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Differential equations with several deviating

arguments: Sturmian comparison method in

oscillation theory, II ∗

Leonid Berezansky & Yury Domshlak

Abstract

We study the oscillation of solutions to the differential equation

ẋ(t) + a1(t)x[r(t)] + a2(t)x[p(t)] = 0, t ≥ t0

which has a retarded argument r(t) and an advanced argument p(t). We
obtain oscillation and non-oscillation conditions which are closed to be
necessary. We provide examples to show that our results are best possible
and compare them with known results.

1 introduction

This paper is a continuation of the investigation on equations with two devi-
ating arguments started in [4]. We are concerned with the following two basic
problems in the oscillation theory:
1) Sufficient conditions for the existence of a non-oscillatory solution.
2) Sufficient conditions for all solutions to be oscillatory.

Methods of investigation differ significantly for these two problems. For the
first problem, it is enough to prove the existence of a sign preserving solution.
In this case, various fixed point methods are applied, or a monotone sequence
defined which converges to a non-oscillatory solution.

The investigation of the second oscillation problem can not employ methods
that characterize only some solutions of the equation. Thus the proof is usually
done by contradiction, i.e. the assumption that there exists a non-oscillatory
solution is inconsistent with the constraints on the equation parameters.

In the works [7, 8, 9, 15, 16, 18, 19], a constructive method for proving that all
the solutions are oscillatory was proposed and was called Sturmian comparison
method. It is based on the generalization of the classical Sturm comparison
theorem to functional-differential equations and inequalities . This theorem
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was originally formulated for the second order ODE. The Sturmian comparison
method was described in detail in [4]. We give here just a brief description of
the method.

The main idea of the method is to obtain the widest possible set of functional
differential inequalities (the “testing” equations) associated with the equation,
such that at least one of the solutions is a so called “slowly oscillating”. This to-
gether with the Sturmian Comparison Theorem (see Theorem 2.1 in this paper)
yields that all solutions oscillate.

The proposed method is constructive. Indeed, it is enough to find only one
solution which enjoys certain properties instead of checking the fact that all
the solutions of the “test” equation oscillate. Note that the results usually
called Sturmian comparison oscillation theorems [5, 6, 22, 29] are not a part of
Sturmian comparison theorem.

The Sturmian comparison method has been applied to the first order delay
differential equations [9, 10, 15, 16, 18, 19], neutral differential equations [7, 8,
18], the second order delay differential equations [7, 8, 9, 18], impulsive delay
differential equation [1, 2, 3] and difference equations [11, 12, 13, 14, 17].

Note the search for the “slowly oscillating” solutions can be treated as the
search for “big half-cycles” [35] of a given length. Thus this method incidentally
solves a rather difficult problem of the evaluation of the length of sign preserving
intervals [9, 16, 18, 19].

This method turned out to be efficient for the investigation of so called “crit-
ical cases” as well. This means that the oscillation of all solutions of functional
DE with almost constant coefficients is studied in the case when the limit equa-
tion has a non-oscillatory solution (see [20, 21] for the application of Sturmian
comparison method in such cases).

The present paper is a continuation of [4], where the basic ideas of Sturmian
comparison method were described for a rather general functional DE and this
method was applied to DE of the first order with two retarded arguments.

This paper develops the Sturmian comparison method for the mixed differ-
ential equation

ẋ(t) + a1(t)x[r(t)] + a2(t)x[p(t)] = 0, t ≥ t0, (1.1)

with nonnegative coefficients ai(t), one delayed argument (r(t) ≤ t ) and one
advanced argument (p(t) ≥ t). To the best of our knowledge, oscillation prop-
erties of such equations has not been studied before except special cases of the
autonomous equations [27, 32, 33, 37, 38] and equations with constant delays
[39].

Sufficient conditions for all solutions of (1.1) to be oscillating are obtained
here. The examples presented here show that these conditions are rather sharp.
Further we obtain sufficient conditions for the existence of a non-oscillatory
solution of (1.1). Similar non-oscillation results are obtained for (1.1) with non-
positive coefficients.



