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Uniqueness for radial Ginzburg-Landau type

minimizers ∗

Yutian Lei

Abstract

We prove the uniqueness of radial minimizers of a Ginzburg-Landau
type functional. We present also an analysis of the the location of the
zeros of the radial minimizer.

1 Introduction

For n ≥ 2, let B = {x ∈ Rn; |x| < 1} and ∂B its boundary. On this domain, we
find minimizers to the Ginzburg-Landau-type functional

Eε(u,B) =
1
p

∫
B

|∇u|p +
1

4εp

∫
B

(1− |u|2)2, (p ≥ n)

on the class of functions

W = {u(x) = f(r)
x

|x|
∈W 1,p(B,Rn); f(1) = 1, r = |x|}.

Such minimizer is denoted by uε and is called a radial minimizer.
Many authors have studied the existence, uniqueness and asymptotic be-

haviour of uε as ε → 0. For p = n = 2, studies of asymptotic behaviour can
be found in [1, 11], studies of uniqueness in [7], and other related topics in
[2, 3, 5, 10]. For p = n > 2 and p > n = 2, the asymptotic behaviour was stud-
ied in [6] and [9], respectively. However, uniqueness was not mentioned there.
In this paper, we prove the following results for p ≥ n.

Theorem 1.1 Assume uεis a radial minimizer of Eε(u,B). Then for any given
η ∈ (0, 1/2) there exists a positive constant h = h(η) such that

Zε = {x ∈ B; |uε(x)| < 1− η} ⊂ B(0, hε) = {x ∈ Rn; |x| < hε}.

Theorem 1.2 The radial minimizer of Eε(u,B) on W is unique.

This article is organized as follows: In §2, we present some basic properties of
minimizers. In §3, we prove Theorem 1.1 which implies, in particular, that the
zeros of uε are contained in B(0, hε). We conclude with the proof of Theorem
1.2 in §4.
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2 Uniqueness for radial minimizers EJDE–2002/43

2 Preliminaries

For a function u(x) = f(r) x
|x| , written in polar coordinates, we have

|∇u| = (f2
r + (n− 1)r−2f2)1/2,

∫
B

|u|p = |Sn−1|
∫ 1

0

rn−1|f |p dr,∫
B

|∇u|p = |Sn−1|
∫ 1

0

rn−1(f2
r + (n− 1)r−2f2)p/2 dr.

It is easily seen that f(r) x
|x| ∈ W

1,p(B,Rn) implies f(r)r
n−1
p −1 and fr(r)r

n−1
p

are in Lp(0, 1). Conversely, if f(r) is in W 1,p
loc (0, 1], and f(r)r

n−1
p −1, fr(r)r

n−1
p

are in Lp(0, 1), then f(r) x
|x| ∈W

1,p(B,Rn). Thus if we denote

V = {f ∈W 1,p
loc (0, 1]; r

n−1
p fr ∈ Lp(0, 1), r(n−1−p)/pf ∈ Lp(0, 1), f(1) = 1},

then V = {f(r);u(x) = f(r) x
|x| ∈W}.

Proposition 2.1 The set V defined above is a subset of {f ∈ C[0, 1]; f(0) = 0}.

Proof. Let f ∈ V . If p > n, let h(r) = f(r
p−1
p−n ). Then∫ 1

0

|h′(r)|p dr = (
p− 1
p− n

)p
∫ 1

0

|f ′(r
p−1
p−n )|pr

p(n−1)
p−n dr

= (
p− 1
p− n

)p−1

∫ 1

0

sn−1|f ′(s)|p ds <∞

by noting fs(s)s(n−1)/p ∈ Lp(0, 1).
If p = n, let h(r) = f(rx) with x > 1 to be determined later. Then for any

y ∈ (1, p), ∫ 1

0

|h′(r)|ydr = xy
∫ 1

0

|f ′(rx)|yr(x−1)ydr

= xy−1

∫ 1

0

|f ′(s)|ys(x−1)(y−1)/xds,

where s = rx. Choose x, y such that (1− 1
x )(1− 1

y ) = n−1
n . Hence∫ 1

0

|h′(r)|ydr = xy−1

∫ 1

0

|f ′(s)|ysy(n−1)/nds

≤ xy−1(
∫ 1

0

|f ′(s)|nsn−1ds)y/n <∞.

