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A Massera type criterion for a partial neutral

functional differential equation ∗

Eduardo Hernández M.

Abstract

We prove the existence of periodic solutions for partial neutral func-
tional differential equations with delay, using a Massera type criterion.

1 Introduction

By using a Massera type criterion, we prove the existence of a periodic solution
for the partial neutral functional differential equation

d

dt
(x(t) +G(t, xt)) = Ax(t) + F (t, xt), t > 0, (1.1)

x0 = ϕ ∈ D, (1.2)

where A is the infinitesimal generator of a compact analytic semigroup of linear
operators, (T (t))t≥0, on a Banach space X. The history xt, xt(θ) = x(t + θ),
belongs to an appropriate phase space D and G,F : R×D → X are continuous
functions.

The article by Massera [10] is a pioneer work in the study of the relations
between the boundedness of solutions and the existence of periodic solutions. In
[10], this relation was explained for a two dimensional periodic ordinary differ-
ential equation. Subsequently, several authors considered similar relations, see
for example Yoshizawa for a n-dimensional differential equation; Lopes and Hale
for n-dimensional ordinary and functional equations with delay and Yong [14],
for functional differential equations. Recently Ezzinbi [1], using a Massera type
criterion, showed the existence of a periodic solution for the partial functional
differential equation

ẋ(t) = Ax(t) + F (t, xt),
x0 = ϕ ∈ C = C([−r, 0] : X),

(1.3)

where A is the infinitesimal generator of a compact semigroup of bounded linear
operators on a Banach space.
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Our purpose in this paper is to establish similar existence results, as those in
[1], for the partial neutral functional differential equation with delay (1.1)-(1.2).

Neutral differential equations arise in many areas of applied mathematics
and such equations have received much attention in recent years. A good guide
to the literature of neutral functional differential equations with finite delay
is the Hale book [6] and the references therein. The work in partial neutral
functional differential equations with infinite delay was initiated by Hernández
& Henŕıquez in [8, 7]. In these papers, it is proved the existence of mild, strong
and periodic solutions for a neutral equation

d

dt
(x(t) +G(t, xt)) = Ax(t) + F (t, xt),

x0 = ϕ ∈ B.
(1.4)

where A is the infinitesimal generator of an analytic semigroup of linear opera-
tors on a Banach space and B is a phase space defined axiomatically. In general,
the results were obtained using the semigroup theory and the Sadovskii fixed
point Theorem.

For the rest of this paper, X will denote a Banach space with norm ‖ · ‖.
A : D(A) → X will denote the infinitesimal generator of a compact analytic
semigroup, (T (t))t≥0, of linear operators on X. For the theory of C0 semigroups,
we refer the reader to Pazy [11]. However, we will review some notation and
properties that will be used in this work.

It is well known that there exist M̃ ≥ 1 and ρ ∈ R such that ‖T (t)‖ ≤ M̃eρt,
for every t ≥ 0. If (T (t))t≥0 is a uniformly bounded and analytic semigroup
such that 0 ∈ ρ(A), then it is possible to define the fractional power (−A)α, for
α ∈ (0, 1], as a closed linear operator on its domain D(−A)α. Furthermore, the
subspace D(−A)α is dense in X and the expression

‖x‖α = ‖(−A)αx‖, x ∈ D(−A)α,

defines a norm in D(−A)α. If Xα represents the space D(−A)α endowed with
the norm ‖ · ‖α, then the following properties are well known ([11], pp. 74 ):

Lemma 1.1 If the above conditions hold, then

1. If 0 < α ≤ 1, then Xα is a Banach space.

2. If 0 < β < α ≤ 1 then Xα ↪→ Xβ and the imbedding is compact whenever
the resolvent operator of A is compact.

3. For every 0 < α ≤ 1 there exists Cα > 0 such that

‖(−A)αT (t)‖ ≤ Cα
tα
, t > 0.

In what follows, to avoid unnecessary notation, we suppose that 0 ∈ ρ(A)
and that for 0 < ϑ ≤ 1

‖T (t)‖ ≤ M̃, t ≥ 0, and ‖(−A)ϑT (t)‖ ≤ Cϑ
tϑ
, t > 0, (1.5)
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for some positive constant Cθ.

In this paper, 0 < β ≤ 1 and ω > 0 are fixed numbers, G,F : R × D → X
are continuous and we use the following conditions

H1 The function G is Xβ-valued and (−A)βG is continuous.

H2 G(t, ψ) = V (t, ψ) + h(t) where V, h are Xβ-valued; (−A)βV , (−A)βh
are continuous; (−A)βV (·, ψ), (−A)βh are ω-periodic and (−A)βV (t, ·) is
linear.

H3 G(t, ψ) = V (t, ψ) + G1(t, ψ) where the functions V , G1 are Xβ-valued;
(−A)βV , (−A)βG1 are continuous; (−A)βV (·, ψ), (−A)βG1(·, ψ) are ω-
periodic and (−A)βV (t, ·) is linear.

