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Decay rates for solutions of a system of wave
equations with memory *

Mauro de Lima Santos

Abstract

The purpose of this article is to study the asymptotic behavior of the
solutions to a coupled system of wave equations having integral convo-
lutions as memory terms. We prove that when the kernels of the con-
volutions decay exponentially, the first and second order energy of the
solutions decay exponentially. Also we show that when the kernels decay
polynomially, these energies decay polynomially.

1 Introduction

Let © be an open bounded subset of R™ with smooth boundary I'. In this
domain, we consider the initial boundary value problem

ugy — Au —|—/O g1(t — s)Au(s)ds + a(u—v) =0 in Q x (0,00), (1.1)

vy — Av + /0 g2(t — s)Av(s)ds —afu—v) =0 in 2 x (0,00), (1.2)

u=v=0 onT x(0,00), (1.3)
(u(0,2),v(0,2)) = (uo(2),v0(x)),  (ue(0,2),v:(0,2)) = (wr(x), v1(2)), (1.4)

where u and v denote the transverse displacements of waves. Here, a a non-
negative constant and g; are positive functions satisfy

—cogi(t) < gi(t) < —c19:(t), 0<g!(t) <cagi(t) fori=1,2, (1.5)
and for some positive constant c;, j = 0,1,2. We also assume that

Bi=1 —/ gi(s)ds >0, fori=1,2. (1.6)
0

Dissipative coupled systems of the wave equations have been studied by several
authors [1, 2, 3, 5, 6] whose results can be summarized as follows: Komornik
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and Rao [6] studied a linear system of two compactly coupled wave equations
with boundary frictional damping in both equations. They show the existence,
regularity and stability of the corresponding solutions. The stability results
obtained in [6] were extended by Aassila [1] for a coupled system with weak
frictional damping at the infinity. In another work, Aassila [2] removes the
dissipation of the one equation and shows the strong asymptotic stability or
the non uniform stability for some particular cases depending on the coupling
constant. A similar coupled system with boundary frictional damping on only
one of the equations was studied by Alabau [3]. He shows the polynomial decay
of the corresponding strong solutions when the speed of wave propagation of
the both equations are the same. Some others coupled systems with internal
damping or with another coupling type can be found in [4, 5, 7, 9].

Our main result shows that the solution of system (1.1)-(1.4) decays uni-
formly in time, with rates depending on the rate of decay of the kernel of the
convolutions. More precisely, the solution decays exponentially to zero provided
g; decays exponentially to zero. When g; decays polynomially, we show that the
corresponding solution also decays polynomially to zero with the same rate of
decay. The method used here is based on the construction of suitable Lyapunov
functionals, £, satisfying

C2
(14 ¢t)pt1”

for some positive constants ¢y, co, v and p > 1. The notation we use in this paper
is standard and can be found in Lion’s book [8]. In the sequel, ¢ (some times
c1,Ca, - .. ) denote various positive constants independent on ¢ and on the initial
data. The organization of this paper is as follows. In section 2 we establish
a existence and regularity result. In section 3 we prove the uniform rate of
exponential decay. Finally in section 4 we prove the uniform rate of polynomial
decay.

d d 1
Eﬁ(t) < —c1L(t) +cee” ™ or aﬁ(t) < —e L) +

2 Existence and Regularity

In this section we prove the existence and regularity of strong solutions of the
coupled system of wave equations with memory. To simplify our analysis, we
define the binary operator

t
gOVu(t) = / g(t — s)/ |Vu(t) — Vu(s)2dzds.
0 Q
With this notation we have the following statement.
Lemma 2.1 Forve CY(0,T: H'(Q2)),

! 1 1
/ / g(t —s)Vuds - Vuode = —=g(t) / |Vo|?dz + ~¢' 0 Vv
aJo 2 " 2

—%% govo - (/Otg(s)ds) /Q Volda).
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The proof of this lemma follows by differentiating the term g Vwv. The first
order energy of system (1.1)-(1.4) is
t
E(t) := E(t;u,v) = —/ |ug | da + —/ g1(s)ds) / |Vu|*dz
0 Q

(
/|vt|2dx % 1—/tgg(s)ds)/ |Vo|?dx

1
+291DVu+292DVv+ /\u—v|2dx

The well-posedness of system (1.1)-(1.4) is given by the following theorem.

