is linear Schrödinger partial differential equation

∆u+ c(x)u = 0.

Oscillation properties of this equation are deeply studied in the literature.
The aim of this paper is to study oscillation properties of equation (3) via

modified Riccati technique and derive oscillation criteria for this equation.
The following notation will be used throughout the paper: the p and q-norms

in Rn

‖x‖p =
( n∑
i=1

|xi|p
)1/p

, ‖x‖q =
( n∑
i=1

|xi|q
)1/q

for x ∈ Rn,

and the sets

Ω(a, b) = {x ∈ Rn : a ≤ ‖x‖q ≤ b},
Ω(a) = lim

b→∞
Ω(a, b) = {x ∈ Rn : a ≤ ‖x‖q},

S(a) = ∂Ω(a) = {x ∈ Rn : a = ‖x‖q}.
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The norm ‖ · ‖ is the usual Euclidean norm in Rn and ωn,q :=
∫
S(1)

dS is the
surface of the unit sphere (with respect to the q-norm) in Rn.

Motivated by the terminology in [11], we define an oscillation of (3) as follows

Definition 1 (Weak oscillation). A function f : Ω → R is called (weakly)
oscillatory, if and only if f(x) has zero in Ω∩Ω(a) for every a > 0. Equation (3)
is called (weekly) oscillatory in Ω whenever every solution u of (3) is oscillatory
in Ω.

Since we will not deal with another definition of oscillation, we will refer
weak oscillation simply as oscillation.

The paper is organized as follows. The next section contains the presentation
of the main results. In Section 3 we prove some auxiliary results used in the
proofs, which are contained in Section 4.

2 Main results

Theorem 1. Let a0 ∈ R+, α ∈ C1((a0,∞),R+) and l > 1. If

lim
r→∞

∫
Ω(a0,r)

[
α(‖x‖q)c(x)− 1

p

( l

kq

)p−1

α1−p(‖x‖q)|α′(‖x‖q)|p
]

dx = +∞ (5)

and

lim
r→∞

∫ r

a0

1(
rn−1α(r)

) 1
p−1

= +∞, (6)

then (3) is oscillatory in Rn.

Remark 1. Remark that Theorem 1 does not deal with the existence of solu-
tion. In other words it states that if there exists a solution, then this solution
is oscillatory function (in the sense of Definition 1).

A suitable choice of the function α in Theorem 1 leads to effective oscillation
criteria for equations (3) and (4). This is the content of the following corollaries.
The first one is a Leighton–type oscillation criterion (see [12, Th. 2.24, p. 70]).

Corollary 2. Suppose that p ≥ n and

lim
r→∞

∫
Ω(1,r)

c(x) dx = +∞. (7)

Then (3) is oscillatory in Rn.

We remark that the condition p ≥ n cannot be removed, which is known
already from the study of Schrödinger equation (for p = 2).

Another choice of the function α improves this criterion criterion, if p > 2.
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Corollary 3. Let p ≥ n, p > 2 and

lim
r→∞

∫
Ω(1,r)

ln(‖x‖q)c(x) dx = +∞. (8)

Then (3) is oscillatory in Rn.

The following theorem covers also the case when p < n.

Corollary 4. Let

lim inf
r→∞

1
ln r

∫
Ω(1,r)

‖x‖p−nq c(x) dx > ωn,q
|p− n|p

p(kq)p−1
. (9)

Then (3) is oscillatory in Rn.

Corollary 5. Let

lim inf
r→∞

1
ln r

∫
Ω(1,r)

‖x‖p−nq c(x) dx > ωn,q

∣∣∣p− n
p

∣∣∣p. (10)

Then (4) is oscillatory in Rn.

Remark 2. The constant ωn,q
∣∣p−n
p

∣∣p in (10) is optimal and cannot be de-
creased. This follows from the example of equation

n∑
i=1

∂

∂xi
Φp
( ∂u
∂xi

)
+
∣∣∣p− n

p

∣∣∣p‖x‖−pq Φp(u) = 0.

This equation is not oscillatory, since it has nonoscillatory solution u(x) =

‖x‖
p−n
p

q and the function c(x) =
∣∣p−n
p

∣∣p‖x‖−pq produces equality in condition
(10).

Remark 3. We have already mention that the function Φp(u) := |u|p−1 sgnu
satisfies hypothesis (iii) and (iv) with k = p−1. On the other hand in most real
applications we claim B(x, 0) = 0 for all x and consequently ϕ(0) = 0. In this

case integration of (iv) implies ϕ(u) ≥
(

k
p−1

)p−1

up−1 and the function ϕ(u)
must satisfy this growth condition.