H4 F (t, ψ) = L(t, ψ)+f(t) where L, f are continuous; L(·, ψ), f are ω-periodic
and L(t, ·) is linear.

H5 F (t, ψ) = L(t, ψ) + F1(t, ψ) where L, F1 are continuous; L(·, ψ), F1(·, ψ)
are ω-periodic and L(t, ·) is linear.

H6 For every R > 0 and all T > 0, the set of functions

{s→ G(s, xs) : x ∈ C([−r, T ] : X), sup
θ∈[−r,T ]

‖x(θ)‖ ≤ R}

is equicontinuous on [0, T ].

H7 For every R > 0 and all T > 0, the set of functions

{s→ G(s, xs) : x ∈ Cb((−∞, T ] : X), sup
θ∈[−∞,T ]

‖x(θ)‖ ≤ R}

is equicontinuous on [0, T ].

This paper has four sections. In section 2, we discuss the existence of a
periodic solution for a partial functional neutral differential equation defined on
R×C([−r, 0] : X). In section 3, by employing the results in section 2, we consider
the existence of a periodic solution for a neutral equation with unbounded delay
modeled on R×B, where B is a phase space defined axiomatically as in Hale and
Kato [3]. The section 4 is reserved for examples. Our results are based on the
properties of analytic semigroups and the ideas and techniques in Hernández &
Henŕıquez [8, 7] and Ezzinbi [1].

Throughout this paper, x(·, ϕ) denotes a solution of (1.1)- (1.2). In addition,
Br(x : Z), (Br[x : Z] ) will be the open ( the closed ) ball in a metric space Z
with center at x and radius r. For a bounded function ξ : [a, b] → [0,∞) and
a ≤ t ≤ b we will employ the notation ξa,t for

ξa,t = sup{ξ(s) : s ∈ [a, t]}. (1.6)

If D is a Banach phase space, the norm in D will be denoted by ‖ · ‖D.
We remark that for the proofs of our results we will use the following results.
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Theorem 1.2 ([3]) Let Y be a Banach space and Γ := Γ1+y where Γ1 : Y → Y
is a bounded linear operator and y ∈ Y . If there exist x0 ∈ Y such that the set
{Γn(x0) : n ∈ N} is relatively compact in Y , then Γ has a fixed point in Y.

Theorem 1.3 ([2]) Let X be a Banach space and M be a nonempty convex
subset of X. If Γ : M → 2X is a multivalued map such that

(i) For every x ∈M , the set Γ(x) is nonempty, convex and closed,

(ii) The set Γ(M) =
⋃
x∈M Γx is relatively compact,

(iii) Γ is upper semi-continuous,

then Γ has a fixed point in M .

2 A periodic solution for a partial neutral
differential equation with bounded delay

In this section, we prove the existence of a periodic solution of the initial value
problem

d

dt
(x(t) +G(t, xt)) = Ax(t) + F (t, xt), (2.1)

x0 = ϕ ∈ C = C([−r, 0] : X). (2.2)

Definition A function x : [−r, T ] → X is a mild solution of the abstract
Cauchy problem (2.1)-(2.2) if: x0 = ϕ; the restriction of x(·) to the interval
[0, T ] is continuous; for each 0 ≤ t < T the function AT (t−s)G(s, xs), s ∈ [0, t),
is integrable and

x(t) = T (t)(ϕ(0) +G(0, ϕ))−G(t, xt)−
∫ t

0

AT (t− s)G(s, xs)ds

+
∫ t

0

T (t− s)F (s, xs)ds, t ∈ [0, T ]. (2.3)

The existence of mild solutions for the abstract Cauchy problem (2.1)-(2.2)
follows from [7, theorems 2.1, 2.2], for this reason, we choose to omit the proof
of the next two results.

Theorem 2.1 Let ϕ ∈ C, T > 0 and assume that the following conditions hold:

(a) There exist constants β ∈ (0, 1) and L ≥ 0 such that the function G is
Xβ-valued, L‖(−A)−β‖ < 1 and

‖(−A)βG(t, ψ1)− (−A)βG(s, ψ2)‖ ≤ L(|t− s|+ ‖ψ1 − ψ2‖C), (2.4)

for every 0 ≤ s, t ≤ T and ψ1, ψ2 ∈ C.
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(b) The function F is continuous and takes bounded sets into the bounded sets.

Then there exists a mild solution x(·, ϕ) of the abstract Cauchy problem (2.1)-
(2.2) defined on [−r, b], for some 0 < b ≤ T .

Theorem 2.2 Let ϕ ∈ C and T > 0. Assume that condition (a) of the previous
Theorem holds and that there exists N > 0 such that

‖F (t, ϕ)− F (t, ψ)‖ ≤ N‖ϕ− ψ‖C , (2.5)

for all 0 ≤ t ≤ T and every ϕ,ψ ∈ C. Then there exists a unique mild solution
x(·, ϕ) of (2.1)-(2.2) defined on [−r, b] for some 0 < b ≤ T . Moreover, b can be
chosen as min{T, b0}, where b0 is a positive constant independent of ϕ.