Using an interpolation inequality and Young inequality, ‖h‖W 1,y((0,1),R) < ∞
which implies that h(r) ∈ C[0, 1] and hence f(r) ∈ C[0, 1].
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Suppose f(0) > 0, then f(r) ≥ s > 0 for r ∈ [0, t) with t > 0 small enough
since f ∈ C[0, 1]. We have∫ 1

0

rn−1−pfp dr ≥ sp
∫ t

0

rn−1−p dr =∞,

which contradicts r(n−1)/p−1f ∈ Lp(0, 1). Therefore f(0) = 0 and the proof is
complete.

Proposition 2.2 The functional Eε(u,B) achieves its minimum on W by a
function uε(x) = fε(r) x

|x| .

Proof. Note that W 1,p(B,Rn) is a reflexive Banach space and Eε(u,B) is
weakly lower-semicontinuous. To prove the existence of minimizers of Eε(u,B)
in W, it suffices to verify that W is a weakly closed subset of W 1,p(B,Rn).
Clearly W is a convex subset of W 1,p(B,Rn). Now we prove that W is a closed
subset of W 1,p(B,Rn). Let uk = fk(r) x

|x| ∈W and

lim
k→∞

uk = u, in W 1,p(B,Rn).

By the embedding theorem there exists a subsequence uk = fk(r) x
|x| such that

lim
k→∞

fk = f, in C(0, 1]

and u = f(r) x
|x| . Combining this with fk(1) = 1, we see that f(1) = 1. Thus

u ∈W .

Proposition 2.3 The minimizer uε is a weak radial solution of

−div(|∇u|p−2∇u) =
1
εp
u(1− |u|2), on B, (2.1)

u|∂B = x. (2.2)

Proof. Denote uε by u. For any t ∈ [0, 1)and φ = f(r) x
|x| ∈ C

∞
0 (B,Rn), we

have u + tφ ∈ W as long as t is small sufficiently. Since u is a minimizer we
obtain

dEε(u+ tφ,B)
dt

|t=0 = 0,

namely,

0 =
d

dt
|t=0

∫
B

(
1
p
|∇(u+ tφ)|p +

1
4εp

(1− |u|2)2)dx

=
∫
B

|∇u|p−2∇u∇φdx− 1
εp

∫
B

uφ(1− |u|2)dx.

By a limit process we see that the test function φ can be any member of {φ =
f(r) x

|x| ∈W
1,p(B,Rn);φ|∂B = 0}.

As in [6, Lemma 2.2], we also have the following statement.

Proposition 2.4 Let uε be a weak radial solution of (2.1)-(2.2). Then |uε| ≤ 1
on B.
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Proof. Taking φ = u − u
|u| min(1, |u|). Let B+ = {x ∈ B; |u| > 1, a.e. on B}.

Noting

∇φ = 0, a.e. on B \B+; ∇φ = ∇u(1− 1
|u|

) +
u(u∇u)
|u|3

, a.e. on B+,

we have∫
B+

|∇u|p(1− 1
|u|

) +
∫
B+

|∇u|p−2 (u∇u)2

|u|3
+

1
εp

∫
B+

|u|(|u|2 − 1)(|u| − 1) = 0.

This implies that |B+| = 0. Thus |uε| ≤ 1.

Proposition 2.5 Assume uε is a weak radial solution of (2.1)-(refe2.2). Then
there exist positive constants C1, ρ which are independent of ε, such that

‖∇uε(x)‖L(B(x,ρε/8)) ≤ C1ε
−1, if x ∈ B(0, 1− ρε), (2.3)

|uε(x)| ≥ 10
11
, if x ∈ B \B(0, 1− 2ρε). (2.4)

Proof. Let y = xε−1 in (2.1) and denote v(y) = u(x), Bε = B(0, ε−1). Then∫
Bε

|∇v|p−2∇v∇φ =
∫
Bε

v(1− |v|2)φ, φ ∈W 1,p
0 (Bε,Rn). (2.5)

This implies that v(y) is a weak solution of (2.5). By using the standard discuss
of the Holder continuity of weak solution of (2.5) on the boundary (for example
see Theorem 1.1 and Line 19-21 of Page 104 in [4]) we can see that for any
y0 ∈ ∂Bε and y ∈ B(y0, ρ0) (where ρ0 > 0 is a constant independent of ε), there
exist positive constants C = C(ρ0) and α ∈ (0, 1), both independent of ε, such
that

|v(y)− v(y0)| ≤ C(ρ0)|y − y0|α.
Choose ρ > 0 sufficiently small such that

y ∈ B(y0, 2ρ) ⊂ B(y0, ρ0), and C(ρ0)|y − y0|α ≤
1
11
, (2.6)

then
|v(y)| ≥ |v(y0)| − C(ρ0)|y − y0|α = 1− C(ρ0)|y − y0|α ≥

10
11
.

