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Multiple positive solutions of some Fredholm

integral equations arisen from nonlocal

boundary-value problems ∗

G. L. Karakostas & P. Ch. Tsamatos

Abstract

By applying the Krasnoselskii’s fixed point theorem on a suitable cone,
several existence results for multiple positive solutions of a Fredholm inte-
gral equation are provided. Applications of these results to some nonlocal
boundary-value problems are also given.

1 Introduction

We study the existence of multiple positive solutions of the abstract Fredholm
integral equation

x(t) =
∫ 1

0

K(t, s)f(x(s))ds, t ∈ [0, 1], (1.1)

where the kernel K(t, s) satisfies a continuity assumption in the L1-sense and
it is monotone and concave in t for a.a. s. Then we apply our results to the
second order ordinary differential equation

(p(t)x′(t))′ + µ(t)f(x(t)) = 0, t ∈ [0, 1], (1.2)

associated with the nonlocal boundary conditions

x′(0) =
∫ 1

0

x′(s)dg(s) and x(1) = −
∫ 1

0

x′(s)dh(s) (1.3)

or

x′(1) =
∫ 1

0

x′(s)dg1(s) and x(0) =
∫ 1

0

x′(s)dh1(s). (1.4)

Notice that these problems are our motivation in investigating the abstract
problem (1.1). Here f : R → R, p : [0, 1] → (0,∞), µ : [0, 1] → [0,∞) are
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continuous functions and g, h, g1, h1 : [0, 1] → R are nondecreasing functions.
In these boundary conditions all integrals are meant in the sense of Riemann-
Stieljes.

Boundary-value problems with integral boundary conditions constitute a
very interesting class of problems, because they include as special cases two,
three, multi-point and nonlocal boundary-value problems. For such problems
and comments on their importance, we refer to the recent papers [7, 9, 15, 18].
Especially, the existence of positive solutions for such problems is the subject
of several recent papers [5, 8, 9, 10, 11, 12, 13, 15, 16, 19]. Moreover, since a
boundary-value problem may usually be reduced to an integral equation, the
existence of positive solutions for a boundary-value problem is closely connected
to an analogous problem for an integral equation. Indeed, the existence of
positive solutions for integral equations, or, generally, for operator equations, is
a problem which appeared early in the literature. For more details we refer to
the books by Krasnoselskii [16] and Agarwal, O’Regan and Wong [1], as well
as to the recent papers [2, 3, 17, 20, 21] and the references therein. For more
information about the general theory of integral equations and their relation
with boundary-value problems we refer to the book of Corduneanu [6] on finite
intervals and the most recent book of Agarwal and O’Regan [4] on infinite
intervals. We find it convenient to compare a little our setting with the ideas
expressed in [2]. The subject studied in [2] is an integral equation of the form

y(t) = θ(t) +
∫ 1

0

k(t, s)[g(y(s)) + h(y(s))]ds, t ∈ [0, 1], (1.4)

where h, g are continuous functions, g is sub-multiplicative on (0,+∞) and these
two functions and h/g satisfy some monotonicity conditions. The procedure
in [2] is to succeed existence via the solutions of an approximation of (1.4).
In the present paper we do not assume any monotonicity condition on f and
our existence results are obtained by a direct application of the Krasnoselskii’s
theorem. Notice that, as one can see, all conditions required for our integral
problem (1.1) are inherited from the corresponding properties of the boundary-
value problems (1.2)-(1.3) and (1.2)-(1.4).

And indeed the boundary-value problems (1.2)-(1.3) and (1.2)-(1.4) (though
they are equivalent in a sense explained in the last section) are reduced to the
abstract Fredholm integral equation (1.1). That is why we investigate when
equation (1.1) admits multiple positive solutions. The conditions established
on the kernel K and the force f are rather simple and such that the obtained
results are original and may give as corollaries new results for the boundary-
value problems (1.2)-(1.3) and (1.2)-(1.4). Our paper is motivated mainly by
the papers [13, 16, 18] and, among others, our results generalize and improve
several recent results of the authors [14] and Ma and Castaneda [19].