Theorem 2.2 Assume (ug,vo) € (H?(Q) N HF(Q))? and (u1,v1) € (HF(Q))2.
Then there exists only one strong solution (u,v) to (1.1)-(1.4) satisfying

w,v € L0, T; H*(Q) N Hy () nWhe(0,T; Hy (Q)) N W>(0,T; L*(Q)).

Proof. Our starting point is to construct the Galerkin approximations u™ and
v™ of the solution. Let

m

u (1) =D hym(Bw; (), ijm Jw; (-

Jj=1

where the functions f; ,, and h; ,, are the solutions of the approximated systems

/u?{wjdac—i—/ Vu™ - Vw;dx
Q Q

¢
—// gl(tfS)Vum(s)ds'ijdera/(umfvm)wjd:c = 0 (2.1)
o Jo Q
/vgwjder/ Vo™ . Vw;dx
Q Q
t
—// gg(t—s)va(s)ds~ijdx—a/(um—vm)wjdx = 0 (2.2
aJo Q

with the initial conditions v (-, 0) = ugm, ui"(+,0) = w1 m, v™(+,0) = vg m, and
vy (+,0) = v1 1, where

:Z{/ 'U/O'U)]dl‘}’wj’ uLm:Z{/ U]_U)jdl‘}’wj,

j=1 £ j=1 Q

:Z{/vow]dx}w]a Ul,m:Z{/Ulw]‘dl‘}’w_j.
j=1 a j=1 Q

The existence of the approximate solutions u™ and v are guaranteed by stan-
dard results on ordinary differential equations. Our next step is to show that
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the approximate solution remains bounded for any m > 0. To this end, let us
multiply equation (2.1) by A/, and (2.2) by f;,. Summing up the product
result in j and using Lemma 2 1 we arrive at

d 1 1
Et;u™v™) = —-aq(t) [ |Vu™Pdz — Zga(t) [ |Vo™[*d
GRG0 = —5a0) [ [V Pde = San) [ [V
1 / m ]‘ / m
+§gl OovVu™ + 592 OVu
Integrating from 0 to ¢ the above relation follows that
E(t;u™,v™) < E(0;u™,v™).
(From our choice of ug v, U1,m, Vo,m and vy, it follows that
E(t;u™,v™) <e¢, Vte[0,T], VmeN. (2.3)
Next, we shall find an estimate for the second order energy. First, let us es-
timate the initial data u}}(0) and v2(0) in the L?norm. Letting t — 07 in

the equations (2.1) and (2.2) and multiplying the result by A7, (0) and f/,,(0),
respectively, we obtain

[ugz (0)l2 + [lviE (0)l2 < ¢, ¥meN. (2.4)

Differentiating the equations (2.1) and (2.2) with respect to time, we obtain
/u;?twjdm—l—/ Vuy" - ijdx—i—gl(O)/ Aufw;dx
Q

// g1(t — s)Vu™(s)ds - Vw]da:—i-a/g( —vMw;de = 0 (2.5)

/ v w;idx + Vvt - Vw;dz + g2(0 / Avg'w;dx

// gh(t — s)Vu™(s)ds - ijdx—a/( —vMwjdz = 0. (2.6)

Multiplying equation (2.5) by A7, and (2.6) by f7',, and using similar arguments
as above,

E(t;u*,v*) <e¢, Vte[0,T], VmeN.