EJDE–2002/31 Leonid Berezansky & Yury Domshlak 3

2 Sturmian comparison theorem

Suppose −∞ < α, β <∞, k = 1, 2, and the following assumptions hold:

(A1) The functions ak(t) are continuous on (α, β), ak(t) ≥ 0.

(A2) The functions r(t), p(t) are monotone increasing on (α, β) with continuous
derivatives and r(t) ≤ t, p(t) ≥ t.

We can extend functions r(t), p(t), without loss of monotonicity and differen-
tiability, in such a way that the range of these functions include [α, β]. Then
there exist continuously differentiable functions g(t), s(t) such that r[g(t)] = t
and p[s(t)] = t for t ∈ (α, β).

In this and the next sections, we assume that conditions (A1) and (A2) hold
for (1.1). We define the following differential operators on the set of continuous
functions on [s(α), q(β)] with continuous derivatives on (α, β):

(lx)(t) := x′(t) + a1(t)x[r(t)] + a2(t)x[p(t)], t ∈ (α, β), (2.1)

(l̃y)(t) := −y′(t) + q′(t)ã1[q(t)]y[q(t)] + s′(t)ã2[s(t)]y[s(t)], t ∈ (α, β). (2.2)

Here ãk(t), k = 1, 2 are continuous functions on (r(α), p(β)). Let us define the
following differential inequalities and equations:

(lx)(t) ≤ 0, t ∈ (α, β), (2.3)
(lx)(t) = 0, t ∈ (α, β), (2.4)

(l̃y)(t) ≥ 0, t ∈ (α, β). (2.5)

Definition (see [9]) An interval (α, β) is called a regular half-cycle for (2.5) if

r(β) > α, β > p(α),

and there exist a solution y(t) of (2.5) such that

y(α) = y(β) = 0, y(t) > 0, t ∈ (α, β),
y(t) ≤ 0, t ∈ (s(α), α) ∪ (β, q(β)).

(2.6)

The definition of regular half-cycle for (2.3) and (2.4) is similar.

Definition (see [9]) a) A solution x(t), t0 ≤ t < ∞ of a differential equation
or inequality is called non-oscillatory if there exists T such that x(t) 6= 0, t ≥ T
and oscillatory otherwise.
b) An oscillatory solution x of a differential equation or inequality is called
regular oscillatory if for every T there exists its regular half-cycle (α, β), α > T
and quick oscillatory otherwise.

The following theorem is a general Sturmian comparison theorem [4, Theo-
rem 1] which is formulated for (1.1).
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Theorem 2.1 Suppose (α, β) is a regular half-cycle for (2.5) ,

ã1(t) ≥ 0, t ∈ (β, q(β)); ã2(t) ≥ 0, t ∈ (s(α), α)), (2.7)

a1(t) ≥
{

0, t ∈ (α, q(α)),
ã1(t), t ∈ (q(α), β), a2(t) ≥

{
ã2(t), t ∈ (α, s(β)),
0, t ∈ (s(β), β), (2.8)

and at least one of (2.7)-(2.8) is strict on some subinterval of (α, β). Then (2.3)
has no positive solutions on (s(α), q(β)).

Corollary 2.2 Suppose (2.5) has a regular oscillatory solution on (t0,∞) and

ak(t) ≥ ãk(t) ≥ 0, k = 1, 2, t ≥ t0.

Then (2.3) has no positive solution on (t0,∞).

Remark Theorem 2.1 is concerned with the behavior of solutions of mixed
differential equations and inequalities on a finite interval and not on a half-
line. Therefore one can obtain from Theorem 2.1 not only explicit conditions of
oscillation but also estimations of the length of the sign-preserving intervals of
solutions. In this paper we will not consider this problem.