Example 1. Let us consider perturbed equation (4)

n∑
i=1

∂

∂xi
Φp
( ∂u
∂xi

)
+ c(x)Φp(u) +

m∑
i=1

qi(x)ψi(u) = 0, p ∈ (1, 2] (11)

where c(x), qi(x) ∈ C(Rn), ψi(u) ∈ C1(R), ψi(−u) = −ψi(u) for all i = 1..m
and all u ∈ R, and ψi(u) are positive and nondecreasing functions for u > 0 and
all i = 1..m. Define

q(x) = min{c(x), q1(x), q2(x), . . . , qm(x)}
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and

ϕ(u) = Φp(u) +
m∑
i=1

ψi(u).

Then

c(x)Φp(u) +
m∑
i=1

qi(x)ψi(u) ≥ q(x)ϕ(u) ϕ′(u)ϕq−2(u) ≥ p− 1

and hence Theorem 1 can be applied. Remark that we suppose no sign restric-
tions for the functions qi and so (11) needs not to be majorant for (4) in the
sense of Sturmian theory.

3 Auxiliary results

A modification of Riccati substitution from [5] is presented in the following
lemma.

Lemma 1. Let a0 ∈ R+, α ∈ C1((a0,∞),R+). If u ∈ C2(Rn,R) is a solution
of (3) on Ω(a0) such that u(x) 6= 0 for x ∈ Ω(a0), then the vector function ~w(x)
is well-defined on Ω(a0) by

~w(x) =
(
wi(x)

)n
i=1

, wi(x) = −α(‖x‖q)
ϕ(u(x))

Φp
( ∂u
∂xi

)
(12)

and satisfies the inequality

div ~w ≥ α(‖x‖q)c(x) + kα1−q(‖x‖q)‖~w‖qq +
α′(‖x‖q)
α(‖x‖q)

n∑
i=1

wiνi, (13)

where νi = Φq
(

xi
‖x‖q

)
.

Proof. In view of (i), without loss of generality let us consider that u(x) > 0 on
Ω(a0). It holds

∂wi
∂xi

=− α(‖x‖q)
ϕ(u)

∂

∂xi

(
Φp
( ∂u
∂xi

))
− Φp

( ∂u
∂xi

)α′(‖x‖q)
ϕ(u)

∂‖x‖q
∂xi

+ α(‖x‖q)
∣∣∣ ∂u
∂xi

∣∣∣p ϕ′(u)
ϕ2(u)

.

Since ∂‖x‖q
∂xi

= Φq
(

xi
‖x‖q

)
= νi, we get

∂wi
∂xi

= −α(‖x‖q)
ϕ(u)

∂

∂xi

(
Φp
( ∂u
∂xi

))
+
α′(‖x‖q)
α(‖x‖q)

wiνi+ϕ′(u)ϕq−2(u)α1−q(‖x‖q)|wi|q.
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From this equation and from (3) it follows

div ~w

= α(‖x‖q)
B(x, u)
ϕ(u)

+ ϕ′(u)ϕq−2(u)α1−q(‖x‖q)‖~w‖qq +
α′(‖x‖q)
α(‖x‖q)

n∑
i=1

wiνi.

Taking into account conditions (ii), (iii) and (iv) we obtain inequality (13).

Lemma 2. It holds
‖x‖pp
p

+
n∑
i=1

xiyi +
‖y‖qq
q
≥ 0

for every x, y ∈ Rn, x = (xi)ni=1, y = (yi)ni=1.

For the proof of this lemma, see [5].

4 Proofs of the main results

Proof of Theorem 1. Suppose, by contradiction, that u is a solution of (3) which
is positive on Ω(a0) for some a0 > 0. Then ~w is defined on Ω(a0). From inequal-
ity (13), using integration over the domain Ω(a0, r) and the Gauss–Ostrogradski
divergence theorem, follows

∫
S(r)

~w~n dS −
∫
S(a0)

~w~n dS ≥

≥
∫

Ω(a0,r)

(
α(‖x‖q)c(x) + kα1−q(‖x‖q)‖~w‖qq +

α′(‖x‖q)
α(‖x‖q)

n∑
i=1

wiνi

)
dx, (14)

where ~n is the outward normal unit vector to Ω(a0, r) i.e. ~n = ± ~ν
‖~ν‖ , ~ν = (νi)ni=1

and νi is defined in Lemma 1. Observe that ‖~ν‖p = 1.
Now, let l∗ = l

l−1 > 1 be the conjugate number to the number l. Then

kα1−q(‖x‖q)‖~w‖qq +
α′(‖x‖q)
α(‖x‖q)

n∑
i=1

wiνi =

=
kq

l
α1−q(‖x‖q)

(‖~w‖qq
q

+
lα′(‖x‖q)αq−2(‖x‖q)

qk

n∑
i=1

wiνi

)
+

+
k

l∗
α1−q(‖x‖q)‖~w‖qq.
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Using Lemma 2 we obtain

kα1−q(‖x‖q)‖~w‖qq +
α′(‖x‖q)
α(‖x‖q)

n∑
i=1

wiνi

≥− qk

lp
α1−q(‖x‖q)

∣∣∣∣∣∣∣∣ lα′(‖x‖q)αq−2(‖x‖q)
qk

~ν

∣∣∣∣∣∣∣∣p
p

+
k

l∗
α1−q(‖x‖q)‖~w‖qq

=− 1
p

( l

kq

)p−1

α1−p(‖x‖q)|α′(‖x‖q)|p +
k

l∗
α1−q(‖x‖q)‖~w‖qq.