The rest of the proof is a matter of routine. &

3 Exponential Decay

In this section we study the asymptotic behavior of the solution of (1.1)-(1.4).
The point of departure of this study is to establish the energy identities given
in the next lemma.
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Lemma 3.1 Assume the initial data {(uo,vo), (u1,v1)} € (H*(Q) N HL(Q))? x
(HY(Q))%. Then the solution of (1.1)-(1.4) satisfies

d 1 1

— E(t: — _ = 2 _ 2

& Bt u,0) s0(0) [ [VuPde = 3au0) [ [VoPda

1 1
+§gi OVu + §g§DVv,

d 1 .1 .1,
—E(tup,v) = —=gi1(t) | |[Vu|®de — =ga2(t) [ |Vue|°de + =¢1 OVuy
dt 291 |, 292\ | 2

1
+§g’2 OV — g1(t) / Auguydr — gg(t)/ Avgugdx.
Q Q

Proof. Multiplying the equation (1.1) by u; and applying Green’s formula,

we get
ol f i [
= ug|“dx + Vul|“dz
o1 | Judldr+ | VuPdr]
¢
7// gl(tfs)Vu(s)ds~Vutdx+a/(ufv)utdx = 0. (3.1)
aJo Q

Using Lemma 2.1 we obtain

// g1(t — s)Vu(s)ds - Vuydz
1d K )
=——91( )/ |Vu|*dz + 91DVu [ 10Vu — (/ gl(s)ds)/ [Vul da:].
2 2dt o 0

Substituting the above identity into (3.1) we have
/ [ dm+(1—/ g1(s)ds) / [Vul dx—l—ngVu}—i—a/(u—v)utdac
2 dt o
_ ——gl(t)/ Vul?dz + =4, O V. (3.2)
2 o 2
Similarly we have
ld 2 ' 2
77{ lv|Pdz 4+ (1= [ g2(s)ds) [ |Vl d;v—l—gQDVv} —a | (u—v)vde
2dt L g 0 Q Q
1 1
= 7*gg(t)/ |Vol?dz + ~gb O V. (3.3)
2 0 2

Summing (3.2) and (3.3) it follows the first identity of Lemma. Differentiating
the equation (1.1) with respect to the time we get

t
uger — Aug + g1(0)Au + / g1(t — s)Au(s)ds + a(us — vi) = 0. (3.4)
0
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Performing an integration by parts in the convolution term, we find that

t
Uy — Aug + / g1(t — s)Au(s)ds + a(uy — vy) = —g1(t)Aug.
0

Taking ¢ = u; we may use the same reasoning as above we have

1d t
55{ /Q st *dr + (1 _/0 g1(s)ds) /Q [Vu*dz + g1 DVut}
—I—a/ (us — vi)ugede
Q
1

1
= 50 ) | |Vue*dw + 591 OVuy —g1(t) | Augugde.
Q Q

Similarly we obtain

il feetaa 0= [0 [ o
—— vge|“dx + (1 — ga(s)ds Vu|*dz + go O Vv
sl | lealdr s (1= | gx(s)ds) [ |[Vuide + 200 |

—a/ (uy — vy)vpde
Q

1 1
= ——gg(t)/ \Voy|?dx + ~gh OV, — gg(t)/ Avgugda.
2 Q 2 Q

Summing the two above identities it follows the conclusion of Lemma. &

To prove the exponential decay of the solutions, we define the following
functionals:

1
K(t;u,v) = f{/ |utt|2dx+/|vtt|2dx+/|Vut|2dz
24/ Q 0

t
—|—/ |V |2 dx + 2/ / fi(t = s)Vu(s)ds - Vuydz
Q 2 Jo

t
+2// fQ(t—S)Vv(s)ds-Vvtd:c}7
QJ0
1
a2 Q

1
IQ(t, U) = / ’Utt’Utdl' + 59/2 DVU — gg(t)/ |V’U|2d1'
Q Q

where fi(t) = gi(0)gi(t) + g(t), i = 1,2
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Lemma 3.2 Under the hypothesis of Lemma 3.1,

d

dt{K(t u,v) + 91( Vo (tu) + 92( Vo (t; v)}

<— /\u |dx+/ |V |da} — 92 /|Utt| der/ |V 2dz}

" {3“091“;) ral , onl )}gu 0 [ IVuPda

2
3(c0g1(0) + c2) +0092 /|Vv\ d

+1

3 0) + c2)?
+{ (0091 02) +0291 }91DVU

3(c0g2(0) + 2)? ¢ 2
+1 (coga( 2) 4 292 }gQva_ ggl(()) /(ut—vt)utdx
)