The results here are obtained by applying the well known fixed point theorem
due to Krasnoselskii [16], which states as follows:

Theorem 1.1 Let B be a Banach space and let K be a cone in B. Assume Ω1,
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Ω2 are open subsets of B, with 0 ∈ Ω1 ⊂ cl Ω1 ⊂ Ω2, and let

A : K ∩ (cl Ω2 \ Ω1)→ K

be a completely continuous operator such that either

‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2,

or
‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (cl Ω2 \ Ω1).

This paper is organized as follows: In Section 2 we show how the boundary-
value problems (1.2)-(1.3) and (1.2)-(1.4) can be written as a Fredholm integral
equation of the form (1.1). Section 3 contains the basic lemmas concerning
equation (1.1). These lemmas imply several corollaries, which in Section 4 lead
to our main existence results. In Section 5 we specify the results of Section 4 to
the boundary-value problems (1.2)-(1.3) and (1.2)-(1.4) and we close the paper
with a discussion.

2 The boundary-value problems (1.2)-(1.3) and
(1.2)-(1.4) reformulated

In what follows we shall denote by R the real line, by I the interval [0, 1] and by
C(I) the space of all continuous functions x : I → R. The space C(I) endowed
with the sup-norm ‖ · ‖ is a Banach space. Also we denote by L1(I) the space
of all functions x : I → R which are Lebesgue integrable on I endowed with the
usual norm ‖ · ‖L1 .

In the sequel we shall use nondecreasing functions g, h, g1, h1 : I → [0,∞),
with g(0) = h(0) = g1(1) = h1(1) = 0 and the continuous function p : I →
(0,∞) such that ∫ 1

0

1
p(s)

dg(s) <
1
p(0)

, (2.1)

if we have the conditions (1.3) and∫ 1

0

1
p(s)

dg1(s) <
1
p(1)

, (2.2)

if we have the conditions (1.4).
As we pointed out in the introduction, to search for solutions to (1.2)-(1.3)

and (1.2)-(1.4), we first reformulate them as operator equations of the form
x = Ax, where A is an appropriate integral operator.

To find operator A consider first the boundary-value problem (1.2)− (1.3),
where for simplicity we put

z(t) := µ(t)f(x(t)), t ∈ I.
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Integrate (1.2) from 0 to t and get

x′(t) = q(t)p(0)x′(0)− q(t)
∫ t

0

z(s)ds, (2.3)

where we have set q(t) := 1/p(t), t ∈ I. Taking into account the first condition
in (1.3) we obtain

x′(0) = p(0)x′(0)
∫ 1

0

q(s)dg(s)−
∫ 1

0

q(s)
∫ s

0

z(θ)dθdg(s)

or

p(0)x′(0)
[
q(0)−

∫ 1

0

q(s)dg(s)
]

= −
∫ 1

0

q(s)
∫ s

0

z(θ)dθdg(s)

and so

p(0)x′(0) = −α
∫ 1

0

q(s)
∫ s

0

z(θ)dθdg(s),

where α is a constant defined by

α :=
1

q(0)−
∫ 1

0
q(s)dg(s)

.

Then, from (2.3) we get

x′(t) = −αq(t)
∫ 1

0

q(s)
∫ s

0

z(θ)dθdg(s)− q(t)
∫ t

0

z(θ)dθ.

Thus for t ∈ I, we have

x(t) = x(0)− α
∫ 1

0

q(s)
∫ s

0

z(θ)dθdg(s)
∫ t

0

q(r)dr −
∫ t

0

q(s)
∫ s

0

z(θ)dθds,

and so

x(1) = x(0)− α
∫ 1

0

q(s)
∫ s

0

z(θ)dθdg(s)
∫ 1

0

q(r)dr −
∫ 1

0

q(s)
∫ s

0

z(θ)dθds.

On the other hand taking into account the second condition in (1.3) we obtain

x(1) = −
∫ 1

0

(
− αq(s)

∫ 1

0

q(r)
∫ r

0

z(θ)dθdg(r)− q(s)
∫ s

0

z(θ)dθ
)
dh(s) =

= α

∫ 1

0

q(s)dh(s)
∫ 1

0

q(r)
∫ r

0

z(θ)dθdg(r) +
∫ 1

0

q(s)
∫ s

0

z(θ)dθdh(s).