This inequality together with (14) yields∫
S(r)

~w~n dS −
∫
S(a0)

~w~n dS

≥
∫

Ω(a0,r)

[
α(‖x‖q)c(x)− 1

p

( l

kq

)p−1

α1−p(‖x‖q)|α′(‖x‖q)|p
]

dx

+
k

l∗

∫
Ω(a0,r)

α1−q(‖x‖q)‖~w‖qq dx. (15)

In view of (5), there exists r0 > a0 such that∫
Ω(a0,r)

[
α(‖x‖q)c(x)− 1

p

( l

kq

)p−1

α1−p(‖x‖q)|α′(‖x‖q)|p
]

dx+

+
∫
S(a0)

~w~n dS ≥ 0

and now (15) implies∫
S(r)

~w~n dS ≥ k

l∗

∫
Ω(a0,r)

α1−q(‖x‖q)‖~w‖qq dx (16)

for r > r0. Application of the Hölder inequality in Rn yields∫
S(r)

~w~n dS ≤
∫
S(r)

‖~w‖q‖~n‖p dS.

Since ‖ · ‖ and ‖ · ‖p are equivalent norms in Rn, there exists K > 0 such that
‖~n‖p ≤ K‖~n‖ = K. This fact and another application of Hölder inequality gives∫

S(r)

~w~n dS ≤ K
(
ωn,qr

n−1
)1/p(∫

S(r)

‖~w‖qq dS
)1/q

(17)

Denote
g(r) =

∫
Ω(a0,r)

α1−q(‖x‖q)‖~w‖qq dx.

Then it holds
g′(r) = α1−q(r)

∫
S(r)

‖~w‖qq dS.
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and (17) gives ∫
S(r)

~w~n dS ≤ Kω1/p
n,q r

n−1
p

(
αq−1(r)g′(r)

) 1
q

. (18)

Combining (16) and (18) we obtain the inequality

k

l∗
g(r) ≤ Kω1/p

n,q r
n−1
p

(
αq−1(r)g′(r)

)1/q

for r > r0. Hence ( 1
rn−1α(r)

) 1
p−1 ≤ l∗ω

q
p
n,q

kKq

g′(r)
gq(r)

.

Integration of this inequality over [r0,∞] gives the divergent integral on the left
hand side, according to the assumption (6), and the convergent integral on the
right hand side. This contradiction completes the proof.

The Proof of Corollary 2 follows immediately from Theorem 1 for α(r) ≡ 1.

Proof of Corollary 3. Let a0 > e be arbitrary and α(r) = ln(r) on [a0,∞).
Since

lim
r→∞

α
1

1−p (r)r
1−n
p−1

1
r ln r

= lim
r→∞

r
p−n
p−1 ln

p−2
p−1 r ≥ 1,

the integral (6) diverges by ratio-convergence test. Further, since∫
Ω(a0,r)

|α′(‖x‖q)|pα1−p(‖x‖q) dx = ωn,q

∫ r

e

ξn−1−p ln1−p ξ dξ

≤ ωn,q
∫ r

a0

ξ−1 ln1−p ξ dξ = ωn,q
1

p− 2
[1− ln2−p r],

the limit limr→∞
∫

Ω(a0,r)
|α′(‖x‖)|pα1−p(‖x‖) dx converges and (8) is equivalent

to the condition (5) of Theorem 1. All conditions of Theorem 1 are satisfied
and the proof is complete.

Proof of Corollary 4. Let α(r) = rp−n. Then (6) holds and it is sufficient to
prove that also (5) holds, i.e. that there exists l > 1 such that

lim
r→∞

∫
Ω(1,r)

[
‖x‖p−nq c(x)− 1

p

( l

kq

)p−1

|p− n|p‖x‖−nq
]

dx = +∞. (19)

According to (9) there exists m > 1, ε > 0 and r0 > 1 such that∫
Ω(1,r)

‖x‖p−nq c(x) dx > (m+ ε)ωn,q
|p− n|p

p(kq)p−1
ln r (20)

for r > r0. Since ∫
Ω(1,r)

‖x‖−nq dx = ωn,q

∫ r

1

1
s

ds = ωn,q ln r,
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can be (20) written in the form∫
Ω(1,r)

[
‖x‖p−nq c(x)−m |p− n|

p

p(kq)p−1
‖x‖−nq

]
dx > εωn,q

|p− n|p

p(kq)p−1
ln r (21)

which implies (19). The proof is complete.

The Proof of Corollary 5 follows immediately from Corollary 4.
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