Proof. Substitution of the term Awu given by equation (1.1) into (3.4) yields

gt — Aug + g1(0)uy — g1 (0)/0 g1(t — s)Au(s)ds
—g1(0)a(u —v) + /0 g1t — 8)Au(s)ds + a(us —v;) = 0 (3.5)

Multiplying the above equation by u and integrating over 2, we get

th{/ |“tt|2d$+ / |Vut|2dx} +91(0 / |Utt| dz
+/ / f1(t — s)Vu(s)ds - Vugdz
aJo

—gl(O)a/Q(u — v)ugdx + oz/Q(ut —v)ugdr = 0
and since
t
/ / f1(t — s)Vu(s)ds - Vugdx
aJo
d t
= E{/Q/O fi(t — s)Vu(s)ds - Vudz }

—/ t fi(t — 8)Vu(s)ds - Vugdz — fl(O)/ Vu - Vuydz
aJo Q
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we obtain

2dt
=— gl(O)/Q g |?dax — /Q/O fit = 8)[Vu(s) — Vu(t)]ds - Vudx

— f1(t) /Q Vu - Vurdz + g1(0)a /Q(u —V)updr — « /Q(ut — v)ugd.

1 t
d { / |uge|2da + / |V |*dx + 2/ / fi(t — $)Vu(s)ds - Vuda }
Q Q o Jo

Making use of the inequality

| / / gilt = 9)[Vo(s) = Vo(t)ds - Vipda|
< ([ mer) ([ wtas) "0 0vers

we conclude

¢
Ld /|utt|2dx+/|Vut|2dx+2// fi(t — s)Vu(s)ds - Vupdz
2dt o Q aJo

0 3
<00 [ e 2 + 20 [ 19w + 30000+ ? [ 1Valda

3 (c091(0) + ¢2)® —V)updr —a | (up —ve)ugde
+§gl—(0)91DVu+91(0)a/Q(u Jupd /Q( ¢ = Ut) tt(d?) 6)

Similarly we have

1 t
—i{/ \vtt|2dx+/ |Vvt|2dx+2// f2(t—5>VU<S>dS~V’Utd$}
2dt | Ja ) aJo

0 3
ﬂm/ﬂwﬁwx+gil/ﬁvw&m+—mamey+%ﬁ/ﬂvm%x
Q 3 Q 2 Q

3 (cog2(0) + c2)?
+2%@WDW)Q®MA

S_

e

(u — v)vydx + a/ (uy — ve)vgde.
Q
(3.7
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Summing the inequalities (3.6) and (3.7) we obtain
d
EK(LL;U»U) < —q(0 / |uge[*dz — g2 (0 / |vee|*da + / (Vg *da

3
+92—/ |Vvt|2dx—|——gl(t)(gl(0)+co)2/ Vul2da
3 Ja 2 Q

+ggz(t)(92(0) + 00)2/Q Vol?dz + 2%91 OVu
3 (c0g2(0) + c2)?

2 92(0)
fa/Q(ut — vp)ugda — gg(O)a/Q(u — v)vgdx

+a/g(ut — v )vgda. (3.8)

+ g20Vv+ g1(0)c / (u — v)uydr
Q

On the other hand, multiplying equation (3.4) by wu;, integrating over  and
using Lemma 2.1 we get

%Il tiu) = /|Vut| dx — —g1 /|Vu|2dm

+§g/1/DVu—Oz/(ut—vt)utdx.
Q

i From hypothesis (1.5) we obtain

d

Gnten) <~ [ [VuPdet $o) [ [VoPds
dt 0 2 0

C
+5291DVu—a/(ut—Ut)utdx.
Q

Similarly, we get

A

d
Gh) < = [ [VuPdet Do) [ VP
+%92va+a/(Ut—Ut)Utd$.
Q

Finally, going back to (3.8) and from the last two inequalities our conclusion
follows. &

Let us introduce the functional
J(tp) = / prpdz.
Q

Lemma 3.3 Under hypothesis of the Lemma 3.1 we have

t
%J(t u)<a0/ |Vut|2dx—ﬁ/ |Vu|? d$+2ﬂ (/ 1(s)ds) g1 OVu,
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d 2 /32 2 1 /t
_ . < — = - .
dtJ(t,v) ao/ﬂ|V1}t| dx 5 /Q|Vv| dz + 55, ( ; g2(s)ds | g2 O Vv

