ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, Vol. **2002**(2002), No. 43, pp. 1–11. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp)

Uniqueness for radial Ginzburg-Landau type minimizers *

Yutian Lei

Abstract

We prove the uniqueness of radial minimizers of a Ginzburg-Landau type functional. We present also an analysis of the the location of the zeros of the radial minimizer.

1 Introduction

For $n \ge 2$, let $B = \{x \in \mathbb{R}^n; |x| < 1\}$ and ∂B its boundary. On this domain, we find minimizers to the Ginzburg-Landau-type functional

$$E_{\varepsilon}(u,B) = \frac{1}{p} \int_{B} |\nabla u|^{p} + \frac{1}{4\varepsilon^{p}} \int_{B} (1-|u|^{2})^{2}, \quad (p \ge n)$$

on the class of functions

$$W = \{u(x) = f(r)\frac{x}{|x|} \in W^{1,p}(B, \mathbb{R}^n); f(1) = 1, r = |x|\}.$$

Such minimizer is denoted by u_{ε} and is called a *radial minimizer*.

Many authors have studied the existence, uniqueness and asymptotic behaviour of u_{ε} as $\varepsilon \to 0$. For p = n = 2, studies of asymptotic behaviour can be found in [1, 11], studies of uniqueness in [7], and other related topics in [2, 3, 5, 10]. For p = n > 2 and p > n = 2, the asymptotic behaviour was studied in [6] and [9], respectively. However, uniqueness was not mentioned there. In this paper, we prove the following results for $p \ge n$.

Theorem 1.1 Assume u_{ε} is a radial minimizer of $E_{\varepsilon}(u, B)$. Then for any given $\eta \in (0, 1/2)$ there exists a positive constant $h = h(\eta)$ such that

$$Z_{\varepsilon} = \{ x \in B; |u_{\varepsilon}(x)| < 1 - \eta \} \subset B(0, h\varepsilon) = \{ x \in \mathbb{R}^n; |x| < h\varepsilon \}.$$

Theorem 1.2 The radial minimizer of $E_{\varepsilon}(u, B)$ on W is unique.

This article is organized as follows: In §2, we present some basic properties of minimizers. In §3, we prove Theorem 1.1 which implies, in particular, that the zeros of u_{ε} are contained in $B(0, h\varepsilon)$. We conclude with the proof of Theorem 1.2 in §4.

^{*} Mathematics Subject Classifications: 35J70, 49K20.

Key words: radial minimizer, uniqueness, Ginzburg-Landau type functional. ©2002 Southwest Texas State University.

Submitted February 4, 2002. Published May 21, 2002.

2 Preliminaries

For a function $u(x) = f(r) \frac{x}{|x|}$, written in polar coordinates, we have

$$\begin{aligned} |\nabla u| &= (f_r^2 + (n-1)r^{-2}f^2)^{1/2}, \quad \int_B |u|^p = |S^{n-1}| \int_0^1 r^{n-1} |f|^p \, dr, \\ &\int_B |\nabla u|^p = |S^{n-1}| \int_0^1 r^{n-1} (f_r^2 + (n-1)r^{-2}f^2)^{p/2} \, dr. \end{aligned}$$

It is easily seen that $f(r)\frac{x}{|x|} \in W^{1,p}(B,\mathbb{R}^n)$ implies $f(r)r^{\frac{n-1}{p}-1}$ and $f_r(r)r^{\frac{n-1}{p}}$ are in $L^p(0,1)$. Conversely, if f(r) is in $W^{1,p}_{\text{loc}}(0,1]$, and $f(r)r^{\frac{n-1}{p}-1}$, $f_r(r)r^{\frac{n-1}{p}}$ are in $L^p(0,1)$, then $f(r)\frac{x}{|x|} \in W^{1,p}(B,\mathbb{R}^n)$. Thus if we denote

$$V = \{ f \in W_{\text{loc}}^{1,p}(0,1]; r^{\frac{n-1}{p}} f_r \in L^p(0,1), r^{(n-1-p)/p} f \in L^p(0,1), f(1) = 1 \},\$$

then $V = \{f(r); u(x) = f(r)\frac{x}{|x|} \in W\}.$

Proposition 2.1 The set V defined above is a subset of $\{f \in C[0,1]; f(0) = 0\}$.