3 Construction of the testing equations

Lemma 3.1 Let r(β) > α, p(α) < β and for continuous functions ϕ(t), m(t)
assume the following conditions hold:

0 <
∫ t

α

ϕ(s)ds < π, t ∈ (α, β); 0 <
∫ α

t

ϕ(s)ds < π, t ∈ (s(α), α); (3.1)

∫ β

α

ϕ(s)ds = π; 0 <
∫ q(t)

s(t)

ϕ(s)ds <
π

2
, t ∈ (r(α), β); (3.2)

m(t) ≥

{
−ϕ(t) cot

∫ t
s(t)

ϕ(s)ds, t ∈ (r(β), β),

ϕ(t) cot
∫ q(t)
t

ϕ(s)ds, t ∈ (α, p(α)).
(3.3)

Then the interval (α, β) is regular half-cycle for (2.5) where ãk(t) defined by

q′(t)ã1[q(t)] := csc
∫ q(t)

s(t)

ϕ(s)ds exp
(
−
∫ q(t)

t

m(s)ds
)

×
{
m(t) sin

∫ t

s(t)

ϕ(s)ds+ ϕ(t) cos
∫ t

s(t)

ϕ(s)ds
}
,

s′(t)ã2[s(t)] := csc
∫ q(t)

s(t)

ϕ(s)ds exp
( ∫ t

s(t)

m(s)ds
)

×
{
m(t) sin

∫ q(t)

t

ϕ(s)ds− ϕ(t) cos
∫ q(t)

t

ϕ(s)ds
}
. (3.4)
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Proof. By direct calculations one can check that the function

y(t) := sin
∫ t

α

ϕ(s)ds× exp
∫ t

α

m(s)ds

is a solution of the equation (l̃y)(t) = 0. Conditions (3.1)-(3.3) and p(β) > α
make (α, β) an regular half-cycle for (2.5).

From Theorem 2.1 and Lemma 3.1 we obtain the following theorem.

Theorem 3.2 Suppose for some functions ϕ(t),m(t) conditions of Lemma 3.1
and (2.7)-(2.8) hold, where ãi(t) are given by (3.4) and at least one of (2.7)-
(2.8) is strict on some subinterval. Then (2.3) has no positive solution on
(r(α), p(β)).

Corollary 3.3 Suppose the conditions of Theorem 3.2 hold for a sequence of
intervals (αj , βj), αj →∞. Then all solutions of (1.1) are oscillatory.

Remark. No limitations are imposed on the coefficients ak(t) of (1.1) outside
the set ∪∞j=1(αj , βj) in Corollary 3.3.

Corollary 3.4 Let r(t)→∞,
∫∞
t0
ϕ(s)ds =∞, and

0 <
∫ q(t)

s(t)

ϕ(s)ds <
π

2
, t ≥ t0, (3.5)

m(t) ≥ max
{
− ϕ(t) cot

∫ t

s(t)

ϕ(s)ds;ϕ(t) cot
∫ q(t)

t

ϕ(s)ds
}
, t > t0. (3.6)

Assume also that for every T there exists α > T such that

0 <
∫ α

t

ϕ(s)ds <
π

2
, t ∈ (s(α), α), 0 <

∫ t

α

ϕ(s)ds < π, t ∈ (α, β),

where β is defined by
∫ β
α
ϕ(s)ds = π. If

ak(t) ≥ ãk(t), k = 1, 2, t ≥ t0, (3.7)

where ãi are defined by (3.4), then all solutions of (1.1) are oscillatory.

On the one hand the following statement gives a new clear proof of the follow-
ing well-known [33] fundamental oscillation criterion for autonomous equation
with mixed deviations

x′(t) + a1x(t− τ) + a2x(t+ σ) = 0, τ > 0, σ > 0, ak > 0, k = 1, 2. (3.8)

On the other hand this statement demonstrates the sharpness of Theorem 3.2,
which in particular case (an autonomous equation) enables one to obtain nec-
essary and sufficient conditions of oscillation of all solutions of (1.1).
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Corollary 3.5 Suppose for the characteristic quasi-polynomial of (3.8)

F (λ) := λ+ a1 exp{−λτ}+ a2 exp{λσ}

the following condition holds

{F (λ) > 0, for all λ ∈ (−∞,∞)}. (3.9)

Then all solutions of (3.8) are oscillatory.

(It is obvious that (3.9) is also necessary for oscillation of all solutions as
well).

Proof. It is easy to see that the equation

F ′(λ) := 1− a1τe
−λτ + a2σe

λσ = 0 (3.10)

has a unique root λ0 and inf−∞<λ<∞ F (λ) = F (λ0). Indeed, for every λ we
have

lim
λ→+∞

F ′(λ) = +∞, lim
λ→−∞

F ′(λ) = −∞, F
′′
(λ) > 0.