The proof of this Lemma is similar the proof of the Lemma 3.2, for this
reason we omit it here.
Let us introduce the functionals

2
L(t) = N E(t;u,v)+ NoE(t;us,v) + K(t;u,v) + gl(o)h(t;u)

3
292(0) . 91(0) g2(0)
+ IQ(tv 'U) + 120[0 12040 J(ta ’U),

3
Ni@) = /|Vu|2dx+/|Vv|2dx+/ |Vut|2dx+/|Vvt|2d:c+/|utt\2dz
Q Q Q Q Q

JF/ [vge|*dr + g1 O Vu + go O Vo + g1 O Vg + g2 O V.
Q

J(t;u) +

It is not difficult to see that there exist positive constants gy and ¢; for which
QN (t) < L(t) < N (). (3.9)

We will show later that the functional £ satisfies the inequality of the following
Lemma.

Lemma 3.4 Let f be a real positive function of class C*. If there exists positive
constants vy, 71 and cy such that

F'() < =0 f(t) + coe™ ",

then there exist positive constants v and ¢ such that
f() < (£(0) +c)e™™".

Proof. Suppose that 79 < 71 and define
Co
Y1 — Y%

e~mt,

F(t) = f(t) +

Then

FI(0) = J'(t) = S <~ (1),

Integrating from 0 to ¢ we arrive to
Co
71—

F(t) < F(0)e ™" = f(t) < (f(0) + )e~ot.

Now, we shall assume that vy > ~;. In this conditions we get

F' @) <—nf(t)+coe™ ™ = [ f(1)] < co.
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Integrating from 0 to ¢ we obtain
Ft) < (£(0) + cot)e™ ™.

Since t < (71 — €)M =9 for any 0 < € < 7; we conclude that

f(t) < [f(0) + co(r1 — €)]e™ .

This completes the proof. O
Now we shall show the main result of this section.

Theorem 3.5 Let us suppose that the initial data (ug,vo) € [Hg(Q)])? and
(u1,v1) € [L2(Q))? and that the kernel g; satisfies the conditions (1.5) and
(1.6). Then there exist positive constants k1 and ks such that

E(t;u,v) + E(t;ug, v;) < ki (B(0;u,v) + E(0;uz,v¢))e "2,
for allt > 0.

Proof. We shall prove this result for strong solutions, that is, for solutions
with initial data (ug,vo) € [H?() ﬁHé(Q)]2 and (u1,v1) € [Hg(Q)]?. Our
conclusion follows by standard density arguments. From the Lemmas 3.1, 3.2

and 3.3 we get
d

—L

dt
where R(t) = ¢1(t)+g=2(t). Using the exponential decay of g; and g2 and Lemma
3.4 we conclude

(t) < —a N (t) + caR?(1)

L(t) < {L(0) + c}e =t
for all ¢ > 0. The conclusion of Theorem follows from (3.9). &

As a consequence of Theorem 3.5 we have that the first order energy also
decays exponentially. We summarize this result in the following Corollary.

Corollary 3.6 Under the hypotheses of Theorem 3.5, we have that there exist
positive constants ¢ and ki such that

E(t;u,v) < cE(0;u,v)e %2t V¢t >0.

4 Polynomial rate of decay

In this section we assume that the kernel g; decays polynomially to zero as time
goes to infinity. That is, instead of hypothesis (1.5) we consider

141 1+2 1+2
—cog; ") < g;(t) <-cag; "), 0< 92/@) <cag; T(1), (4.1)
g1
oy = / gi1 P(s)ds < o0 (4.2)
0

for some p > 1 and for 4 = 1,2. The following lemmas will play an important
role in the sequel.
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Lemma 4.1 Suppose that g and h are continuous functions satisfying g €
L' 7(0,00) N LY(0,00) and g" € L*(0,00) for some 0 <1 < 1. Then