Proof. Let $f \in V$. If p > n, let $h(r) = f(r^{\frac{p-1}{p-n}})$. Then

$$\begin{aligned} \int_0^1 |h'(r)|^p \, dr &= \left(\frac{p-1}{p-n}\right)^p \int_0^1 |f'(r^{\frac{p-1}{p-n}})|^p r^{\frac{p(n-1)}{p-n}} \, dr \\ &= \left(\frac{p-1}{p-n}\right)^{p-1} \int_0^1 s^{n-1} |f'(s)|^p \, ds < \infty \end{aligned}$$

by noting $f_s(s)s^{(n-1)/p} \in L^p(0,1)$.

If p = n, let $h(r) = f(r^x)$ with x > 1 to be determined later. Then for any $y \in (1, p)$,

$$\begin{split} \int_0^1 |h'(r)|^y dr &= x^y \int_0^1 |f'(r^x)|^y r^{(x-1)y} dr \\ &= x^{y-1} \int_0^1 |f'(s)|^y s^{(x-1)(y-1)/x} ds, \end{split}$$

where $s = r^x$. Choose x, y such that $(1 - \frac{1}{x})(1 - \frac{1}{y}) = \frac{n-1}{n}$. Hence

$$\begin{split} \int_0^1 |h'(r)|^y dr &= x^{y-1} \int_0^1 |f'(s)|^y s^{y(n-1)/n} ds \\ &\leq x^{y-1} (\int_0^1 |f'(s)|^n s^{n-1} ds)^{y/n} < \infty. \end{split}$$

Using an interpolation inequality and Young inequality, $||h||_{W^{1,y}((0,1),R)} < \infty$ which implies that $h(r) \in C[0,1]$ and hence $f(r) \in C[0,1]$.

EJDE-2002/43

Yutian Lei

Suppose f(0) > 0, then $f(r) \ge s > 0$ for $r \in [0, t)$ with t > 0 small enough since $f \in C[0, 1]$. We have

$$\int_{0}^{1} r^{n-1-p} f^{p} dr \ge s^{p} \int_{0}^{t} r^{n-1-p} dr = \infty,$$

which contradicts $r^{(n-1)/p-1}f \in L^p(0,1)$. Therefore f(0) = 0 and the proof is complete.

Proposition 2.2 The functional $E_{\varepsilon}(u, B)$ achieves its minimum on W by a function $u_{\varepsilon}(x) = f_{\varepsilon}(r) \frac{x}{|x|}$.

Proof. Note that $W^{1,p}(B, \mathbb{R}^n)$ is a reflexive Banach space and $E_{\varepsilon}(u, B)$ is weakly lower-semicontinuous. To prove the existence of minimizers of $E_{\varepsilon}(u, B)$ in W, it suffices to verify that W is a weakly closed subset of $W^{1,p}(B, \mathbb{R}^n)$. Clearly W is a convex subset of $W^{1,p}(B, \mathbb{R}^n)$. Now we prove that W is a closed subset of $W^{1,p}(B, \mathbb{R}^n)$. Let $u_k = f_k(r)\frac{x}{|x|} \in W$ and

$$\lim_{k \to \infty} u_k = u, \quad \text{in } W^{1,p}(B, \mathbb{R}^n).$$

By the embedding theorem there exists a subsequence $u_k = f_k(r) \frac{x}{|x|}$ such that

$$\lim_{k \to \infty} f_k = f, \quad \text{in } C(0,1]$$

and $u = f(r)\frac{x}{|x|}$. Combining this with $f_k(1) = 1$, we see that f(1) = 1. Thus $u \in W$.

Proposition 2.3 The minimizer u_{ε} is a weak radial solution of

$$-\operatorname{div}(|\nabla u|^{p-2}\nabla u) = \frac{1}{\varepsilon^p}u(1-|u|^2), \quad on \ B,$$
(2.1)

$$u|_{\partial B} = x. \tag{2.2}$$

Proof. Denote u_{ε} by u. For any $t \in [0, 1)$ and $\phi = f(r) \frac{x}{|x|} \in C_0^{\infty}(B, \mathbb{R}^n)$, we have $u + t\phi \in W$ as long as t is small sufficiently. Since u is a minimizer we obtain

$$\frac{dE_{\varepsilon}(u+t\phi,B)}{dt}|_{t=0} = 0$$

namely,

$$\begin{split} 0 = & \frac{d}{dt}|_{t=0} \int_B (\frac{1}{p} |\nabla(u+t\phi)|^p + \frac{1}{4\varepsilon^p} (1-|u|^2)^2) dx \\ = & \int_B |\nabla u|^{p-2} \nabla u \nabla \phi dx - \frac{1}{\varepsilon^p} \int_B u\phi (1-|u|^2) dx. \end{split}$$

By a limit process we see that the test function ϕ can be any member of $\{\phi = f(r) \frac{x}{|x|} \in W^{1,p}(B, \mathbb{R}^n); \phi|_{\partial B} = 0\}.$

As in [6, Lemma 2.2], we also have the following statement.