Equation (3.8) implies

Cond. (3.9)⇐⇒ {F (λ0) > 0} ⇐⇒ σ(λ0 + a1e
−λ0τ + a2e

λ0σ) > 0

⇐⇒ σλ0 + σa1e
−λ0σ + (a1τe

−λ0τ − 1) > 0⇐⇒ a1 >
−σλ0 + 1
τ + σ

eλ0τ .
(3.11)

Similarly we have

Cond. (3.9)⇐⇒ τF (λ0) > 0⇐⇒ a2 >
−τλ0 − 1
τ + σ

e−λ0σ. (3.12)

Consider two possible cases for a1. Assume first a1 >
1
τe . Then the equation

y′(t) + a1y(t− τ) = 0

has no eventually positive solutions and therefore the inequality

y′(t) + a1y(t− τ) ≤ 0

has no such solutions. Then (3.8) has no eventually positive solutions. Assume
now that a1 ≤ 1

τe . Then

F ′(−1
τ

) = 1− a1τe+ a2σ exp
{
− σ

τ

}
> 0.

Since F ′(λ0) = 0 and F
′′
(λ) > 0 for all λ, we obtain

λ0 < −
1
τ
. (3.13)
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Put ϕ(t) := ν, m(t) := −λ0 in Theorem 3.2, where ν > 0 is a sufficiently small
number which will be chosen below. Then (3.13) implies

m(t) = −λ0 >
1
τ
>

ν

tan ντ
.

Hence (3.3) holds. Thus, Theorem 3.2 implies that under the conditions

a1 >
eλ0τ

sin ν(τ + σ)
{−λ0 sin νσ + ν cos νσ} := P1(ν)

a2 >
e−λ0σ

sin ν(τ + σ)
{−λ0 sin ντ − ν cos ντ} := P2(ν),

(3.14)

all solutions of (3.8) are oscillatory.
It is easy to see that

lim
ν→0

P1(t) = eλ0τ
−λ0σ + 1
τ + σ

, lim
ν→0

P2(t) = e−λ0σ
−λ0τ − 1
τ + σ

.

Inequalities (3.11) and (3.12) are sharp and so (3.14) holds for ν ∈ (0, ν0). Then
Corollary 3.5 is proven.

Next we will obtain from Theorem 3.2 an explicit condition for oscillation
not only in terms of pointwise estimations but in terms of the integral average
estimations as well. To avoid unwieldy formulations we will omit the estimation
for the length of sign-preserving intervals of solutions.

Theorem 3.6 Let r(t) → ∞ and assume that there exist functions bj(t), j =
1, 2, such that:

aj(t) ≥ bj(t) ≥ 0, j = 1, 2, t ≥ t0; (3.15)

the following limits exist and are finite:

B1j := lim
t→∞

∫ t

r(t)

bj(s)ds, B2j := lim
t→∞

∫ p(t)

t

bj(s)ds, j = 1, 2, (3.16)

with
B11 +B22 > 0; (3.17)

the following system has a positive solution {x1;x2}:

−(B11B22 −B12B21)x1x2 −B11x1 +B22x2 + 1 = 0
lnx1 −B11x1 −B12x2 < 0
lnx2 +B21x1 +B22x2 < 0 .

(3.18)

Then all solutions of (1.1) are oscillatory.
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Proof. In view of the first inequality in (3.18) the system

(x1B11 − 1)α1 − x2B12α2 = 0
−x1B21α1 + (x2B22 + 1)α2 = 0

α1 + α2 = 1
(3.19)

has a solution {α1;α2}, αj > 0, j = 1, 2 (we omit the details).
In Theorem 3.2, denote functions m(t) > 0 and ϕ(t) as follows:

ϕ(t) := να1x1q
′(t)b1[q(t)]− να2x2s

′(t)b2[s(t)], (3.20)
m(t) := x1q

′(t)b1[q(t)] + x2s
′(t)b2[s(t)], (3.21)

where ν > 0 is a sufficiently small number which will be chosen below. Note
that ϕ(t) defined by (3.20) is not necessarily nonnegative for all t. Nevertheless,
from (3.20)-(3.21) we obtain

lim
t→∞

∫ q(t)

t

ϕ(s)ds = να1x1B11 − να2x2B12 = να1 > 0,

lim
t→∞

∫ t

s(t)

ϕ(s)ds = να1x1B21 − να2x2B22 = να2 > 0, (3.22)

lim
t→∞

∫ q(t)

t

m(s)ds = x1B11 + x2B12, lim
t→∞

∫ t

s(t)

m(s)ds = x1B21 + x2B22.