Therefore it follows that

x(0) = α

∫ 1

0

q(s)
∫ s

0

z(θ)dθdg(s)
∫ 1

0

q(r)dr +
∫ 1

0

q(s)
∫ s

0

z(θ)dθds+

+ α

∫ 1

0

q(s)dh(s)
∫ 1

0

q(r)
∫ r

0

z(θ)dθdg(r) +
∫ 1

0

q(s)
∫ s

0

z(θ)dθdh(s).
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Hence the solution x has the form

x(t) =α
∫ 1

0

q(s)
∫ s

0

z(θ)dθdg(s)
∫ 1

0

q(r)dr+

+ α

∫ 1

0

q(s)
∫ s

0

z(θ)dθdg(s)
∫ 1

0

q(r)dh(r)+

+
∫ 1

0

q(s)
∫ s

0

z(θ)dθds+
∫ 1

0

q(s)
∫ s

0

z(θ)dθdh(s)−

− α
∫ 1

0

q(s)
∫ s

0

z(θ)dθdg(s)
∫ t

0

q(r)dr −
∫ t

0

q(s)
∫ s

0

z(θ)dθds =

=α
∫ 1

0

q(s)
∫ s

0

z(θ)dθdg(s)
∫ 1

t

q(r)dr+

+ α

∫ 1

0

q(s)
∫ s

0

z(θ)dθdg(s)
∫ 1

0

q(r)dh(r) +
∫ 1

0

q(s)
∫ s

0

z(θ)dθdh(s)+

+
∫ 1

t

q(s)
∫ s

0

z(θ)dθds, t ∈ I.

Now for simplicity we set b :=
∫ 1

0
q(s)dh(s) and get

x(t) = α

∫ 1

0

q(s)
∫ s

0

z(θ)dθdg(s)
(
b+

∫ 1

t

q(s)ds
)

+

+
∫ 1

0

q(s)
∫ s

0

z(θ)dθdh(s) +
∫ 1

0

q(s)χ[t,1](s)
∫ s

0

z(θ)dθds =

=
∫ 1

0

q(s)
∫ s

0

z(θ)dθdsρ(t, s), t ∈ I,

where

ρ(t, s) := αg(s)
(
b+

∫ 1

t

q(r)dr
)

+ h(s) + sχ[t,1](s).

Finally by using Fubini’ s theorem we obtain

x(t) =
∫ 1

0

z(θ)
∫ 1

θ

q(s)dsρ(t, s)dθ =
∫ 1

0

f(x(θ))
(
µ(θ)

∫ 1

θ

q(s)dsρ(t, s)
)
dθ.

This is an equation of the form (1.1), where the kernel K(t, θ) is defined by

K(t, θ) := µ(θ)
∫ 1

θ

q(s)dsρ(t, s). (2.4)

Here we have the following:

Theorem 2.1 A function x ∈ C1(I) is a solution of the boundary-value problem
(1.2)− (1.3) if and only if x is a solution of equation (1.1), whose the kernel K
is given by (2.4).
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Proof. The only if part is proved above. For the if part, first we assume that
x : I → R is a continuous function satisfying (1.1). Then x is differentiable with
derivative

x′(t) =
∫ 1

0

∂K(t, θ)
∂t

f(x(θ))dθ,

where
∂K(t, θ)

∂t
=

{
−(αφ(θ) + 1)µ(θ)q(t), if θ < t

−αφ(θ)µ(θ)q(t), if t < θ
(2.5)

and φ(θ) :=
∫ 1

θ
q(r)dg(r). Thus we get

x′(t) = q(t)
[
− α

∫ 1

0

z(θ)φ(θ)dθ −
∫ t

0

z(θ)dθ
]
, (2.6)

where, recall that, z(t) = µ(t)f(x(t)), t ∈ I.
Now, from (2.6) it follows that equation (1.2) is satisfied. Moreover the first

condition in (1.3) is satisfied. Indeed, from the obvious relation

−αq(0) + 1 = −α
∫ 1

0

q(s)dg(s)

we get∫ 1

0

x′(s)dg(s) = −α
∫ 1

0

z(θ)φ(θ)dθ
∫ 1

0

q(s)dg(s)−
∫ 1

0

q(s)
∫ s

0

z(θ)dθdg(s) =

= −αq(0)
∫ 1

0

z(θ)φ(θ)dθ +
∫ 1

0

z(θ)φ(θ)dθ−

−
∫ 1

0

q(s)
∫ s

0

z(θ)dθdg(s) =

= x′(0) +
∫ 1

0

z(θ)
∫ 1

θ

q(s)dg(s)dθ −
∫ 1

0

q(s)
∫ s

0

z(θ)dθdg(s) =

= x′(0),

since from Fubini’s theorem we have∫ 1

0

z(θ)
∫ 1

θ

q(s)dg(s)dθ =
∫ 1

0

q(s)
∫ s

0

z(θ)dθdg(s). (2.7)