Proposition 2.4 Let u_{ε} be a weak radial solution of (2.1)-(2.2). Then $|u_{\varepsilon}| \leq 1$ on \overline{B} .

Proof. Taking $\phi = u - \frac{u}{|u|} \min(1, |u|)$. Let $B_+ = \{x \in B; |u| > 1, a.e. \text{ on } B\}$. Noting

$$\nabla \phi = 0, a.e.$$
 on $B \setminus B_+$; $\nabla \phi = \nabla u(1 - \frac{1}{|u|}) + \frac{u(u\nabla u)}{|u|^3}, a.e.$ on B_+ ,

we have

$$\int_{B_+} |\nabla u|^p (1 - \frac{1}{|u|}) + \int_{B_+} |\nabla u|^{p-2} \frac{(u\nabla u)^2}{|u|^3} + \frac{1}{\varepsilon^p} \int_{B_+} |u|(|u|^2 - 1)(|u| - 1) = 0.$$

This implies that $|B_+| = 0$. Thus $|u_{\varepsilon}| \leq 1$.

Proposition 2.5 Assume u_{ε} is a weak radial solution of (2.1)-(refe2.2). Then there exist positive constants C_1 , ρ which are independent of ε , such that

$$\|\nabla u_{\varepsilon}(x)\|_{L(B(x,\rho\varepsilon/8))} \le C_1 \varepsilon^{-1}, \quad if \quad x \in B(0, 1-\rho\varepsilon),$$
(2.3)

$$|u_{\varepsilon}(x)| \ge \frac{10}{11}, \quad if \quad x \in \overline{B} \setminus B(0, 1 - 2\rho\varepsilon).$$
 (2.4)

Proof. Let $y = x\varepsilon^{-1}$ in (2.1) and denote v(y) = u(x), $B_{\varepsilon} = B(0, \varepsilon^{-1})$. Then

$$\int_{B_{\varepsilon}} |\nabla v|^{p-2} \nabla v \nabla \phi = \int_{B_{\varepsilon}} v(1-|v|^2)\phi, \quad \phi \in W_0^{1,p}(B_{\varepsilon}, \mathbb{R}^n).$$
(2.5)

This implies that v(y) is a weak solution of (2.5). By using the standard discuss of the Holder continuity of weak solution of (2.5) on the boundary (for example see Theorem 1.1 and Line 19-21 of Page 104 in [4]) we can see that for any $y_0 \in \partial B_{\varepsilon}$ and $y \in B(y_0, \rho_0)$ (where $\rho_0 > 0$ is a constant independent of ε), there exist positive constants $C = C(\rho_0)$ and $\alpha \in (0, 1)$, both independent of ε , such that

$$|v(y) - v(y_0)| \le C(\rho_0)|y - y_0|^{\alpha}.$$

Choose $\rho > 0$ sufficiently small such that

$$y \in B(y_0, 2\rho) \subset B(y_0, \rho_0), \text{ and } C(\rho_0)|y - y_0|^{\alpha} \le \frac{1}{11},$$
 (2.6)

then

$$|v(y)| \ge |v(y_0)| - C(\rho_0)|y - y_0|^{\alpha} = 1 - C(\rho_0)|y - y_0|^{\alpha} \ge \frac{10}{11}$$

Let $x = y\varepsilon$. Thus $|u_{\varepsilon}(x)| \ge 10/11$, if $x \in B(x_0, 2\rho\varepsilon)$, where $x_0 \in \partial B$. This implies (2.4). Taking $\phi = v\zeta^p, \zeta \in C_0^{\infty}(B_{\varepsilon}, R)$ in (2.5), we obtain

$$\int_{B_{\varepsilon}} |\nabla v|^p \zeta^p \le p \int_{B_{\varepsilon}} |\nabla v|^{p-1} \zeta^{p-1} |\nabla \zeta| |v| + \int_{B_{\varepsilon}} |v|^2 (1-|v|^2) \zeta^p.$$

For ρ as in (2.6), setting $y \in B(0, \varepsilon^{-1} - \rho)$, $B(y, \rho/2) \subset B_{\varepsilon}$,

$$\zeta = \begin{cases} 1 & \text{in } B(y, \rho/4), \\ 0 & \text{in } B_{\varepsilon} \setminus B(y, \rho/2) \end{cases}$$