(3.23)

Furthermore,
∫∞

ϕ(s)ds = ∞ and (3.1), (3.2) hold for t > T , where T is
sufficiently large.

The inequality

να1x1q
′(t)b1[q(t)]− να2x2s

′(t)b2[s(t)] ≤ να1 [x1q
′(t)b1[q(t)] + x2s

′(t)b2[s(t)]]

implies that for sufficiently large t

ϕ(t) cot
∫ q(t)

t

ϕ(s)ds ≤να1m(t) cot
∫ q(t)

t

ϕ(s)ds

≤ να1

tan να1

tan να1

tan
∫ q(t)
t

ϕ(s)ds
≤ m(t).

Similarly, the inequality

να1x1q
′(t)b1[q(t)]− να2x2s

′(t)b2[s(t)] ≥ −να2 [x1q
′(t)b1[q(t)] + x2s

′(t)b2[s(t)]]

implies

ϕ(t) cot
∫ t

s(t)

ϕ(s)ds ≥− να2 cot
∫ t

s(t)

ϕ(s)ds

≥− να2

tan να2

tan να2

tan
∫ t
s(t)

ϕ(s)ds
≥ −m(t).
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Hence m(t) ≥ −ϕ(t) cot
∫ t
s(t)

ϕ(s)ds. Therefore (3.6) holds. Denote

D1(t, ν) := csc
∫ q(t)

s(t)

ϕ(s)ds exp
{
−
∫ q(t)

t

m(s)ds
}
νx1,

D2(t, ν) := csc
∫ q(t)

s(t)

ϕ(s)ds exp
{∫ t

s(t)

m(s)ds
}
νx2.

Then
G1(ν) := lim

t→∞
D1(t, ν) = exp(−x1B11 − x2B12)

νx1

sin ν
,

G2(ν) := lim
t→∞

D2(t, ν) = exp(x1B21 + x1B22)
νx2

sin ν
.

(3.24)

Condition (3.18) implies Gk(ν) < 1 ν ∈ (0, ν0), k = 1, 2. Hence

Dk(t, ν) < 1, ν ∈ (0, ν0), k = 1, 2, t > T � 1

and therefore
q′(t)a1[q(t)] > D1(t, ν)q′(t))b1[q(t)]
s′(t)a2[q(t)] > D2(t, ν)s′(t))b2[s(t)].

(3.25)

for ν ∈ (0, ν0), t > T . The right-hand sides of (3.4) can be rewritten in the form
H1(t, ν) +D1(t, ν)q′(t))b1[q(t)], and H2(t, ν) +D2(t, ν)s′(t))b2[s(t)], where

H1(t, ν) := csc
∫ q(t)

s(t)

ϕ(s)ds exp
(
−
∫ q(t)

t

m(s)ds
)

×
[
m(t)

{∫ t

s(t)

ϕ(s)ds− να2

}
+ ϕ(t)

{
cos
∫ t

s(t)

ϕ(s)ds− 1
}]

and

H2(t, ν) := csc
∫ q(t)

s(t)

ϕ(s)ds exp
∫ t

s(t)

m(s)ds

×
[
m(t)

{∫ q(t)

t

ϕ(s)ds− να1

}
− ϕ(t)

{
cos

∫ q(t)

t

ϕ(s)ds− 1
}]
.

It is easy to check that limt→∞Hi(t, ν) = 0, i = 1, 2, ν ∈ (0, ν0). Hence (3.7)
holds and therefore all solutions of (1.1) are oscillatory.