To prove the main result of this section, it is fundamental the next result.

Theorem 2.3 Let T > r and assume that assumption H1,H6 hold. Suppose,
furthermore, that the following conditions hold.

(a) For every ϕ ∈ C the set

X(ϕ) = {x ∈ C([−r, T ] : X) : x is solution of (2.1)-(2.2)}

is nonempty.

(b) For every R > 0, the set

{(−A)βG(s, xs), F (s, xs) : s ∈ [0, T ], x ∈ X(ϕ) and ‖ϕ‖C ≤ R},

is bounded.

Then the multivalued map Υ : C → 2C; ϕ → XT (ϕ) = {xT : x ∈ X(ϕ)} is
compact, that is, for every R > 0 the set UR,T =

⋃
‖ϕ‖C≤R XT (ϕ) is relatively

compact in C.

Proof: Let R > 0 and UR =
⋃
‖ϕ‖C≤R X(ϕ). From (b), we fix N > 0 such

that ‖(−A)βG(s, xs)‖ ≤ N and ‖F (s, xs)‖ ≤ N for every x ∈ UR and every
s ∈ [0, T ]. In order to use the Ascoli Theorem, we divide the proof in two steps.
Step 1 The set UR(t) = {x(t) : x ∈ UR} is relatively compact for t ∈ (0, T ]. Let
0 < ε < t ≤ T . Since (T (t))t≥0 is analytic, the operator function s→ AT (s) is
continuous in the uniform operator topology on (0, T ], which by the estimate

‖(−A)1−βT (t− s)(−A)βG(s, xs)‖ ≤
C1−βN

(t− s)1−β , s ∈ [0, t), x ∈ UR (2.6)
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implies that the function s→ ‖AT (t−s)G(s, xs)‖ is integrable on [0, t) for every
x ∈ UR. Under the previous conditions, for x ∈ UR we get

x(t) = T (ε)T (t− ε)(ϕ(0) +G(0, ϕ)) + (−A)−β(−A)βG(t, xt)

+T (ε)
∫ t−ε

0

(−A)1−βT (t− s− ε)(−A)βG(s, xs)ds

+
∫ t

t−ε
(−A)1−βT (t− s)(−A)βG(s, xs)ds

+T (ε)
∫ t−ε

0

T (t− s− ε)F (s, xs)ds+
∫ t

t−ε
T (t− s)F (s, xs)ds,

and hence

x(t) ∈ T (ε)M̃BR+N [0, X] + (−A)−βBN [0, X] +W 1
t + C1

ε +W 2
t + C2

ε ,

where each W i
t is compact, diam(C1

ε ) ≤ 2C1−βN
εβ

β and diam(C2
ε ) ≤ 2M̃Nε.

Since (−A)−β is compact, these remarks imply that UR(t) is totally bounded
and consequently relatively compact in X.
Step 2 UR is equicontinuous on (0, T ]. Let 0 < ε < t0 < t ≤ T . The strong
continuity of (T (t))t≥0 implies that the set of functions {s → T (s)x : x ∈
T (ε)BR+N (0, X) } is equicontinuous on [0, T ]. Let 0 < δ < ε be such that

‖T (s)x− T (s′)x‖ < ε, x ∈ T (ε)BR+N (0, X),
‖G(t, ut)−G(t0, ut0)‖ < ε, u ∈ C([−r, T ] : X), ‖u‖−r,T ≤ R+N,

when |s− s′| < δ, 0 ≤ s, s′ ≤ T and 0 ≤ t− t0 < δ.
Under the above conditions, for x ∈ UR and 0 ≤ t− t0 < δ we get

‖x(t0)− x(t)‖
≤ ‖(T (t0 − ε)− T (t− ε))T (ε)(ϕ(0) +G(0, ϕ))‖

+‖G(t0, xt0)−G(t, xt)‖

+
∫ t0−ε

0

‖(−A)1−βT (t0 − s− ε)(I − T (t− t0))T (ε)(−A)βG(s, xs)‖ds

+
∫ t0

t0−ε
‖I − T (t− t0)‖‖(−A)1−βT (t0 − s)(−A)βG(s, xs)‖ds

+
∫ t

t0

‖(−A)1−βT (t− s)(−A)βG(s, xs)‖ds

+
∫ t0−ε

0

‖T (t0 − s− ε)(I − T (t− t0))T (ε)F (s, xs)‖ds

+
∫ t0

t0−ε
‖(T (t0 − s)− T (t− s))F (s, xs)‖ds+

∫ t

t0

‖T (t− s)F (s, xs)‖ds

≤ 2ε+ εC1−β
(t0 − ε)β

β
+ 2M̃C1−βN

εβ

β
+NC1−β

(t− t0)β

β
+ εM̃(t0 − ε)

+2M̃Nε+ M̃N(t− t0),
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and hence
‖x(t0)− x(t)‖ ≤ c1ε+ c2ε

β + c3δ
β + c4δ,

where the constants ci are independent of x(·). Thus, UR is equicontinuous from
the right side at t0 > 0. The equicontinuity in t0 > 0 is proved in similar form,
we omit details. Thus, UR is equicontinuous on (0, T ].