EJDE-2002/43

Yutian Lei

and $|\nabla \zeta| \leq C(\rho)$, we have

$$\int_{B(y,\rho/2)} |\nabla v|^p \zeta^p \le C(\rho) \int_{B(y,\rho/2)} |\nabla v|^{p-1} \zeta^{p-1} + C(\rho)$$

Using Holder's inequality, we can derive $\int_{B(y,\rho/4)} |\nabla v|^p \leq C(\rho)$. Combining this with the Tolksdroff' theorem in [12] yields

$$\|\nabla v\|_{L^{\infty}(B(y,\rho/8))}^{p} \le C(\rho) \int_{B(y,\rho/4)} (1+|\nabla v|)^{p} \le C(\rho)$$

which implies

$$\|\nabla u\|_{L^{\infty}(B(x,\varepsilon\rho/8))} \le C(\rho)\varepsilon^{-1}.$$

Proposition 2.6 Let u_{ε} be a radial minimizer of $E_{\varepsilon}(u, B)$. Then

$$E_{\varepsilon}(u_{\varepsilon}, B) \le C\varepsilon^{n-p} + C, \quad when \quad p > n,$$
(2.7)

$$E_{\varepsilon}(u_{\varepsilon}, B) \leq \frac{1}{n} (n-1)^{n/2} |S^{n-1}|| \ln \varepsilon| + C \quad when \quad p = n,$$
(2.8)

with a constant C independent of $\varepsilon \in (0, 1)$.

Proof. Denote

$$I(\varepsilon, R) = \min\left\{\int_{B(0,R)} \left[\frac{1}{p}|\nabla u|^p + \frac{1}{\varepsilon^p}(1-|u|^2)^2\right]; u \in W_R\right\},\$$

where

$$W_R = \left\{ u(x) = f(r) \frac{x}{|x|} \in W^{1,p}(B(0,R), \mathbb{R}^n); r = |x|, f(R) = 1 \right\}.$$

Then

$$I(\varepsilon, 1) = E_{\varepsilon}(u_{\varepsilon}, B)$$

$$= \frac{1}{p} \int_{B} |\nabla u_{\varepsilon}|^{p} dx + \frac{1}{4\varepsilon^{p}} \int_{B} (1 - |u_{\varepsilon}|^{2})^{2} dx$$

$$= \varepsilon^{n-p} [\frac{1}{p} \int_{B(0,\varepsilon^{-1})} |\nabla u_{\varepsilon}|^{p} dy + \frac{1}{4} \int_{B(0,\varepsilon^{-1})} (1 - |u_{\varepsilon}|^{2})^{2} dy]$$

$$= \varepsilon^{n-p} I(1,\varepsilon^{-1}).$$
(2.9)

Let u_1 be a solution of I(1,1) and define

$$u_2 = \begin{cases} u_1, & \text{if } 0 < |x| < 1; \\ \frac{x}{|x|}, & \text{if } 1 \le |x| \le \varepsilon^{-1}. \end{cases}$$

Thus $u_2 \in W_{\varepsilon^{-1}}$ and when p > n,

$$\begin{split} I(1,\varepsilon^{-1}) &\leq \frac{1}{p} \int_{B(0,\varepsilon^{-1})} |\nabla u_2|^p + \frac{1}{4} \int_{B(0,\varepsilon^{-1})} (1-|u_2|^2)^2 \\ &= \frac{1}{p} \int_B |\nabla u_1|^p + \frac{1}{4} \int_B (1-|u_1|^2)^2 + \frac{1}{p} \int_{B(0,\varepsilon^{-1})\setminus B} |\nabla \frac{x}{|x|}|^p \\ &= I(1,1) + \frac{(n-1)^{p/2} |S^{n-1}|}{p} \int_1^{\varepsilon^{-1}} r^{n-p-1} dr \\ &= I(1,1) + \frac{(n-1)^{p/2} |S^{n-1}|}{p(p-n)} (1-\varepsilon^{p-n}) \leq C. \end{split}$$

Similarly, when p = n,

$$I(1,\varepsilon^{-1}) \le I(1,1) + \frac{1}{n}(n-1)^{n/2}|S^{n-1}||\ln\varepsilon| + C.$$

Substituting these into (2.9) yields (2.7) and (2.8).