Example Consider the equation

x′(t) +
a1

t
x

(
t

µ

)
+
a2

t
x(t+ τ) = 0, t ≥ t0 > 0, (3.26)

where µ > 1, τ > 0, a1, a2 > 0. Put b1(t) := a1(t) = a1/t and b2(t) := a2(t) =
a2/t in Theorem 3.6. Then B11 = a1 lnµ, B12 = a2 lnµ, B21 = B22 = 0.
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System (3.18) turns into the system

−a1x1 lnµ+ 1 = 0
lnx1 − a1x1 lnµ− a2x2 lnµ < 0

lnx2 < 0

which is equivalent to the system

x1 =
1

a1 lnµ
− ln[a1 lnµ]− 1 < x2a2 lnµ

lnx2 < 0

and this in turn is equivalent to the system

x1 =
1

a1 lnµ
− ln[a1 lnµ]− 1

a2 lnµ
< x2 < 1

The last system has a solution if and only if

− ln[a1 lnµ]− 1
a2 lnµ

< 1⇐⇒ a1µ
a2 >

1
e lnµ

. (3.27)

Thus, (3.27) is sufficient for oscillation of all solutions of (3.26). Note that (3.27)
does not depend on τ .

Remark. It will be shown in Section 4 that if a1µ
a2 < 1/(e lnµ) then (3.26)

has a non-oscillatory solution.

Example Consider the equation

x′(t) +
a1

t
x

(
t

µ

)
+
a2

tβ
x(t+ tα) = 0, t ≥ t0 > 0, (3.28)

where a1, a2 > 0, µ > 1, 0 ≤ α < 1, 0 ≤ β < 1. In Theorem 3.6, Let

b1(t) := a1(t) =
a1

t
, b2(t) :=

A

t
≤ a2(t) =

a2

tβ
, t > T,

where T is sufficiently large, A is an arbitrarily large positive constant. Then
B11 = a1 lnµ, B12 = A lnµ, B21 = B22 = 0.One can repeat now all calculations
in the previous example. Cond.(3.27) is a1µ

A > 1
e lnµ which holds for every

a1 > 0 if A is sufficiently large. Therefore, all solutions of (3.28) are oscillatory
for any {a1 > 0, a2 > 0}.
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This result is rather unexpected. Indeed, for a2 = 0 the condition a1 >
1

e lnµ is necessary and sufficient for oscillation of all solutions for the “reduced”
equations

y′(t) +
a1

t
y

(
t

µ

)
= 0.

For a1 = 0 the ”reduced” equation

z′(t) +
a2

tβ
z(t+ tα) = 0

has a non-oscillatory solution for every a2 > 0, 0 ≤ α < 1, 0 ≤ β < 1.

Remark In [36, Theorem 1] the same oscillation condition (3.27) for (3.26)
is implied as in our Theorem 3.6. However, for (3.28) one can derive from
[36] only condition (3.27) for oscillation of all solutions. Further, our condition
{a1 > 0, a2 > 0} covers all cases.

4 Non-oscillation conditions

In this section we apply some well known results [25, 28, 34] to the delay differ-
ential equation

x′(t) +
n∑
k=1

ak(t)x[rk(t)] = 0, t ≥ t0, (4.1)

and to the advanced differential equation

x′(t)−
n∑
k=1

bk(t)x[pk(t)] = 0, t ≥ t0. (4.2)

We assume for (4.1), ( 4.2) conditions (A1), and (A2) hold.

Lemma 4.1 1.) Equation (4.1) has a non-oscillatory solution if and only if
there exists a function u(t) ≥ 0 and t1 ≥ t0 such that

u(t) ≥
m∑
k=1

ak(t) exp
{∫ t

rk(t)

u(s)ds
}
, t ≥ t1.

2.) If m = 1 and limt→∞ sup
∫ t
r(t)

a(s)ds < 1/e, then (4.1) has a non-oscillatory
solution.

Lemma 4.2 1.) Equation (4.2) has a non-oscillatory solution if and only if
there exists a function u(t) ≥ 0 and t1 ≥ t0 such that

u(t) ≥
m∑
k=1

bk(t) exp
{∫ pk(t)

t

u(s)ds
}
, t ≥ t1.