Finally, we can use (2.7) with h in place of g to show that the second condition
in (1.3) is also satisfied. �

Next following the same procedure as above it is not hard to see that a
function x ∈ C1(I) is a solution of the boundary-value problem (1.2)− (1.4) if
and only if x is a solution of equation (1.1), where now the kernel K is given by

K(t, θ) := µ(θ)
∫ θ

0

q(s)dsρ1(t, s), (2.8)



EJDE–2002/30 G. L. Karakostas & P. Ch. Tsamatos 7

the measure ρ1 is defined by

ρ1(t, s) := α1g1(s)
(
b1 +

∫ t

0

q(r)dr
)

+ h1(s) + sχ[0,t](s)

and the constants α1, b1 are given by

α1 :=
1

q(1)−
∫ 1

0
q(s)dg1(s)

and b1 :=
∫ 1

0

q(s)dh1(s).

3 On the Fredholm integral equation (1.1)

In this section we present some auxiliary facts needed to show the existence
of solutions of the general integral equation (1.1). Then we will return to the
specific problems (1.2)-(1.3) and (1.2)-(1.4).

To unify our results in the cases appeared later, we consider a fixed number
δ ∈ {−1,+1} and assume that the following conditions hold:

(Hf ) f : R→ R is a continuous function with f(x) > 0, when x > 0.

(HK) K(·, ·) maps the square I × I into (0,+∞) and it is such that:

a) For a.a. s ∈ I the functionK(·, s) is concave and the function δK(·, s)
is non-increasing.

b) For all t ∈ I we have K(t, ·) ∈ L1(I) and the function t → K(t, ·) is
uniformly L1-continuous.

Next define the cone

Kδ := {x ∈ C(I) : x ≥ 0, x is concave and δx is nonincreasing}

as well as the operator

(Ax)(t) :=
∫ 1

0

K(t, s)f(x(s))ds, x ∈ C(I).

Lemma 3.1 Under the assumptions (Hf ) and (HK) the operator A is com-
pletely continuous and it maps Kδ into Kδ.

Proof. For all x, y ∈ C(I) we have

∣∣(Ax)(t)− (Ay)(t)
∣∣ =

∣∣∣ ∫ t

0

K(t, s)(f(x(s))− f(y(s)))ds
∣∣∣ ≤ k ‖f(x(·))− f(y(·))‖,

where

k := sup
t∈I

∫ 1

0

K(t, s)ds (< +∞).

Thus A is a continuous operator.
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Let B be a bounded subset of C(I). Then there is a certain c > 0 such that
|x(t)| ≤ c, for all x ∈ B and t ∈ I. So we have

|(Ax)(t)| ≤ k sup
0≤ξ≤c

|f(ξ)|

for all x ∈ B and t ∈ I.
Also, let x ∈ B. Then, for all t1, t2 ∈ I, it holds

|(Ax)(t1)− (Ax)(t2)| ≤ ‖K(t1, ·)−K(t2, ·)‖L1 sup
0≤ξ≤c

|f(ξ)|.

Therefore A maps bounded sets into compact sets. The previous facts show the
complete continuity of A. Let x ∈ Kδ. Then f(x(s)) ≥ 0, s ∈ I and therefore
Ax(t) ≥ 0, t ∈ I.

Also, let E ⊂ I be a set with Lebesgue measure zero such that for all s ∈ I\E
it holds

δK(t1, s) ≤ δK(t2, s), whenever t2 ≤ t1,

as well as

K(λt1 + (1−λ)t2, s) ≥ λK(t1, s) + (1−λ)K(t2, s), for all t1, t2 ∈ I, λ ∈ [0, 1].

These facts are guaranteed by (HK). The first inequality implies that δAx is
a non-increasing function and the second one that Ax is concave. The proof is
complete. �

Next we let i := 1
2 (1− δ) and observe that, for each x ∈ Kδ, it holds

‖x‖ = x(i).