3 Location of zeros of minimizers

Proposition 3.1 Let u_{ε} be a radial minimizer of $E_{\varepsilon}(u, B)$. Then there exists a constant C independent of $\varepsilon \in (0, 1]$ such that

$$\frac{1}{\varepsilon^n} \int_B (1 - |u_\varepsilon|^2)^2 \le C.$$
(3.1)

Proof. When p > n, (3.1) can be derived by multiplying (2.7) by ε^{p-n} . When p = n, as in [6, eqn.(3.6)], we derive that

$$\int_{B} |\nabla u_{\varepsilon}|^{n} dx \ge (n-1)^{n/2} |S^{n-1}|| \ln \varepsilon| - C,$$

where C is independent of ε . Combining this with (2.8) we obtain (3.1).

Proposition 3.2 Let u_{ε} be a radial minimizer of $E_{\varepsilon}(u, B)$. Then for any $\eta \in (0, 1/2)$, there exist positive constants λ, μ independent of $\varepsilon \in (0, 1)$ such that if

$$\frac{1}{\varepsilon^n} \int_{B(0,1-\rho\varepsilon)\cap B^{2l\varepsilon}} (1-|u_\varepsilon|^2)^2 \le \mu, \tag{3.2}$$

where $B^{2l\varepsilon}$ is the ball of radius $2l\varepsilon$ with $l \geq \lambda$, then

$$|u_{\varepsilon}(x)| \ge 1 - \eta, \quad \forall x \in B(0, 1 - \rho \varepsilon) \cap B^{l\varepsilon}.$$
(3.3)

EJDE-2002/43

Yutian Lei

Proof. First we observe that there exists a constant $C_2 > 0$ which is independent of ε such that for any $x \in B$ and $0 < \rho \leq 1$,

$$|B(0, 1 - \rho\varepsilon) \cap B(x, r)| \ge C_2 r^n.$$

To prove this proposition, we choose

$$\lambda = \frac{\eta}{2C_1}, \quad \mu = \frac{C_2}{C_1^n} (\frac{\eta}{2})^{n+2}, \tag{3.4}$$

where C_1 is the constant in (2.3). Suppose that there is a point $x_0 \in B(0, 1 - \rho \varepsilon) \cap B^{l\varepsilon}$ such that $|u_{\varepsilon}(x_0)| < 1 - \eta$. Then applying (2.3)) we have

$$\begin{aligned} |u_{\varepsilon}(x) - u_{\varepsilon}(x_0)| &\leq C_1 \varepsilon^{-1} |x - x_0| \leq C_1 \varepsilon^{-1} (\lambda \varepsilon) \\ &= C_1 \lambda = \frac{\eta}{2}, \quad \forall x \in B(x_0, \lambda \varepsilon), \end{aligned}$$

hence $(1 - |u_{\varepsilon}(x)|^2)^2 > \frac{\eta^2}{4}$, $\forall x \in B(x_0, \lambda \varepsilon)$. Thus

$$\int_{B(x_0,\lambda\varepsilon)\cap B(0,1-\rho\varepsilon)} (1-|u_{\varepsilon}|^2)^2 > \frac{\eta^2}{4} |B(0,1-\rho\varepsilon)\cap B(x_0,\lambda\varepsilon)|$$

$$\geq C_2 \frac{\eta^2}{4} (\lambda\varepsilon)^n = C_2 \frac{\eta^2}{4} (\frac{\eta}{2C_1})^n \varepsilon^n = \mu\varepsilon^n.$$
(3.5)

Since $x_0 \in B^{l\varepsilon} \cap B$, and $(B(x_0, \lambda \varepsilon) \cap B(0, 1 - \rho \varepsilon)) \subset (B^{2l\varepsilon} \cap B(0, 1 - \rho \varepsilon))$, (3.5) implies

$$\int_{B^{2l\varepsilon}\cap B(0,1-\rho\varepsilon)} (1-|u_{\varepsilon}|^2)^2 > \mu\varepsilon^n,$$

which contradicts (3.2) and thus (3.3) is proved.

Let u_{ε} be a radial minimizer of $E_{\varepsilon}(u, B)$. Given $\eta \in (0, 1/2)$. Let λ, μ be constants in Proposition 3.2 corresponding to η . If

$$\frac{1}{\varepsilon^n} \int_{B(x^{\varepsilon}, 2\lambda\varepsilon) \cap B(0, 1-\rho\varepsilon)} (1 - |u_{\varepsilon}|^2)^2 \le \mu,$$
(3.6)

then $B(x^{\varepsilon}, \lambda \varepsilon)$ is called the ball of type I. Otherwise it is called the ball of type II.