Let x = yε. Thus |uε(x)| ≥ 10/11, if x ∈ B(x0, 2ρε), where x0 ∈ ∂B. This
implies (2.4). Taking φ = vζp, ζ ∈ C∞0 (Bε, R) in (2.5), we obtain∫

Bε

|∇v|pζp ≤ p
∫
Bε

|∇v|p−1ζp−1|∇ζ||v|+
∫
Bε

|v|2(1− |v|2)ζp.

For ρ as in (2.6), setting y ∈ B(0, ε−1 − ρ), B(y, ρ/2) ⊂ Bε,

ζ =

{
1 in B(y, ρ/4),
0 in Bε \B(y, ρ/2)
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and |∇ζ| ≤ C(ρ), we have∫
B(y,ρ/2)

|∇v|pζp ≤ C(ρ)
∫
B(y,ρ/2)

|∇v|p−1ζp−1 + C(ρ).

Using Holder’s inequality, we can derive
∫
B(y,ρ/4)

|∇v|p ≤ C(ρ). Combining this
with the Tolksdroff’ theorem in [12] yields

‖∇v‖pL∞(B(y,ρ/8)) ≤ C(ρ)
∫
B(y,ρ/4)

(1 + |∇v|)p ≤ C(ρ)

which implies
‖∇u‖L∞(B(x,ερ/8)) ≤ C(ρ)ε−1.

Proposition 2.6 Let uε be a radial minimizer of Eε(u,B). Then

Eε(uε, B) ≤ Cεn−p + C, when p > n, (2.7)

Eε(uε, B) ≤ 1
n

(n− 1)n/2|Sn−1|| ln ε|+ C when p = n, (2.8)

with a constant C independent of ε ∈ (0, 1).

Proof. Denote

I(ε,R) = min
{∫

B(0,R)

[
1
p
|∇u|p +

1
εp

(1− |u|2)2];u ∈WR

}
,

where

WR =
{
u(x) = f(r)

x

|x|
∈W 1,p(B(0, R),Rn); r = |x|, f(R) = 1

}
.

Then

I(ε, 1) =Eε(uε, B)

=
1
p

∫
B

|∇uε|pdx+
1

4εp

∫
B

(1− |uε|2)2dx

=εn−p[
1
p

∫
B(0,ε−1)

|∇uε|pdy +
1
4

∫
B(0,ε−1)

(1− |uε|2)2dy]

=εn−pI(1, ε−1).

(2.9)

Let u1 be a solution of I(1, 1) and define

u2 =

{
u1, if 0 < |x| < 1;
x
|x| , if 1 ≤ |x| ≤ ε−1.
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Thus u2 ∈Wε−1 and when p > n,

I(1, ε−1) ≤1
p

∫
B(0,ε−1)

|∇u2|p +
1
4

∫
B(0,ε−1)

(1− |u2|2)2

=
1
p

∫
B

|∇u1|p +
1
4

∫
B

(1− |u1|2)2 +
1
p

∫
B(0,ε−1)\B

|∇ x

|x|
|p

=I(1, 1) +
(n− 1)p/2|Sn−1|

p

∫ ε−1

1

rn−p−1dr

=I(1, 1) +
(n− 1)p/2|Sn−1|

p(p− n)
(1− εp−n) ≤ C.

Similarly, when p = n,

I(1, ε−1) ≤ I(1, 1) +
1
n

(n− 1)n/2|Sn−1|| ln ε|+ C.

Substituting these into (2.9) yields (2.7) and (2.8).

3 Location of zeros of minimizers

Proposition 3.1 Let uε be a radial minimizer of Eε(u,B). Then there exists
a constant C independent of ε ∈ (0, 1] such that

1
εn

∫
B

(1− |uε|2)2 ≤ C. (3.1)

Proof. When p > n, (3.1) can be derived by multiplying (2.7) by εp−n. When
p = n, as in [6, eqn.(3.6)], we derive that∫

B

|∇uε|ndx ≥ (n− 1)n/2|Sn−1|| ln ε| − C,

where C is independent of ε. Combining this with (2.8) we obtain (3.1).

Proposition 3.2 Let uε be a radial minimizer of Eε(u,B). Then for any η ∈
(0, 1/2), there exist positive constants λ, µ independent of ε ∈ (0, 1) such that if

1
εn

∫
B(0,1−ρε)∩B2lε

(1− |uε|2)2 ≤ µ, (3.2)

where B2lε is the ball of radius 2lε with l ≥ λ, then

|uε(x)| ≥ 1− η, ∀x ∈ B(0, 1− ρε) ∩Blε. (3.3)
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Proof. First we observe that there exists a constant C2 > 0 which is indepen-
dent of ε such that for any x ∈ B and 0 < ρ ≤ 1,

|B(0, 1− ρε) ∩B(x, r)| ≥ C2r
n.