From the steps 1 and 2, it follow that {x|[µ,T ] : x ∈ UR} is relatively compact
in C([µ, T ] : X) for every µ > 0, which in turn implies that UR,T is relatively
compact in C([−r, 0] : X). This completes the proof.

Corollary 2.4 Assume that the hypothesis in Theorems 2.2 and 2.3 are ful-
filled. Then the map ϕ→ xT (·, ϕ) is a completely continuous function.

Proof: The assertion follows from (2.6), the Lebesgue dominated convergence
Theorem and Theorem 2.3. We omit details.

Definition A function x : R → X is an ω-periodic solution of equation (2.1)
if: x(·) is a mild solution of (2.1) and x(t+ ω) = x(t) for every t ∈ R.

Using the ideas and techniques in [8], it is possible to establish sufficient
conditions for the existence of global solutions of (2.1). In what follows, we
always assume that the mild solutions are defined on [0,∞).

Theorem 2.5 Let conditions H2, H4 and H6 be satisfied. If the equation (2.1)
has a bounded mild solution, then there exists an ω-periodic solution of (2.1).

Proof: For a mild solution x(·) = x(·, ϕ), we introduce the decomposition
x(·) = v(·) + z(·) where v(·) is the mild solution of

d

dt
(u(t) + V (t, ut)) = Au(t) + L(t, ut),

u0 = ϕ,

and z(·) is the mild solution of

d

dt
(u(t) + V (t, ut) + h(t)) = Au(t) + L(t, ut) + f(t),

u0 = 0.

Let y : [−r,∞)→ X be a bounded mild solution of (2.1) and Γ : C → C be the
map Γ(ϕ) := Γ1(ϕ) + zω := vω + zω. Since Γ1 is a bounded linear operator and⋃
n≥1 Γn(y0) = {ynω : n ∈ N} is relatively compact in C, see Theorem 2.3, it

follows from Theorem 1.2 that Γ has a fixed point in C. This fixed point give a
periodic solution. The proof is complete.

In what follows CP is the space CP = {u : R → X : u is ω-periodic}
endowed with the uniform convergence topology.

Now we prove the main result of this work.
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Theorem 2.6 Let conditions H3,H5 and H6 be satisfied and assume that the
following conditions are fulfilled.

(a) The functions (−A)βV, (−A)βG1, L and F1 takes bounded sets into the
bounded sets.

(b) There is ρ > 0 such that for every v ∈ Bρ[0, CP ] the neutral equation

d

dt
(x(t) + V (t, xt) +G1(t, vt)) = Ax(t) + L(t, xt) + F1(t, vt),

has an ω-periodic solution u(·, v) ∈ Bρ[0, CP ].

Then the equation (2.1) has an ω-periodic solution.

Proof: On Bρ = Bρ[0, CP ], we define the multivalued map Γ : Bρ → 2Bρ by:
x ∈ Γ(v) if, and only if,

x(t) = T (t− s)(x(s) + V (s, xs) +G1(s, vs))− V (t, xt)−G1(t, vt)

−
∫ t

s

AT (t− τ)(V (τ, xτ ) +G1(τ, vτ ))dτ

+
∫ t

s

T (t− τ)(L(τ, xτ ) + F1(τ, vτ ))dτ, t > s.

Next we prove that Γ verifies the conditions (i)-(iii) of Theorem 1.3. Clearly
assumption (i) holds. The condition (ii) follows using the steps in the proof of
Theorem 2.3. In relation to (iii), we observe that from (ii) is sufficient to show
that Γ is closed. If (vn)n∈N and (xn)n∈N are convergent sequences in CP to
points v, x then

(−A)β(V (τ, xnτ ) +G1(τ, vnτ )) → (−A)β(V (τ, xτ ) +G1(τ, vτ )),
T (t)(L(τ, xnτ ) + F1(τ, vnτ )) → T (t)(L(τ, xτ ) + F1(τ, vτ )),

for τ ∈ R and t ≥ s. From the Lebesgue dominated convergence Theorem,
assumption (a) and the estimate

‖AT (t− s)(V (τ, xnτ ) +G1(τ, vnτ ))‖ ≤ C1−β
‖(−A)β(V (τ, xnτ ) +G1(τ, vnτ ))‖

(t− s)1−β ,

we conclude that

x(t) = T (t− s)(x(s) + V (s, xs) +G1(s, vs))− V (t, xt)−G1(t, vt)

−
∫ t

s

AT (t− τ)(V (τ, xτ ) +G1(τ, vτ ))dτ

+
∫ t

s

T (t− τ)(L(τ, xτ ) + F1(τ, vτ ))dτ, t > s,

which proves that x ∈ Γv. Thus, Γ is closed and consequently upper semi-
continuous.