Now suppose that $\{B(x_i^{\varepsilon}, \lambda \varepsilon), i \in I\}$ is a family of balls satisfying

$$x_{i}^{\varepsilon} \in B(0, 1 - \rho\varepsilon), i \in I;$$

$$B(0, 1 - \rho\varepsilon) \subset \bigcup_{i \in I} B(x_{i}^{\varepsilon}, \lambda\varepsilon);$$

$$B(x_{i}^{\varepsilon}, \lambda\varepsilon/4) \cap B(x_{i}^{\varepsilon}, \lambda\varepsilon/4) = \emptyset, i \neq j.$$

(3.7)

Denote $J_{\varepsilon} = \{i \in I; B(x_i^{\varepsilon}, \lambda \varepsilon) \text{ is a ball of type II}\}.$

Proposition 3.3 There exists an upper bound for the number of balls of type II. i.e., there exists a positive integer N such that $\operatorname{Card} J_{\varepsilon} \leq N$.

Proof. Since (3.7) implies that every point in B can be covered by finite, say m (independent of ε) balls, from (3.6) and the definition of balls of type II, we have

$$\begin{split} \mu \varepsilon^n Card J_{\varepsilon} &\leq \sum_{i \in J_{\varepsilon}} \int_{B(x_i^{\varepsilon}, 2\lambda\varepsilon) \cap B(0, 1-\rho\varepsilon)} (1 - |u_{\varepsilon}|^2)^2 \\ &\leq m \int_{\bigcup_{i \in J_{\varepsilon}} B(x_i^{\varepsilon}, 2\lambda\varepsilon) \cap B(0, 1-\rho\varepsilon)} (1 - |u_{\varepsilon}|^2)^2 \\ &\leq m \int_{B} (1 - |u_{\varepsilon}|^2)^2 \leq m C \varepsilon^n \end{split}$$

and hence for some n, Card $J_{\varepsilon} \leq \frac{mC}{\mu} \leq N$. Proposition 3.3 is an important result since the number of balls of type II is always finite as ε becomes sufficiently small.

Similar to the argument of [1, Theorem IV.1], we have

Proposition 3.4 There exist a subset $J \subset J_{\varepsilon}$ and a constant $h \ge \lambda$ such that

$$\bigcup_{i \in J_{\varepsilon}} B(x_i^{\varepsilon}, \lambda \varepsilon) \subset \bigcup_{i \in J} B(x_j^{\varepsilon}, h \varepsilon),
|x_i^{\varepsilon} - x_j^{\varepsilon}| > 8h\varepsilon, \quad i, j \in J, \quad i \neq j.$$
(3.8)

Proof. If there are two points x_1, x_2 such that (3.8) is not true with $h = \lambda$, we take $h_1 = 9\lambda$ and $J_1 = J_{\varepsilon} \setminus \{1\}$. In this case, if (3.8) holds we are done. Otherwise we continue to choose a pair points x_3, x_4 which does not satisfy (3.8) and take $h_2 = 9h_1$ and $J_2 = J_{\varepsilon} \setminus \{1, 3\}$. After at most N steps we may choose $\lambda \leq h \leq \lambda 9^N$ and conclude this proposition.

Applying Proposition 3.4, we may modify the family of balls of type II such that the new one, denoted by $\{B(x_i^{\varepsilon}, h\varepsilon); i \in J\}$, satisfies

$$\begin{split} \cup_{i\in J_{\varepsilon}} B(x_{i}^{\varepsilon},\lambda\varepsilon) \subset \cup_{i\in J} B(x_{i}^{\varepsilon},h\varepsilon),\\ \mathrm{Card}\, J \leq \mathrm{Card}\, J_{\varepsilon},\\ |x_{i}^{\varepsilon}-x_{j}^{\varepsilon}| > 8h\varepsilon, i,j\in J, i\neq j. \end{split}$$

The last condition implies that every two balls in the new family are disjoint. Now we prove the main result of this section.

Theorem 3.5 Let u_{ε} be a radial minimizer of $E_{\varepsilon}(u, B)$. Then for any $\eta \in$ (0,1/2), there exists a constant $h = h(\eta)$ independent of $\varepsilon \in (0,1)$ such that $Z_{\varepsilon} = \{x \in B; |u_{\varepsilon}(x)| < 1 - \eta\} \subset B(0,h\varepsilon)$. In particular the zeros of u_{ε} are contained in $B(0, h\varepsilon)$.