Define the continuous function

Φi(θ) :=
∣∣∣ ∫ θ

i

K(i, s)ds
∣∣∣, θ ∈ I.

and make the following assumptions:

(H1) There is a v > 0 such that Φi(1− i) supξ∈[0,v] f(ξ) < v.

(H2) There are η ∈ (0, 1) and u > 0 such that

Φi(η) inf
ξ∈[ζiu,u]

f(ξ) > u,

where ζi := 1− i+ η(2i− 1).

Lemma 3.2 For each x ∈ Kδ it holds

ζi‖x‖ ≤ x(t), t ∈ [iη, i+ (1− i)η].
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Proof. Concavity of x on I implies that

x(1)− x(0)
1

≥ x(1)− x(η)
1− η

,

which gives
x(η) ≥ (1− η)x(0) + ηx(1).

Since x is nonnegative, we get

x(η) ≥ (1− η)x(0) and x(η) ≥ ηx(1),

which is written as
x(η) ≥ ζix(i). (3.1)

Now, if δ = +1, we have i = 0, ζi = 1− η, x is non-increasing and ‖x‖ = x(0).
If δ = −1, then i = 1, ζi = η, x is nondecreasing and ‖x‖ = x(1). It is clear that
these facts together with (3.1) complete the proof. �

Lemma 3.3 If the assumptions (Hf ), (HK) and (H1) hold, then for all x ∈ Kδ,
with ‖x‖ = v, we have ‖Ax‖ < ‖x‖.

Proof. If ‖x‖ = v, then 0 ≤ x(s) ≤ v, for every s ∈ I and, by (H1) and
Lemma 3.1, we have

‖Ax‖ = (Ax)(i) =
∫ 1

0

K(i, θ)f(x(θ))dθ ≤

≤ supξ∈[0,v]f(ξ)
∫ 1

0

K(i, θ)dθ = Φi(1− i) supξ∈[0,v]f(ξ) < v = ‖x‖.

Lemma 3.4 If the assumptions (Hf ), (HK) and (H2) hold, then for all x ∈ Kδ,
with ‖x‖ = u, we have ‖Ax‖ > ‖x‖.

Proof. Take a point x ∈ Kδ, with ‖x‖ = u. Then by Lemma 3.2 we have
ζi‖x‖ ≤ x(s) ≤ ‖x‖ = x(i), for every s ∈ [iη, i + (1 − i)η]. Therefore from
Lemma 3.1 it follows that

‖Ax‖ = (Ax)(i) =
∫ 1

0

K(i, θ)f(x(θ))dθ ≥

≥ infξ∈[ζiu,u]f(ξ)
∣∣∣ ∫ η

i

K(i, θ)dθ
∣∣∣ = Φi(η)infξ∈[ζiu,u]f(ξ) >

> u = ‖x‖.

�
Now we assume that the quantities

T0 := lim
u→0

f(u)
u

, and T∞ := lim
u→∞

f(u)
u

exist. The previous results imply the following corollaries.
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Corollary 3.5 Let the assumptions (Hf ), (HK) be satisfied. If T0 = 0, there
is m0 > 0 such that for every m ∈ (0,m0] and for every x ∈ Kδ, with ‖x‖ = m,
we have ‖Ax‖ < ‖x‖.

Proof. Let ε ∈ (0, 1
Φi(1−i) ]. Since T0 = 0, there is a point m0 > 0 such that

for every y ∈ (0,m0] we have f(y) < εy. Let m ∈ (0,m0] be fixed. For every
y ∈ (0,m] we have f(y) < εy ≤ εm. Thus assumption (H1) is valid with v := m.
So, Lemma 3.3 applies.

Corollary 3.6 Let the assumptions (Hf ), (HK) be satisfied. If T∞ = +∞,
then there is M0 > 0 such that for every M ≥ M0 and for every x ∈ Kδ, with
‖x‖ = M , we have ‖Ax‖ > ‖x‖.

Proof. Since T∞ = +∞, there is a M1 > 0 such that for every y ≥ M1 we
have

f(y) >
1

Φi(η)ζi
y.

Set M0 := 1
ζi
M1. Then for any M ≥ M0 we have ζiM ≥ M1. So, if y ∈

[ζiM,M ], then y ≥ ζiM ≥M1 and so

Φi(η)f(y) >
1
ζi
y ≥ 1

ζi
ζiM = M.