From Theorem 1.2 the operator Γ has a fixed point. This fixed point is an
ω-periodic solution of (2.1). The proof is finished.
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3 A periodic solution for a partial neutral
differential equation with unbounded delay

In this section, we discuss the existence of an ω-periodic solution for a partial
functional neutral differential equation with unbounded delay modeled in the
form

d

dt
(x(t) +G(t, xt)) = Ax(t) + F (t, xt), (3.1)

xσ = ϕ ∈ B, (3.2)

where the history xt : (−∞, 0]→ X, xt(θ) = x(t+ θ), belongs to some abstract
phase space B defined axiomatically and F,G : R × B → X are appropriate
continuous functions.

For the rest of this paper, B will be an abstract phase space defined ax-
iomatically as in Hale and Kato [4]. To establish the axioms of the space B, we
follow the terminology used in [9], and thus, B will be a linear space of functions
mapping (−∞, 0] into X, endowed with a semi-norm ‖·‖B. We will assume that
B satisfies the following axioms:

(A) If x : (−∞, σ + a) → X, a > 0, is continuous on [σ, σ + a) and xσ ∈ B,
then for every t ∈ [σ, σ + a), the following conditions hold:

i) xt is in B.

ii) ‖x(t)‖ ≤ H‖xt‖B.

iii) ‖xt‖B ≤ K(t− σ) sup{‖x(s)‖ : σ ≤ s ≤ t}+M(t− σ)‖xσ‖B,

where H > 0 is a constant; K,M : [0,∞) → [0,∞), K is continuous, M
is locally bounded and H,K,M are independent of x(·).

(A1) For the function x(·) in (A), xt is a B-valued continuous function on
[σ, σ + a).

(B) The space B is complete.

(C 2) If a uniformly bounded sequence (ϕn)n in C00 converges to a function ϕ
in the compact-open topology, then ϕ ∈ B and ‖ϕn−ϕ‖B → 0 as n→ ∞.

Example 3.1 We consider the phase space B := Cr×Lp(g;X), r ≥ 0, 1 ≤ p <
∞, see [9], which consists of all classes of functions ϕ : (−∞, 0]→ X such that
ϕ is continuous on [−r, 0], Lebesgue-measurable and g|ϕ(·)|p is Lebesgue inte-
grable on (−∞,−r), where g : (−∞,−r)→ R is a positive Lebesgue integrable
function. The seminorm in ‖ · ‖B is defined by

‖ϕ‖B := sup{‖ϕ(θ)‖ : −r ≤ θ ≤ 0} +
(∫ −r
−∞

g(θ)‖ϕ(θ)‖pdθ
)1/p

.
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We will assume that g satisfies conditions (g-6) and (g-7) in the terminology
of [9]. This means that g is integrable on (−∞,−r) and that there exists a
non-negative and locally bounded function γ on (−∞, 0] such that

g(ξ + θ) ≤ γ(ξ) g(θ),

for all ξ ≤ 0 and θ ∈ (−∞,−r) \ Nξ, where Nξ ⊆ (−∞,−r) is a set with
Lebesgue measure zero. In this case, B is a phase space which satisfies axioms
(A), (A1), (B) and (C2) ( see [9], Theorem 1.3.8).

Definition A function x : (−∞, T ] → X is a mild solution of the abstract
Cauchy problem (3.1)-(3.2) if: x0 = ϕ; the restriction of x(·) to the interval
[0, T ] is continuous; for each 0 ≤ t < T the function AT (t−s)G(s, xs), s ∈ [0, t),
is integrable and

x(t) =T (t)(ϕ(0) +G(0, ϕ))−G(t, xt)−
∫ t

0

AT (t− s)G(s, xs)ds

+
∫ t

0

T (t− s)F (s, xs)ds, t ∈ [0, T ].
(3.3)

Lemma 3.2 Let Assumptions H1,H7 be satisfied. If x : (−∞, T ] → X is a
bounded mild solution of (3.1), then the set U = {xnω : n ∈ N} is relatively
compact in B.

Proof: Let (xnkω)k∈N be a sequence in U . For n > 0, we define the set
U(n, r) = {xnkω|[−r,0]

: nk ≥ n}. Using the same arguments in the proof of
Theorem 2.3, it follows that U(n, r) is relatively compact in C([−r, , 0];X) when
nω > r. Now we can choose a subsequence of (xnkω)k∈N; which is indicated by
the same index, that converges uniformly on compact subsets of (−∞, 0] to some
function x ∈ Cb((−∞, 0] : X). Since B verifies axiom C 2, it follow that x ∈ B
and that xnkω → x in B. Thus, U is relatively compact in B.