Proof. Suppose there exists a point $x_0 \in Z_{\varepsilon}$ such that $x_0 \in B(0, h_{\varepsilon})$. Then all points on the circle $S_0 = \{x \in B; |x| = |x_0|\}$ satisfy $|u_{\varepsilon}(x)| < 1 - \eta$ and hence by virtue of Proposition 3.2 and (2.4), all points on S_0 are contained in balls of type II. However, since $|x_0| \ge h\varepsilon$, S_0 can not be covered by a single ball of type Yutian Lei

II. S_0 can be covered by at least two balls of type II. However this is impossible. \Box

This theorem plays the key role in proving the uniqueness of radial minimizers. Furthermore, it implies that all the zeros of the radial minimizer locate near the singularity 0 of $\frac{x}{|x|}$, which is not mentioned in [6] when p = n > 2.

Using Theorem 3.5 and (2.4), we can see that

$$|u_{\varepsilon}(x)| \ge \min(\frac{10}{11}, 1-\eta), \quad x \in B(0, h(\eta)\varepsilon).$$
(3.9)

4 Proof of Theorem 1.2

Fix $\varepsilon \in (0,1)$. Suppose $u_1(x) = f_1(r) \frac{x}{|x|}$ and $u_2(x) = f_2(r) \frac{x}{|x|}$ are both radial minimizers of $E_{\varepsilon}(u, B)$ on W, then they are weak radial solutions of (2.1) (2.2). Thus

$$\int_{B} (|\nabla u_{1}|^{p-2} \nabla u_{1} - |\nabla u_{2}|^{p-2} \nabla u_{2}) \nabla \phi dx$$
$$= \frac{1}{\varepsilon^{p}} \int_{B} [(u_{1} - u_{2}) - (u_{1}|u_{1}|^{2} - u_{2}|u_{2}|^{2})] \phi dx.$$

Taking $\phi = u_1 - u_2 = (f_1 - f_2) \frac{x}{|x|}$, we have

$$\begin{split} &\int_{B} (|\nabla u_{1}|^{p-2} \nabla u_{1} - |\nabla u_{2}|^{p-2} \nabla u_{2}) \nabla (u_{1} - u_{2}) dx \\ &= \frac{1}{\varepsilon^{p}} \int_{B} (f_{1} - f_{2})^{2} dx - \frac{1}{\varepsilon^{p}} \int_{B} (f_{1} - f_{2})^{2} (f_{1}^{2} + f_{2}^{2} + f_{1} f_{2}) dx \\ &= \frac{1}{\varepsilon^{p}} \int_{B \setminus B(0,h\varepsilon)} (f_{1} - f_{2})^{2} [1 - (f_{1}^{2} + f_{2}^{2} + f_{1} f_{2})] dx \\ &+ \frac{1}{\varepsilon^{p}} \int_{B(0,h\varepsilon)} (f_{1} - f_{2})^{2} dx - \frac{1}{\varepsilon^{p}} \int_{B(0,h\varepsilon)} (f_{1} - f_{2})^{2} (f_{1}^{2} + f_{2}^{2} + f_{1} f_{2}) dx. \end{split}$$

Letting $\eta < 1 - \frac{1}{\sqrt{2}}$ in (3.9), we have $f_1, f_2 \ge 1/\sqrt{2}$, on $B \setminus B(0, h\varepsilon)$ for any given $\varepsilon \in (0, 1)$. Hence

$$\int_{B} (|\nabla u_{1}|^{p-2} \nabla u_{1} - |\nabla u_{2}|^{p-2} \nabla u_{2}) \nabla (u_{1} - u_{2}) dx \le \frac{1}{\varepsilon^{p}} \int_{B(0,h\varepsilon)} (f_{1} - f_{2})^{2} dx.$$

Applying [12, eqn.(2.11)], we can see that there exists a positive constant γ independent of ε and h such that

$$\gamma \int_{B} |\nabla(u_1 - u_2)|^2 dx \le \frac{1}{\varepsilon^p} \int_{B(0,h\varepsilon)} (f_1 - f_2)^2 dx, \tag{4.1}$$

which implies

0

$$\int_{B} |\nabla (f_1 - f_2)|^2 dx \le \frac{1}{\gamma \varepsilon^p} \int_{B(0,h\varepsilon)} (f_1 - f_2)^2 dx.$$

$$(4.2)$$

Denote $G = B(0, h\varepsilon)$. Applying [8, Theorem 2.1], we have $||f||_{\frac{2n}{n-2}} \leq \beta ||\nabla f||_2$, where $\beta = 2(n-1)/(n-2)$. Taking $f = f_1 - f_2$ and applying (4.2), we obtain f(|x|) = 0 as $x \in \partial B$ and

$$\left[\int_{B} |f|^{\frac{2n}{n-2}} dx\right]^{\frac{n-2}{n}} \leq \beta^{2} \int_{B} |\nabla f|^{2} dx \leq \beta^{2} \gamma^{-1} \int_{G} |f|^{2} dx \varepsilon^{-p}.$$