Therefore assumption (H2) is valid with u := M and Lemma 3.4 applies.

Corollary 3.7 Let the assumptions (Hf ), (HK) be satisfied. If T0 = +∞,
then there is n0 > 0 such that for every n ∈ (0, n0) and for every x ∈ Kδ, with
‖x‖ = n, we have ‖Ax‖ > ‖x‖.

Proof. Since T0 = +∞, there is a n1 > 0 such that for every y ∈ (0, n1] it
holds Φi(η)f(y) > 1

ζi
y. Set n0 := ζin1. Then for any n ∈ (0, n0] and y ∈ [ζin, n]

we have 0 < y ≤ n ≤ n0 = ζin1 < n1 and thus

Φi(η)f(y) >
1
ζi
y ≥ 1

ζi
ζin = n.

Therefore assumption (H2) is valid with u := n and Lemma 3.4 applies.

Corollary 3.8 Let the assumptions (Hf ), (HK) be satisfied. If T∞ = 0, then
there is N0 > 0 large as we want such that for every x ∈ Kδ, with ‖x‖ = N0,
we have ‖Ax‖ < ‖x‖.
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Proof. Let ε ∈ (0, 1
Φi(1−i) ). We distinguish two cases:

1) Assume, first, that f is bounded. Then there is a k > 0 such that f(y) ≤ k,
for all y ≥ 0. We set N0 := k

ε . Then, for all y ≤ N0, it holds

f(y) ≤ k = εN0 <
1

Φi(1− i)
N0.

2) If f is not bounded, then there is a N0 so large as we want such that

sup
[0,N0]

f(y) = f(N0) ≤ εN0 <
1

Φi(1− i)
N0.

In any case, assumption (H1) holds with v := N0 and Lemma 3.3 applies. �

4 Existence results for equation (1.1)

In this section we state and prove our main results.

Theorem 4.1 Assume that the functions f,K satisfy assumptions (Hf ), (HK)
and, moreover, one of the following statements:

(i) (H1) and (H2).

(ii) (H1) and T0 = +∞.

(iii) (H1) and T∞ = +∞.

(iv) (H2) and T0 = 0.

(v) (H2) and T∞ = 0.

(vi) T0 = 0 and T∞ = +∞.

(vii) T0 = +∞ and T∞ = 0.

Then equation (1.1) admits at least one positive solution.

Proof. The result of the theorem is obtained if we apply Theorem 1.1 to the
completely continuous operator A on the cone Kδ and use Lemmas 3.3 and 3.4
if (i) holds, Lemma 3.3 and Corollary 3.7 if (ii) holds, Lemma 3.3 and Corollary
3.6 if (iii) holds, Lemma 3.4 and Corollary 3.5 if (iv) holds, Lemma 3.4 and
Corollary 3.8 if (v) holds, Corollaries 3.5 and 3.6, if (vi) holds, and Corollaries
3.7 and 3.8 if (vii) holds. In all cases we keep in mind Lemma 3.1. �
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Remark. In any case the application of Theorem 1.1 provides information on
the norm of the fixed points, namely information on the maximum value of the
corresponding solution of the problem. For instance, in case (i) the norm of the
solution lies in the interval (min{u, v},max{u, v}). The way of getting exact
information about the bounds of the norms of the solutions is exhibited in [8],
where the meaning of the index of convergence is used.

Theorem 4.2 Assume that the functions f, k satisfy the assumptions (Hf ),
(HK), (H1) and (H2). Moreover, let one of the following statements hold:

(i) u < v and T0 = 0.

(ii) u < v and T∞ = +∞.

(iii) v < u and T0 = +∞.

(iv) v < u and T∞ = 0.

Then equation (1.4) admits at least two positive solutions. (In any case the
remark of Theorem 4.1 keeps in force.)

Proof. As in the proof of Theorem 4.1, we apply (twice) Theorem 1.1 on
the completely continuous operator A defined on the cone Kδ and use Lemmas
3.3, 3.4 in connection with Corollary 3.5 if (i) holds, Corollary 3.6 if (ii) holds,
Corollary 3.7 if (iii) holds and Corollary 3.8 if (iv) holds. Again, keep in mind
Lemma 3.1. �

Theorem 4.3 Assume that the functions f, k satisfy the assumptions (Hf ),
(HK), (H1) and (H2). Moreover, assume that one of the following conditions
holds:

(i) u < v, T0 = 0 and T∞ = +∞.