2.) If m = 1 and limt→∞ sup
∫ p(t)
t

b(s)ds < 1/e, then (4.2) has a non-oscillatory
solution.
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Theorem 4.3 Suppose a1(t), a2(t), r(t), p(t) are uniformly continuous on the
interval [t0,∞),

lim
t→∞

sup[t− r(t)] = r <∞, lim
t→∞

sup[p(t)− t)] = p <∞, (4.3)

and there exists a non-oscillatory solution of the delay differential equation

y′(t) + a1(t)y[r(t)] + a2(t)y(t) = 0. (4.4)

Then there exists a non-oscillatory solution of (1.1).

Proof. Lemma 4.1 implies the existence of a function u0(t) ≥ 0 and t1 ≥ t0
such that

u0(t) ≥ a1(t) exp
{∫ t

r(t)

u0(s)ds
}

+ a2(t), t ≥ t1. (4.5)

Consider the space C[t0,∞) of all continuous and bounded functions on [t0,∞)
with supremum norm ‖ · ‖ and consider the operator

(Au)(t) := a1(t) exp
{∫ t

r(t)

u(s)ds
}

+ a2(t) exp
{
−
∫ p(t)

t

u(s)ds
}
.

Let S = {u ∈ C : 0 ≤ u(t) ≤ u0(t)}. Equation (4.5) implies 0 ≤ (Au)(t) ≤ u0(t).
For u ∈ S, denote the integral operators

(Hu)(t) :=
∫ t

r(t)

u(s)ds, (Ru)(t) :=
∫ p(t)

t

u(s)ds.

Inequalities (4.3) imply

|(Hu)(t)| ≤ r‖u0‖, |(Ru)(t)| ≤ p‖u0‖.

Hence the sets HS and RS are bounded in the space C[t0,∞). For u ∈ S, we
obtain

|(Hu)(t2)− (Hu)(t1)| ≤|
∫ r(t2)

r(t1)

u(s)ds|+ |
∫ t2

t1

u(s)ds|

≤‖u0‖(|r(t2)− r(t1)|+ |t2 − t1|)

and
|(Ru)(t2)− (Ru)(t1)| ≤ ‖u0‖(|p(t2)− p(t1)|+ |t2 − t1|).

Hence the families HS and RS are equicontinuous. Then the sets HS and RS
are compact. Therefore, the set AS is also compact.

Schauder’s Fix Point Theorem implies that there exists a solution u ∈ S of
the equation u = Au. Therefore, the function x(t) = x(t1) exp{−

∫ t
t1
u(s)ds},

t ≥ t1, is a positive solution of (1.1).
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Corollary 4.4 Suppose a1(t), a2(t), r(t), and p(t) are uniformly continuous on
[t0,∞), (4.3) holds and

lim
t→∞

sup
∫ t

r(t)

a1(s) exp
{∫ s

r(s)

a2(τ)dτ
}
ds <

1
e
. (4.6)

Then (1.1) has a non-oscillatory solution.

Proof. Substituting y(t) by z(t) exp{−
∫ t
t0
a2(s)ds} in (4.4), we obtain

ż(t) + a1(t) exp
{∫ t

r(t)

a2(s)ds
}
z(r(t)) = 0.

Lemma 4.2 and (4.6) imply that (4.4) and therefore (1.1) has a non-oscillatory
solution.

Remark. Corollary 4.4 implies that if

− ln[a1 lnµ]− 1
a2 lnµ

< 1⇐⇒ a1µ
a2 <

1
e lnµ

then (3.26) has a non-oscillatory solution. This implies that conditions of The-
orems 3.6 and 4.3 are sharp for oscillation and non-oscillation of (1.1).

Remark. Corollary 4.4 improves some results in [26].

Corollary 4.5 Suppose a1(t), a2(t), r(t), and p(t) are uniformly continuous on
[t0,∞), (4.3) holds and ∫ ∞

t0

a1(s)ds <∞. (4.7)

Then (1.1) has a non-oscillatory solution.

Proof. Condition (4.3) implies

lim
t→∞

sup
∫ t

r(t)

a1(s) exp
{∫ s

r(s)

a2(τ)dτ
}
ds

≤ er‖a2‖ lim
t→∞

sup
∫ t

r(t)

a1(s)ds = 0 <
1
e
.