Using Holder's inequality, we derive

$$\int_{G} |f|^{2} dx \leq |G|^{1-\frac{n-2}{n}} \left[\int_{G} |f|^{\frac{2n}{n-2}} dx \right]^{\frac{n-2}{n}} \leq |B|^{1-\frac{n-2}{n}} h^{2} \varepsilon^{2-p} \frac{\beta^{2}}{\gamma} \int_{G} |f|^{2} dx.$$

Hence for any given $\varepsilon \in (0, 1)$,

$$\int_{G} |f|^{2} dx \leq C(\beta, |B|, \gamma, \varepsilon) h^{2} \int_{G} |f|^{2} dx.$$
(4.3)

Denote $F(\eta) = \int_{B(0,h(\eta)\varepsilon)} |f|^2 dx$, then $F(\eta) \ge 0$ and (4.3) implies that

$$F(\eta)(1 - C(\beta, |B|, \gamma, \varepsilon)h^2) \le 0.$$
(4.4)

On the other hand, since $C(\beta, |B|, \gamma, \varepsilon)$ is independent of η , we may take $0 < \eta < 1 - \frac{1}{\sqrt{2}}$ so small that $h = h(\eta) \le \lambda 9^N = 9^N \frac{\eta}{2C_1}$ (which is implied by (3.4)) satisfies

$$0 < 1 - C(\beta, |B|, \gamma, \varepsilon)h^2$$

for the fixed $\varepsilon \in (0,1)$, which and (4.4) imply that $F(\eta) = 0$. Namely f = 0 a.e. on G, or

$$f_1 = f_2$$
, a.e. on $B(0, h\varepsilon)$.

Substituting this into (4.1), we know that $u_1 - u_2 = C$ a.e. on *B*. Noticing the continuity of u_1, u_2 which is implied by Proposition 2.1, and $u_1 = u_2 = x$ on ∂B , we can see at last that

$$u_1 = u_2$$
, on \overline{B} .

References

- F. Bethuel, H. Brezis, F. Helein: *Ginzburg-Landau Vortices*, Birkhauser. 1994.
- [2] H. Brezis, F. Merle, T. Riviere: Quantization effects for $-\Delta u = u(1 |u|^2)$ in \mathbb{R}^2 , Arch. Rational Mech. Anal., **126** (1994).35-58.
- [3] H. Brezis, L. Oswald: *Remarks on sublinear elliptic equations*, J. Nonlinear Analysis, 10 (1986).55-64.
- [4] Y. Z. Chen, E. DiBenedetto: Boundary estimates for solutions of nonlinear degenerate parabolic systems, J. Reine Angew. Math. ,395 (1989).102-131.

- [5] P. Fife, L. Peletier: On the location of defects in stationary solution of the Ginzburg-Landau equation, Quart. Appl. Math. ,54 (1996).85-104.
- [6] M. C. Hong: Asymptotic behavior for minimizers of a Ginzburg-Landau type functional in higher dimensions associated with n-harmonic maps, Adv. in Diff. Equa., 1 (1996), 611-634.
- [7] R. M. Herve, M. Herve: Etude qualitative des solutions reelles d'une equation differentielle liee a l'equation de Ginzburg-Landau, Ann. IHP. Analyse nonLineaire, 11 (1994), 427-440.
- [8] O.Ladyzhenskaya, N.Uraltseva: *Linear and quasilinear elliptic equations*, Acad, Press, NewYork and London, 1968.
- [9] Y. T. Lei, Z. Q. Wu, H. J. Yuan: Radial minimizers of a Ginzburg-Landau type functional, Electron. J. Diff. Equs., 1999 (1999), No.30, 1-21.
- [10] P.Mironescu: On the stability of radial solution of the Ginzburg-Landau equation, J. Functional Analysis. ,130 (1995), 334-344.
- [11] M.Struwe: On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2-dimensions, Diff. and Int. Equs. ,7 (1994), 1613-1624.
- [12] P.Tolksdorff: Everywhere regularity for some quasilinear systems with a lack of ellipticity, Anna. Math. Pura. Appl. ,134 (1983), 241-266.

YUTIAN LEI Mathematics Department SuZhou University Suzhou, Jiangsu, 215006 P. R. China e-mail: lythxl@163.com