(ii) v < u, T0 = +∞ and T∞ = 0.

Then equation (1.4) admits at least three positive solutions. (In any case the
remark of Theorem 4.1 keeps in force.)

Proof. The result follows as in the previous theorems, where, now, we use
Lemmas 3.3, 3.4 in connection with Corollaries 3.5, 3.6, if (i) holds and Corol-
laries 3.7, 3.8, if (ii) holds, q.e.d.

5 Back to the boundary-value problems (1.2)-
(1.3) and (1.2)-(1.4)

In this section we apply the previous results to get existence results for the
boundary-value problems (1.2)-(1.3) and (1.2)-(1.4). We need the following
lemma.
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Lemma 5.1 If the function p is non-increasing, then the function K(·, θ) :
I → R defined by (2.4) is concave for a.a. θ ∈ I. Also if the function p is
nondecreasing, then the function K(·, θ) : I → R defined by (2.8) is concave for
a.a. θ ∈ I.

Proof. First we consider the function K defined by (2.4). It takes the form

K(t, θ) = µ(θ)
∫ 1

θ

q(s)ds
[
α
(
b+

∫ 1

t

q(r)dr
)
g(s) + h(s) + sχ[t,1](s)

]
=

= µ(θ)
[
αb

∫ 1

θ

q(s)dg(s) + α

∫ 1

t

q(r)dr
∫ 1

θ

q(s)dg(s)+

+
∫ 1

θ

q(s)dh(s) +
∫ 1

max{θ,t}
q(s)ds

]
=

= µ(θ)
[
αbφ(θ) + αφ(θ)

∫ 1

t

q(s)ds+
∫ 1

θ

q(s)dh(s)+

+
∫ 1

max{θ,t}
q(s)ds

]
.

Now fix t, r, θ ∈ I and consider the quantity

U : = K(t, θ)−K(r, θ)− ∂K(r, θ)
∂r

(t− r) =

= µ(θ)
(
αφ(θ)

∫ 1

t

q(s)ds+
∫ 1

max{θ,t}
q(s)ds−

− αφ(θ)
∫ 1

r

q(s)ds−
∫ 1

max{θ,r}
q(s)ds

)
− ∂K(r, θ)

∂r
(t− r).

We distinguish the following six cases, where we take into account that φ, q
are nonnegative functions and q is nondecreasing.
i) t > r > θ. Then

U = µ(θ)
(
− αφ(θ)

∫ t

r

q(s)ds−
∫ t

r

q(s)ds+ (αφ(θ) + 1)q(r)
∫ t

r

ds
)

=

= µ(θ)(αφ(θ) + 1)
∫ t

r

[q(r)− q(s)]ds ≤ 0.

ii) t > θ > r. Then

U = µ(θ)
(
αφ(θ)

∫ 1

t

q(s)ds−
∫ 1

t

q(s)ds− αφ(θ)
∫ 1

r

q(s)ds−
∫ 1

θ

q(s)ds
)

=

= µ(θ)
(
− αφ(θ)

∫ t

r

q(s)ds−
∫ t

θ

q(s)ds+ αφ(θ)q(r)
∫ t

r

ds
)
≤

≤ µ(θ)αφ(θ)
∫ t

r

[q(r)− q(s)]ds ≤ 0.
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iii) θ > t > r. Then

U = µ(θ)
(
− αφ(θ)

∫ t

r

q(s)ds+ αφ(θ)
∫ t

r

q(r)ds
)

=

= µ(θ)αφ(θ)
∫ t

r

(q(r)− q(s))ds ≤ 0.

iv) t < r < θ. Then

U = µ(θ)
(
αφ(θ)

∫ r

t

q(s)ds+ αφ(θ)q(r)(t− r)
)

=

= µ(θ)αφ(θ)
∫ r

t

(q(s)− q(r))ds ≤ 0.

v) θ < t < r. Then

U = −µ(θ)(αφ(θ) + 1)
∫ r

t

[q(r)− q(s)]ds ≤ 0.

vi) t < θ < r. Then

U = µ(θ)
(
αφ(θ)

∫ r

t

q(s)ds+
∫ r

θ

q(s)ds+ (αφ(θ) + 1)q(r)
∫ t

r

ds
)
≤

≤ µ(θ)
(
αφ(θ)

∫ r

t

q(s)ds+
∫ r

t

q(s)ds+ (αφ(θ)+)
∫ t

r

q(r)ds
)

=

= µ(θ)(αφ(θ) + 1)
∫ r

t

[q(s)− q(r)]ds ≤ 0.