To prove this proposition, we choose

λ =
η

2C1
, µ =

C2

Cn1
(
η

2
)n+2, (3.4)

where C1 is the constant in (2.3). Suppose that there is a point x0 ∈ B(0, 1 −
ρε) ∩Blε such that |uε(x0)| < 1− η. Then applying (2.3)) we have

|uε(x)− uε(x0)| ≤ C1ε
−1|x− x0| ≤ C1ε

−1(λε)

= C1λ =
η

2
, ∀x ∈ B(x0, λε),

hence (1− |uε(x)|2)2 > η2

4 , ∀x ∈ B(x0, λε). Thus∫
B(x0,λε)∩B(0,1−ρε)

(1− |uε|2)2 >
η2

4
|B(0, 1− ρε) ∩B(x0, λε)|

≥ C2
η2

4
(λε)n = C2

η2

4
(
η

2C1
)nεn = µεn.

(3.5)

Since x0 ∈ Blε ∩B, and (B(x0, λε)∩B(0, 1− ρε)) ⊂ (B2lε ∩B(0, 1− ρε)), (3.5)
implies ∫

B2lε∩B(0,1−ρε)
(1− |uε|2)2 > µεn,

which contradicts (3.2) and thus (3.3) is proved.
Let uε be a radial minimizer of Eε(u,B). Given η ∈ (0, 1/2). Let λ, µ be

constants in Proposition 3.2 corresponding to η. If

1
εn

∫
B(xε,2λε)∩B(0,1−ρε)

(1− |uε|2)2 ≤ µ, (3.6)

then B(xε, λε) is called the ball of type I. Otherwise it is called the ball of type
II.

Now suppose that {B(xεi , λε), i ∈ I} is a family of balls satisfying

xεi ∈ B(0, 1− ρε), i ∈ I;
B(0, 1− ρε) ⊂ ∪i∈IB(xεi , λε);

B(xεi , λε/4) ∩B(xεj , λε/4) = ∅, i 6= j.

(3.7)

Denote Jε = {i ∈ I;B(xεi , λε) is a ball of type II}.

Proposition 3.3 There exists an upper bound for the number of balls of type
II. i.e., there exists a positive integer N such that CardJε ≤ N .
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Proof. Since (3.7) implies that every point in B can be covered by finite, say
m (independent of ε) balls, from (3.6) and the definition of balls of type II, we
have

µεnCardJε ≤
∑
i∈Jε

∫
B(xεi ,2λε)∩B(0,1−ρε)

(1− |uε|2)2

≤ m
∫
∪i∈JεB(xεi ,2λε)∩B(0,1−ρε)

(1− |uε|2)2

≤ m
∫
B

(1− |uε|2)2 ≤ mCεn

and hence for some n, CardJε ≤ mC
µ ≤ N . �

Proposition 3.3 is an important result since the number of balls of type II is
always finite as ε becomes sufficiently small.

Similar to the argument of [1, Theorem IV.1], we have

Proposition 3.4 There exist a subset J ⊂ Jε and a constant h ≥ λ such that

∪i∈JεB(xεi , λε) ⊂ ∪i∈JB(xεj , hε),

|xεi − xεj | > 8hε, i, j ∈ J, i 6= j.
(3.8)

Proof. If there are two points x1, x2 such that (3.8) is not true with h = λ,
we take h1 = 9λ and J1 = Jε \ {1}. In this case, if (3.8) holds we are done.
Otherwise we continue to choose a pair points x3, x4 which does not satisfy (3.8)
and take h2 = 9h1 and J2 = Jε \ {1, 3}. After at most N steps we may choose
λ ≤ h ≤ λ9N and conclude this proposition.

Applying Proposition 3.4, we may modify the family of balls of type II such
that the new one, denoted by {B(xεi , hε); i ∈ J}, satisfies

∪i∈JεB(xεi , λε) ⊂ ∪i∈JB(xεi , hε),
CardJ ≤ CardJε,

|xεi − xεj | > 8hε, i, j ∈ J, i 6= j.

The last condition implies that every two balls in the new family are disjoint.
Now we prove the main result of this section.

Theorem 3.5 Let uε be a radial minimizer of Eε(u,B). Then for any η ∈
(0, 1/2), there exists a constant h = h(η) independent of ε ∈ (0, 1) such that
Zε = {x ∈ B; |uε(x)| < 1 − η} ⊂ B(0, hε). In particular the zeros of uε are
contained in B(0, hε).

