
Electronic Journal of Differential Equations, Vol. 2002(2002), No. 46, pp. 1–15.
ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu (login: ftp)

Positive solutions for a nonlocal boundary-value

problem with vector-valued response ∗

Andrzej Nowakowski & Aleksandra Orpel

Abstract

Using variational methods, we study the existence of positive solutions
for a nonlocal boundary-value problem with vector-valued response. We
develop duality and variational principles for this problem and present
a numerical version which enables the approximation of solutions and
gives a measure of a duality gap between primal and dual functional for
approximate solutions for this problem.

1 Introduction

The aim of this paper is to establish the conditions for which the differential
equation

(k(t)|x′(t)|q−2x′(t))′ + Vx(t, x(t)) = 0, a.e. in [0, T ] (1.1)

possesses a positive solution x : [0, T ] → R
n such that x(0) = 0, and satisfies

the non-local boundary condition

|x′(T )|q−2x′(T ) =
∫ T

t0

|x′(s)|q−2x′(s)dg(s), (1.2)

where |z| =
√∑n

i=1 z
2
i and the integral is understood in the Riemann-Stieltjes

sense. The general assumptions for this article are as follows:

(H) The number q is even and greater than zero, T is an arbitrary positive
number, t0 is a real number in the open interval (0, T ), g = (g1, . . . , gn) :
[0, T ] → R

n where gi increases and g(t0) = 0, V : [0, T ] × Rn → R is
Gateaux differentiable in the second variable and measurable in t, k :
[0, T ]→ R

+, and k(T ) = 1.

Of course, when k is an absolutely continuous, the solution of (1.1) belongs
to C1,+([0, T ],Rn), the space of continuously differentiable functions whose first
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2 Positive solutions for a nonlocal boundary-value problem EJDE–2002/46

derivative is absolutely continuous. Note that we do not assume that Vx is
superlinear or sublinear.

In this paper we shall apply some variational methods and consider (1.1) as
the Euler-Lagrange equation to the functional

J(x) =
∫ T

0

(−V (t, x(t)) +
k(t)
q
|x′(t)|q)dt (1.3)

defined on the space A0 of absolutely continuous functions x : [0, T ] → R
n,

x(0) = 0 with x′ in Lq([0, T ],Rn) and the norm ‖x‖A0 =
( ∫ T

0
|x′(t)|qdt

)1/q. We
shall denote by A0b the subset of A0 consisting of functions satisfying (1.2) .

This problem appears in mathematical models of physical phenomena and it
is associated with the principle of minimal action, which holds true universally
in nature. Problems like (1.1), (1.2) have been studied by many authors, mainly
in one-dimensional case (n = 1) with q = 2. This problem is discussed also in
[7], where a topological approach is presented and the methods are based on
the fixed point theorem in cones by Krasnosielski [9]. In [7], it is assumed that
g(t0+) > 0, that V has the special form Vx(t, x) = q(t)f(x) for some continuous
functions q : [0, 1] → R, f : R → R, f is nonnegative for x > 0, and V quiet at
infinity, and

sup
x∈[0,v]

f(x) ≤ θv (1.4)

for some v > 0 and θ > 0. It appears that weaker assumptions (n ≥ 1, t and
x not separated in the left-hand side of the equation, Vx(·, x) only measurable,
and Vx(t, ·) not necessarily quiet at infinity) are still sufficient to conclude the
existence of solutions for (1.1). We consider the general case when V satisfies
hypothesis (H) which are not as strong as in [7]. We are also able to omit the
condition g(t0+) > 0.