Hence (1.1) has a non-oscillatory solution.

Theorem 4.6 Suppose
∫∞
t0
a1(s)ds =∞ and x is a non-oscillatory solution of

(1.1). Then limt→∞ x(t) = 0.
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Proof. Suppose x(t) > 0, t ≥ t1 and r(t) ≥ t1, t ≥ t2. Then ẋ(t) ≤ 0, t ≥ t2.
Denote u(t) = − ẋ(t)

x(t) , t ≥ t2. Then u(t) ≥ 0, t ≥ t2. After substituting

x(t) = x(t2) exp
{
−
∫ t

t2

u(s)ds
}
, t ≥ t2, (4.8)

into (1.1) we have

u(t) = a1(t) exp
{∫ t

r(t)

u(s)ds
}

+ a2(t) exp
{
−
∫ p(t)

t

u(s)ds
}
, t ≥ t2. (4.9)

Hence u(t) ≥ a1(t) and therefore
∫∞
t0
u(s)ds = ∞. Equality (4.8) implies, that

limt→∞ x(t) = 0.
Consider now the mixed differential equation

x′(t)− a1(t)x[r(t)]− a2(t)x[p(t)] = 0, t ≥ t0. (4.10)

Theorem 4.7 Suppose a1(t), a2(t), r(t), and p(t) are uniformly continuous on
[t0,∞), (4.3) holds and

y′(t)− a1(t)y(t)− a2(t)y[p(t)] = 0, t ≥ t0, (4.11)

has a non-oscillatory solution. Then (4.10) has a non-oscillatory solution.

Proof. In the space C[t0,∞), consider the operator

(Bu)(t) := a1(t) exp
{
−
∫ t

r(t)

u(s)ds
}

+ a2(t) exp
{∫ p(t)

t

u(s)ds
}
.

Lemma 4.2 implies that there exists a nonnegative solution u0(t) of the inequal-
ity

u(t) ≥ a1(t) + a2(t) exp
{∫ p(t)

t

u(s)ds
}
, t ≥ t1.

Let S = {u : 0 ≤ u(t) ≤ u0(t)}. As in the proof of Theorem 4.3, we obtain
BS ⊂ S, and the set BS is a compact. Therefore, the equation u = Bu has a
nonnegative solution u. Hence a function

x(t) = x(t1) exp
{∫ t

t1

u(s)ds
}
, t ≥ t0,

is a positive solution of (4.10).

Corollary 4.8 . Suppose a1(t), a2(t), r(t), p(t) are uniformly continuous on
[t0,∞), (4.3) holds and

lim
t→∞

sup
∫ p(t)

t

a2(s) exp
{∫ p(s)

s

a1(τ)dτ
}
ds <

1
e
.

Then (4.10) has a non-oscillatory solution.
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The proof of this corollary is similar to the proof of Corollary 4.4.

Corollary 4.9 Suppose a1(t), a2(t), r(t), and p(t) are uniformly continuous
on [t0,∞), (4.3) holds and

∫∞
t0
a2(s)ds <∞. Then (4.10) has a non-oscillatory

solution.

Theorem 4.10 Suppose
∫∞
t0
a2(s)ds = ∞ and x is a non-oscillatory solution

of (4.10). Then limt→∞ x(t) =∞.

The proof of this theorem is similar to the proof of Theorem 4.6.
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Izv. Akad. Nauk Azerbăıdzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk 9 (1988),
no. 4, 38–43.

[20] Yu. Domshlak and I. P. Stavroulakis , Oscillations of first-order delay differ-
ential equations in a critical state. Appl. Anal. 61 (1996), no. 3-4, 359–371.

[21] Yu. Domshlak and I. P. Stavroulakis , Oscillations of differential equa-
tions with deviating arguments in a critical state. Dynam. Systems Appl.
7 (1998), no. 3, 405–414.

[22] Michael S. Du and Man Kam Kwong, Sturm comparison theorems for
second-order delay equations. J. Math. Anal. Appl. 152 (1990), no. 2, 305–
323.



EJDE–2002/31 Leonid Berezansky & Yury Domshlak 17
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