Therefore in any case we have U ≤ 0, which proves the result in case of (2.4).
The other case can be proved by the same way. �

It is not hard to see that the kernel K defined by either (2.4), or (2.8) is
a continuous, nonnegative function. Also, since obviously for δ = 1 we have
∂K(t,·)
∂t ≤ 0 for a.a. t ∈ I, if K is defined by (2.4) and for δ = −1 we have

∂K(t,·)
∂t ≥ 0 for a.a. t ∈ I, if K is defined by (2.8), it follows that the function

t→ δK(t, ·) is non-increasing. Moreover, in both cases the function t→ K(t, ·)
is L1-uniformly continuous. To check this fact, we observe that in case (2.4) for
t1 < t2 it holds∣∣∣ ∫ 1

0

[K(t1, θ)−K(t2, θ)]dθ
∣∣∣ =

=
∣∣∣ ∫ 1

0

µ(θ)
∫ 1

θ

q(s)ds
[
g(s)

∫ t2

t1

q(r)dr + sχ[t1,t2](s)
]
dθ
∣∣∣

=
∫ t2

t1

q(r)dr
∫ 1

0

µ(θ)
∫ 1

θ

q(s)dg(s)dθ +
∫ 1

0

µ(θ)
∫

[θ,1]∩[t1,t2]

q(s)dsdθ

≤
∫ t2

t1

q(r)dr
[ ∫ 1

0

µ(θ)dθ
∫ 1

0

q(s)dg(s) +
∫ 1

0

µ(θ)dθ
]
.
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But
∫ t2
t1
q(r)dr → 0, when |t1 − t2| → 0.

Similarly for the case (2.8). Now, taking into account Lemma 5.1, we con-
clude that assumption (HK) is satisfied. Therefore, in case assumptions (H1)
and/or (H2) hold, Theorems 4.1, 4.2 and 4.3 apply also to the boundary-value
problems (1.2)-(1.3) and (1.2)-(1.4) and the corresponding results follow.

6 Concluding remarks

The multi-point boundary conditions for the problem considered in [19] are
special cases of the conditions

x′(0) = −
k∑
i=1

bix
′(ξi) +

k∑
i=1

cix
′(ξi)

and

x(1) =
λ∑
i=1

dix
′(ζi)−

λ∑
i=1

rix
′(ζi),

which, obviously, are the discrete version of the conditions

x′(0) = −
∫ 1

0

x(s)dB(s) +
∫ 1

0

x′(s)dC(s) (6.1)

and

x(1) =
∫ 1

0

x(s)dD(s)−
∫ 1

0

x′(s)dR(s), (6.2)

respectively, with B,C,D,R nondecreasing functions and (without loss of gen-
erality) B(0) = D(0) = 0. But it is easy to see that in case D(1) < 1, (6.1),
(6.2) can be written in the form (1.3) where

g(s) :=
B(1)

1−D(1)

(
R(s) +

∫ s

0

D(θ)dθ
)

+ C(s) +
∫ s

0

B(θ)dθ

and

h(s) :=
1

1−D(1)

(
R(s) +

∫ s

0

D(θ)dθ
)
.

Hence [19, Theorem1] is a special case of our Theorem 4.1.

Remark. We proved above that the boundary-value problems (1.2)-(1.3) and
(1.2)-(1.4) admit one, or two, or three solutions according to the conditions
which they satisfy. And it was their behavior which motivated us to distinguish
the two cases for the kernel K of the integral equation (1.1). However, as the
two problems is concerned, one can observe that existence of solutions of one of
them guarantees existence of solutions of the other. Indeed, it is easy to see that
they are equivalent and their equivalence follows by applying the transformation
x(t) → x(1 − t), p(t) → p(1 − t), µ(t) → µ(1 − t) and g1(t) = −g(1 − t),
h1(t) = −h(1− t).
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