Definition A function x : R → X is an ω-periodic solution of equation (3.1)
if: x(·) is a mild solution of (3.1) and x(t+ ω) = x(t) for every t ∈ R.

The proofs of the following results are similar to the proofs of Theorems 2.5
and 2.6. We only remark that the continuity of ϕ→ xω(·, ϕ) is discussed in [8].

Theorem 3.3 Let conditions H2, H4 and H7 be satisfied. If the equation (3.1)
has a bounded mild solution then there exists an ω-periodic solution of (3.1).

Theorem 3.4 Let conditions H3,H5 and H7 be satisfied and assume that the
following conditions are fulfilled.

(a) The functions (−A)βV, (−A)βG1, L and F1 takes bounded sets into the
bounded sets.
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(b) There is ρ > 0 such that for every v ∈ Bρ[0, CP ] the neutral equation

d

dt
(x(t) + V (t, xt) +G1(t, vt)) = Ax(t) + L(t, xt) + F1(t, vt),

has an ω-periodic solution u(·, v) ∈ Bρ[0, CP ].

Then the neutral equation (3.1) has an ω-periodic solution.

4 Applications

In this section, we illustrate some of the results in this work. Let X = L2([0, π])
and A and Ax = x′′ with domain

D(A) := {f(·) ∈ L2([0, π]) : f ′′(·) ∈ L2([0, π]), f(0) = f(π) = 0}.

It’s well known that A is the infinitesimal generator of a C0 semigroup, (T (t))t≥0,
on X, which is compact, analytic and self-adjoint. Moreover, A has discrete
spectrum, the eigenvalues are −n2, n ∈ N, with corresponding normalized
eigenvectors zn(ξ) := (2/π)1/2 sin(nξ) and the following properties hold:

(a) {zn : n ∈ N} is an orthonormal basis of X.

(b) If f ∈ D(A) then A(f) = −
∑∞
n=1 n

2〈f, zn〉zn.

(c) For f ∈ X, (−A)−
1
2 f =

∑∞
n=1

1
n 〈f, zn〉zn. In particular, ‖(−A)−1/2‖ = 1.

(d) The operator (−A)1/2 is given as (−A)1/2f =
∑∞
n=1 n〈f, zn〉zn on the space

D((−A)1/2) = {f ∈ X :
∑∞
n=1 n〈f, zn〉zn ∈ X}.

(e) For every f ∈ X, T (t)f =
∑∞
n=1 e

−n2t〈f, zn〉zn. Moreover, it follows from
this expression that ‖T (t)‖ ≤ e−t, t ≥ 0, and that ‖(−A)1/2T (t)‖ ≤
1√
2
e−t/2t−1/2, for t > 0.

A neutral equation with bounded Delay

Considering the example in Ezzimby [1], in this section we study the neutral
equation

d

dt
[u(t, ξ) +

∫ 0

−r

∫ π

0

a0(t)b(s, η, ξ)u(t+ s, η)dηds]

=
∂2

∂ξ2
u(t, ξ) + a1(t)x(t− r, ξ) + a2(t)p(t, x(t− r, ξ)) + q(t, ξ),

(4.1)

u(t, 0) = u(t, π) = 0, t ≥ 0, (4.2)
u(τ, ξ) = ϕ(τ, ξ), τ ∈ [−r, 0], 0 ≤ ξ ≤ π, (4.3)

where
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(i) The function b(·) is measurable and

sup
t∈[−r,∞)

∫ π

0

∫ π

0

b2(t, η, ξ)dηdξ <∞.

(ii) The function
∂

∂ζ
b(τ, η, ζ) is measurable; b(τ, η, π) = 0; b(τ, η, 0) = 0 and

N1r < 1 where

N1 :=
∫ π

0

∫ 0

−r

∫ π

0

( ∂
∂ζ
b(τ, η, ζ)

)2
dηdτdζ.

(iii) The functions p, q : R2 → R are continuous and ω-periodic in the first
variable.

(iv) The substitution operators g : R × X → X, f : R → X defined by
g(t, x)(ξ) = p(t, x(ξ)) and f(t)(ξ) = q(t, ξ) are ω-periodic, continuous and
there exists k > 0 such that ‖g(t, x)‖ ≤ k‖x‖, (t, x) ∈ R×X.

(v) The functions a1, a2 : R → R are continuous, ω-periodic and there exists
a constant l such that −1 + |a1(t)|+ |a2(t)|k ≤ −l, t ≥ 0.

(vi) The function a0 : R → R is continuous, nondecreasing, ω-periodic and
0 ≤ a0(t) ≤ (1− e−t), for t ≥ 0.

On the space R× C, we define the maps

G(t, ψ)(ξ) := a0(t)V (t, ψ),

V (t, ψ)(ξ) :=
∫ 0

−r

∫ π

0

b(s, η, ξ)ψ(s, η)dηds,

L(t, ψ)(ξ) := a1(t)ψ(−r)(ξ),
F1(t, ψ)(ξ) := a2(t)g(t, ψ(−r))(ξ) + f(t)(ξ).