Proof. Suppose there exists a point x0 ∈ Zε such that x0∈B(0, hε). Then all
points on the circle S0 = {x ∈ B; |x| = |x0|} satisfy |uε(x)| < 1− η and hence
by virtue of Proposition 3.2 and (2.4), all points on S0 are contained in balls of
type II. However, since |x0| ≥ hε, S0 can not be covered by a single ball of type
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II. S0 can be covered by at least two balls of type II. However this is impossible.
�

This theorem plays the key role in proving the uniqueness of radial mini-
mizers. Furthermore, it implies that all the zeros of the radial minimizer locate
near the singularity 0 of x

|x| , which is not mentioned in [6] when p = n > 2.
Using Theorem 3.5 and (2.4), we can see that

|uε(x)| ≥ min(
10
11
, 1− η), x ∈ B(0, h(η)ε). (3.9)

4 Proof of Theorem 1.2

Fix ε ∈ (0, 1). Suppose u1(x) = f1(r) x
|x| and u2(x) = f2(r) x

|x| are both radial
minimizers of Eε(u,B) on W , then they are weak radial solutions of (2.1) (2.2).
Thus ∫

B

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2)∇φdx

=
1
εp

∫
B

[(u1 − u2)− (u1|u1|2 − u2|u2|2)]φdx.

Taking φ = u1 − u2 = (f1 − f2) x
|x| , we have∫

B

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2)∇(u1 − u2)dx

=
1
εp

∫
B

(f1 − f2)2dx− 1
εp

∫
B

(f1 − f2)2(f2
1 + f2

2 + f1f2)dx

=
1
εp

∫
B\B(0,hε)

(f1 − f2)2[1− (f2
1 + f2

2 + f1f2)]dx

+
1
εp

∫
B(0,hε)

(f1 − f2)2dx− 1
εp

∫
B(0,hε)

(f1 − f2)2(f2
1 + f2

2 + f1f2)dx.

Letting η < 1 − 1√
2

in (3.9), we have f1, f2 ≥ 1/
√

2, on B \ B(0, hε) for any
given ε ∈ (0, 1). Hence∫

B

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2)∇(u1 − u2)dx ≤ 1
εp

∫
B(0,hε)

(f1 − f2)2dx.

Applying [12, eqn.(2.11)], we can see that there exists a positive constant γ
independent of ε and h such that

γ

∫
B

|∇(u1 − u2)|2dx ≤ 1
εp

∫
B(0,hε)

(f1 − f2)2dx, (4.1)

which implies ∫
B

|∇(f1 − f2)|2dx ≤ 1
γεp

∫
B(0,hε)

(f1 − f2)2dx. (4.2)
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Denote G = B(0, hε). Applying [8, Theorem 2.1], we have ‖f‖ 2n
n−2
≤ β‖∇f‖2,

where β = 2(n− 1)/(n− 2). Taking f = f1 − f2 and applying (4.2), we obtain
f(|x|) = 0 as x ∈ ∂B and

[
∫
B

|f |
2n
n−2 dx]

n−2
n ≤ β2

∫
B

|∇f |2dx ≤ β2γ−1

∫
G

|f |2dxε−p.

Using Holder’s inequality, we derive∫
G

|f |2dx ≤ |G|1−
n−2
n [
∫
G

|f |
2n
n−2 dx]

n−2
n ≤ |B|1−

n−2
n h2ε2−p β

2

γ

∫
G

|f |2dx.

Hence for any given ε ∈ (0, 1),∫
G

|f |2dx ≤ C(β, |B|, γ, ε)h2

∫
G

|f |2dx. (4.3)

Denote F (η) =
∫
B(0,h(η)ε)

|f |2dx, then F (η) ≥ 0 and (4.3) implies that

F (η)(1− C(β, |B|, γ, ε)h2) ≤ 0. (4.4)

On the other hand, since C(β, |B|, γ, ε) is independent of η, we may take 0 <
η < 1− 1√

2
so small that h = h(η) ≤ λ9N = 9N η

2C1
(which is implied by (3.4))

satisfies
0 < 1− C(β, |B|, γ, ε)h2

for the fixed ε ∈ (0, 1), which and (4.4) imply that F (η) = 0. Namely f = 0 a.e.
on G, or

f1 = f2, a.e. on B(0, hε).

Substituting this into (4.1), we know that u1 − u2 = C a.e. on B. Noticing the
continuity of u1, u2 which is implied by Proposition 2.1, and u1 = u2 = x on
∂B, we can see at last that

u1 = u2, on B.
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