/ lg(t — s)h(s)|ds
<(f, '9(’5‘8)'1*%\h<8>lds}#{ [ tate = sy hie)ias 7

Proof. Without loss of generality we can suppose that g,h > 0. Note that for
any fixed ¢ we have

m

> " g(t = si)h(si)As;.

i=1

/ g(t — s)h(s)ds =
0

lim
[|As;||—0

Letting I}, := 71, ¢"(t — s;)h(s;)As;, we may write

Zg(t - S’L Asz Z‘pz [z
i=1
where (¢ Vh(s)A
. . g"(t — s;)h(s;)As;

Since the function F(z) := \z|1+q is convex, it follows that

F(ig(t — si)h(si)As;) = F(zm; @if;) < iaiF(%)’
so, we have : ) B
{ig(t—sz) h(si)As; }1+" <17, |’Zg1+ (t — si)h(s;)As;. (4.3)
i=1 =
In view of

t
lim I’ = "(t — s)h(s)ds,
i T /Og< h(s)

letting ||As;|| — 0 in (4.3), we get

{/0 g(t—s)h(s)ds}H% < {/o g (t—s)h ds}1+q{/ T (t—s)h(s)ds},

from which our result follows. &

Lemma 4.2 Let w € C(0,T; H:(Q)) and g be a continuous function satisfying
hypotheses (4.1)-(4.2). Then for 0 < r <1 we have

! 1 o
g0V <2{ [ g dswllonrm} T (g OV},
0
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while for r = 0 we get
' 2 2 \prTg 141 p
90Vw <2 [ Jue)ds + theOlf } 7 (' 0Vult,

0

Proof. ;From the hypotheses on w and Lemma 4.1 we get

t
gOVw = /g(t—s)h(s)ds
0
! = [ 14 Ty
< {/g’“(t—s)h(s)ds} : {/g“ﬁ(t—s)h(s)ds} !
0 0
1 1 _(-—m)p
< {g" OV} TR g O v} T (4.4)
where

h(s) = /Q V() — Vao(s)2ds.

For 0 < r <1 we have

t

t
¢g"OVw = /Q/O g"(t — 5)|Vw(t) — Vw(s)|*dsdx < 4/0 gr(s)ds||wHQC(O’T;HA)7

from which the first inequality of Lemma 4.2 follows. To prove the last part, let
us take r = 0 in Lemma 4.1 to get

t
10V = // Vw(t) — Vu(s)2dsda
QJ0

t
<2to(O)ly +2 [ o) yds.

Substitution of the above inequality into (4.4) yields the second inequality. The
proof is now complete. O

(From the above Lemma, for 0 < r < 1, we get

(a-r
gOVw < co(gH% OVw) ETTeED , (4.5)
Lemma 4.3 Let f be a non-negative C' function satisfying

PO < —RlFOP + o

for some positive constants ko, k1 and p > 1. Then there exists a positive
constant ¢ such that

pf(0) + 2k .

1) < e =i
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Proof. Let h(t) :== —281_ and F(t) := f(t) + h(t). Then

p(I+6)?
k
F'(t) = f’(t)—(lfﬁ
1 k1
< —ko[f(1)]' e
141 .
< —ko{[FO)"F + Z—h()]" 7 .
kok?

(From which it follows that there exists a positive constant ¢; such that

1

F'(t) < —e{[fO))FF + )] 7} < —a[F(E)]7,
which gives the required inequality.

Theorem 4.4 Assume that (ug,vo) € [HL(Q)]?, that (u1,v1) € [L*()]?, and
that (1.6), (4.1), (4.2) hold. Then any solution (u,v) of system (1.1)-(1.4)
satisfies

E(t;u,v) + E(t;ug, v) < C{E(O; u,v) + E(0; ut,vt)}(l +1t)7P

forp>1.
Proof. We shall prove this result for strong solutions, that is, for solutions
with initial data (ug,ve) € (H2(Q) N HE(Q)) and (uy,v1) € [HE(Q)2 Our

conclusion will follow by standard density arguments. From Lemma 3.1 and
hypotheses (4.1) and (4.2), we get

d 1
4Bty < Lo / Vulde — ga(t) / Vol2dz

1 C1

——91 ’)DVU—EQ2 ”DV@ (4.6)
d
EE(t ug,vg) < ——91 /\Vut| dx — go(t) /|Vvt\ dz
1
f%lgfr” OVus — %192 ? OV