With the previous notation, the initial-boundary value problem (4.1)-(4.3) can
be written as the abstract Cauchy problem

d

dt
(x(t) +G(t, xt)) = Ax(t) + L(t, xt) + F1(t, xt), t ≥ 0 (4.4)

x0 = ϕ, ϕ ∈ C([−r, 0] : X) =: C. (4.5)

A straightforward estimation using (i)-(iv) shows that the functions G, L and
F1 are continuous. Moreover, from (d) and (ii), it follow that G is a bounded
linear operator with values in X1/2 and that ‖(−A)1/2G(t, ·)‖ ≤ a0(t)(N1r)1/2

for every t ∈ R.
Next we prove that G satisfies H6. Considering the condition (vi), we only

proof that V verifies H6. Let R > 0 and x ∈ C([−r, T ];X) such that ‖x‖−r,T ≤
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R. For t > 0 we get

V (t+ h, xt+h)(ξ)− V (t, xt)(ξ)

=
∫ −r+t
−r+t+h

∫ π

0

b(θ − t− h, η, ξ)x(θ, η)dηdθ

+
∫ t

−r+t

∫ π

0

(b(θ − t− h, η, ξ)− b(θ − t, η, ξ))x(θ, η)dηdθ

+
∫ t+h

t

∫ π

0

b(θ − t− h, η, ξ)x(θ, η)dηdθ

and hence

| d
dt
V (t, xt)|2X ≤ 4‖x(−r + t)‖2

∫ π

0

∫ π

0

b2(−r, η, ξ)2dηdξ

+ 4‖x‖2∞r
∫ π

0

∫ t

−r+t

∫ π

0

(
∂b

∂θ
(θ − t, η, ξ))2dηdθdξ

+ 4‖x‖2∞
∫ π

0

∫ π

0

b2(0, η, ξ)dηdξ.

Thus,

‖ d
dt
V (t, xt)‖2 ≤ C(

∂b

∂θ
, b), (4.6)

where C( ∂b∂θ , b) > 0 is independent of t > 0 and x with ‖x‖−r,T ≤ R. This
implies that the set

U = {s→ V (s, xs) : x ∈ C([−r, T ];X), sup
θ∈[−r,T ]

‖x(θ)‖ ≤ R}

is equicontinuous from the right side at t > 0. The equicontinuity of U on R is
proved in similar form. Thus, V verifies condition H6.

Proposition 4.1 Assume that the above conditions hold and that

l > (N1r)1/2ρ(1 +
1√
2

(2e
−1
2 + 2)), (4.7)

where ρ = 1 + ‖f‖∞/l. Then there exists an ω-periodic solution of (4.1)-(4.3).

Proof: Let v ∈ Bρ(0, CP ) and ϕ ∈ Bρ(0, C). From Theorem 2.1 and the
condition ‖(−A)1/2G(t, ·)‖ ≤ (N1r)1/2 < 1, we know that there exist a local
mild solution, x(·, ϕ), of

d

dt
(y(t) +G(t, yt)) = Ay(t) + L(t, yt) + F1(t, vt), t ≥ 0,

y0 = ϕ.
(4.8)

We claim that x(·, ϕ) is bounded by ρ on [0, aϕ), where [0, aϕ) is the maximal
interval of definition of x(·, ϕ). Assume that the claim is false and let t0 =
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inf{t > 0 : ‖x(t)‖ > ρ}. Clearly, x(t0) = ρ. If t0 > 1, by employing the
estimates in Ezzinbi [1], pp. 227, we have that

‖x(t0)‖ ≤ ρ− l(1− e−t0) + a0(t0)‖V (t0, xt0)‖

+a0(t0)
∫ t0

0

‖AT (t0 − s)V (s, xs)‖ds

≤ ρ− l(1− e−t0) + a0(t0)(N1r)1/2ρ

+a0(t0)(
N1r

2
)1/2

∫ t0−1

0

e−
(t0−s)

2 ‖xs‖Cds

+a0(t0) (
N1r

2
)1/2

∫ t0

t0−1

e−
(t0−s)

2

(t0 − s)1/2
‖xs‖Cds

≤ ρ− l(1− e−t0) + a0(t0)(N1r)1/2ρ+ a0(t0)(
N1r

2
)1/2ρ(2e−

1
2 + 2),

thus,

‖x(t0)‖ ≤ ρ−
(
l − (N1r)1/2ρ(1 +

2√
2

(e−
1
2 + 1)

)
(1− e−t0). (4.9)

Similarly, if t0 ∈ (0, 1]

‖x(t0)‖ ≤ ρ−
(
l − (N1r)1/2ρ(1 +

2√
2

)
)
(1− e−t0). (4.10)