—gl(t)/ Auouttdx—gg(t)/ Avgvgdr, (4.7)
Q Q

for some ¢; > 0. Since the inequalities

’/Q/Ot fi(t = s)[Vep(s) = Ve(t)]ds - Vo,

. 1/p t 141
< (wnl0) + e [ 1VaPdor P [ gaga 06} @



EJDE-2002/38 Mauro de Lima Santos 15

fi(t)/QV<p~V<ptdx
< a Ol O + 6 OHN | VprPdot o1 [ [VePde} (49

1,2). Tt follows of Lemma 3.2 that

hold for any ¢; > 0 and \; > 0 (i =

SR (t50,0) + 301 0) s (50) + S02(0) s 0))

_gléO){/ﬂUtt|2dx+/Q|Vut2d:v}_92T(0){/Q|vtt|2d:c+/ﬂ|Vvt|2dx}
H3@0O + O a? + §o0 " O)a) [ (TuPds
H{3000) + 0 0 + Ty O}ae(t) [ [VoPida

3(cog1(0) + ¢2)? .
+{—(Cogl( Jre) | 6_291(0)}91 OV

2970) 3
+{w + %292(0)}g;+% OVu (4.10)
29, *(0)
for
9i(0) CoN = 1

€; =

6(cogi(0) + c2)’
Note that
t

/ / gi(t — s)Vp(s)ds - Vpdx

t

//glt—s [V(s) — Vo(t)]ds - chdac—i—/ gi(s ds/|V<p| dx

1
< —gll pDng+(€lOél+/ s)ds)/ |V|?d. (4.11)
4e; 0 Q

On taking €; = % in (4.11) and using Lemma 3.3 it follows that

d b1

— < — 5 4.12
dtJ(t u) < 2a0/ |V |*dx /|Vu| do + L 2ﬂ OVu, (4.12)
EJ(t V) < 2a0/ \Vut\Qd;v—52/ \W|2dx+—g§ OV, (4.13)

JFrom (4.6)-(4.13) we find that

%ﬂ(t) < cR(t) — ko[M(t) + S(1)]
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where

M(t) = /Q\utt|2dm+/ﬂ|vtt|2dx+/ﬂ|Vut|2dx

—l—/ |Vvt\2dx+/ \Vu\2d;v+/ \Vo|dz,
Q Q Q

14+ 141 1441 1421
S(t):gl pDVU+92 pva+gl pDVUt+92 pDV’Ut.

Since the energy is bounded, Lemma 4.2 implies

1+p(1—r)

M(t) > eM(t) 7T

1+p(1l—r)

S(t) > e{g1 OVu+g:0Vo + g1 OVu + g2 OV} 7077

It is not difficult to see that we can take N, N, large enough such that £
satisfies

AB(t;u,0) + Bt ug, v)} < L) < er {M(t) + S} 09, (4.14)

From which it follows that

1+p(1l—r)

d 14pA=r)
aﬁ(t) < CR(t) — CQﬁ(t) p(1=71) |
Using Lemma 4.3 we obtain

L(#) < f£(0) + CQ}W.

JFrom which it follows that the energies decay to zero uniformly. Using Lemma
4.2 for r =0 we get

M(t) > eM(t) 7,
S(t) > {1 OVu+ g2 0V + g1 O Vg + go OV} o

Repeating the same reasoning as above, we get

awsdam+@%ﬁ%p

JFrom which our result follows. The proof is now complete. &

Finally, as a consequence of Theorem 4.4 we conclude that the first order
energy also decays polynomially.

Corollary 4.5 Under the hypotheses of Theorem 4.4, there exists a positive
constant ¢ such that for p > 1,

E(t;u,v) < {E0;u,v)}(1+1¢)"P.
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Remark: Using the same ideas for proving Theorems 3.5 and 4.4 it is possible
to obtain the same results for a similar coupled system of the plate equations.
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