From (4.7), (4.9) and (4.10), it follows that ‖x(t0)‖ < ρ, which is a contradiction.
Now we prove that aϕ =∞. Assume that aϕ <∞ and let N2 be the number

N2 = ρ(|a1|∞ + |a2|∞k) + ‖f‖∞. For ε > 0, we fix 0 < δ <
aϕ
2 such that

‖T (s)x− T (s′)x‖ < ε, x ∈ T (ε)B2ρ+N2 [0, X],

when |s− s′| < δ and s, s′ ∈ [0, aϕ]. Let aϕ
2 < t < t0 < aϕ. Using that a0(t) ≤ 1

and the estimate in step 2 of the proof of Theorem 2.3, we have

‖x(t0)− x(t)‖ ≤ ε+ ‖G(t0, xt0)−G(t, xt)‖+ 2ε
1√
2

(t0 − ε)1/2

+4(
N1r√

2
)1/2ρε1/2 + 2(

N1r√
2

)1/2ρ(t− t0)1/2 + ε(t0 − ε)

+2N2ε+N2(t− t0)

which from (4.6), allows us to conclude that x(·) is uniformly continuous on
[aϕ/2, aϕ). Let x̃ : [−r, aϕ] → X be the unique continuous extension of x(·).
From Theorem 2.2, there exists a mild solution, y(·), of (4.4) with initial condi-
tion yaϕ = x̃aϕ . This solution give an extension of x(·, ϕ), which is a contradic-
tion. Thus x(·, ϕ) is defined on R.

From Theorem 2.5, we infer that for every v ∈ Bρ[0, CP ] there exists an ω-
periodic, u(·, v), of (4.8) and that u(·, v) ∈ Bρ[0, CP ]. Finally, the existence of
an ω-periodic solution of (4.4) follows from Theorem 2.6. The proof is complete.
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A neutral equation with unbounded delay

Next we consider the boundary-value problem

∂

∂t
[u(t, ξ) +

∫ t

−∞

∫ π

0

b(s− t, η, ξ)u(s, η)dηds]

=
∂2

∂ξ2
u(t, ξ) + a0(ξ)u(t, ξ) +

∫ t

−∞
a(s− t)u(s, ξ) ds+ a1(t, ξ),

(4.11)

u(t, 0) = u(t, π) = 0, t ≥ 0, (4.12)
u(τ, ξ) = ϕ(τ, ξ), τ ≤ 0, 0 ≤ ξ ≤ π, (4.13)

which is studied in [8]. Let B := Cr × L2(g;X), r = 0, be the phase space
studied in Example 3.1. In this case, H = 1; M(t) = γ(−t)1/2 and K(t) =
1 + (

∫ 0

−t g(τ)dτ)1/2 for all t ≥ 0. Assuming the conditions (i)-(iii) of Example
3.1 in [8], this problem can be written as

d

dt
(x(t) +G(t, xt)) = Ax(t) + F (t, xt) + f(t),

x0 = ϕ ∈ B,

where

G(t, ψ)(ξ) :=
∫ 0

−∞

∫ π

0

b(s, η, ξ)ψ(s, η)dηds,

F (t, ψ)(ξ) := a0(ξ)ψ(0, ξ) +
∫ 0

−∞
a(s)ψ(s, ξ)ds,

f(t) := a1(t, ·).

Moreover, F (t, ·) and G(t, ·) are bounded linear operators, the range of G is
contained in X 1

2
, ‖(−A)1/2G(t, ·)‖ ≤ N1/2

1 and ‖F (t, ·)‖ ≤ N2 where

N1 :=
∫ π

0

∫ 0

−∞

∫ π

0

1
g(s)

( ∂
∂ζ
b(s, η, ζ)

)2
dηdsdζ,

N2 := max{ ‖a0‖∞,
( ∫ 0

−∞

a2(θ)
g(θ)

dθ
)1/2}.

Next we assume that the function g(·) verifies the conditions:

(gi) ln(g) is uniformly continuous,

(gii) k1 =
∫ 0

−∞ g(θ)dθ <∞,

(giii) the function γ(·) is bounded on (−∞, 0].

Under these conditions, the functions K(·),M(·) are bounded. In the following
result we use the symbol K for sups≥0K(s).
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Theorem 4.2 Assume that the above conditions hold and that

K
[
N1 +

2N1√
2
e−

1
2 +

N1√
2

∫ 1

0

e−
s
2 s−

1
2 ds+N2

]
< 1. (4.14)

If f is continuous and ω-periodic, then there exists an ω-periodic solution of
(4.11).

Proof: Using similar estimates that those in the section 4, it follows that
condition H7 holds. From Lemmas 3.1, 3.2 and Proposition 3.4 in [8] we know
that each mild solution of (4.11) is bounded on [0,∞). The existence of an
ω-periodic solution for (4.11)-(4.12)-(4.13) is now consequence of Theorem 3.3.
The proof is complete.
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