In this paper we study (1.1), (1.2) by duality methods analogous to the
methods developed for (1.1) in sublinear cases [12, 13]. Functional (1.3) is, in
general, unbounded in A0 (especially in the superlinear case), so that we must
look for critical points of (1.3) of ”minmax” type, or find subsets X and Xd on
which the action functional J or its dual JD is bounded. We shall apply the
second approach; i.e., choose the special sets over which we calculate minimum
of J and JD and then link this value with critical points of J . Of course, we have
the Morse theory and its generalization, the saddle points theorems, and the
mountain pass theorems [12, 14, 15]. However, because of the boundary condi-
tion (1.2) they cannot be applied directly to find critical points of J . Moreover,
our assumptions are not strong enough to use, for example, the Mountain Pass
Theorem: V is not sufficiently smooth, Vx and V do not have growth condi-
tions. In consequence, J is not necessary of C1class and it does not satisfy, in
general, the PS-condition. We shall develop duality, and because of this theory
we are able to omit in our proof of the existence of critical points, the defor-
mation lemmas, the Ekeland variational principle, and the PS type conditions.
Our approach also enables the numerical characterization of solutions for this



EJDE–2002/46 Andrzej Nowakowski & Aleksandra Orpel 3

problem. It seems to us that this is the first publication that applies variational
methods to problem (1.1), (1.2).

Let the positive cone in Rn be denoted by

P =
{
x = (x1, . . . , xn) ∈ Rn : xi > 0, i = 1, . . . , n

}
and let P̄ = {x ∈ Rn : xi ≥ 0, i = 1, . . . , n}. We say that x ≥ y for x, y ∈ Rn
if x − y ∈ P̄ . If b, c ∈ Rn by bc we always mean a vector [bici]i=1,...,n and by
q−1
√
b = b

1
q−1 a vector [ q−1

√
bi]i=1,...,n = [b

1
q−1
i ]i=1,...,n. We denote 1 = (1, . . . 1)

the vector in Rn.
Let us investigate the operator Ã, for x ∈ A0b, x(t) ∈ P , t ∈ [0, T ].

Ãx(t) = α
1
k(t)

∫ T

t0

1
k(r)

∫ T

r

Vx(s, x(s))dsdg(r) +
1
k(t)

∫ T

t

Vx(s, x(s))ds.

where α := [αi]i=1,...,n = [(1− ai)−1]i=1,...,n and

a :=
∫ T

t0

1
k(t)

dg(t) =

[∫ T

t0

1
k(t)

dgi(t)

]
i=1,...,n

.

For the functions that appear in this paper we assume the following:

(H1) The function k is continuous and positive, V (t, ·) is convex in P , Vx(t, ·)
is continuous and nonnegative in P , t ∈ [0, T ], |

∫ T
0
V (t, 0)dt| < ∞, and

α > 0.

(H2) There exist a function u ∈ L∞([0, T ],Rn), u(t) ∈ P , for a.e. t ∈ (0, T ),
and constants c, e ∈ P , such that for

b(t) :=
(αa+ 1)c+ e

k(t)
, v(t) =

∫ t

0

|b(s)|−
q−2
q−1u(s)ds,

z(t) =
∫ t

0

|u(s)|−
q−2
q−1 b(s)ds

we have v(t) < z(t), t ∈ (0, T ) and∫ T

t0

Vx(t, z(t))dt ≤ c, Ãv(t) ≥ u(t), t ∈ (0, T ).

We see that our hypotheses on V concern only convexity of V (t, ·) in P̄ and
that this function is rather of general type.

To construct the set X first we put

X =
{
x ∈ A0b : p(t) = k(t)|x′(t)|q−2x′(t), t ∈ [0, T ] belongs to Aq

′
,

x(t) ≥ v(t), t ∈ (0, T ) and
∫ T

t0

Vx(t, x(t))dt ≤ c
}

where Aq
′

is the set of absolutely continuous functions x : [0, T ] → R
n with x′

in Lq
′
([0, T ],Rn) and t0 is given above.
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Remark 1.1 Assumptions (H1) and (H2) imply that X 6= ∅. Indeed; each
element x ∈ A0b such that v(t) =

∫ t
0
|b(s)|−

q−2
q−1u(s)ds < x(t) for all t ∈ (0, T )

and x(t) < z(t) for all t ∈ [t0, T ] belongs to X.

We reduce the space X to the set

X = {x ∈ X : x ∈ P̄ , x′(t) ≥ 0, t ∈ [0, T ]}.

It is clear that X depends strongly on the type of nonlinearity of V . We easily
see that X is not in general a closed set in A. Assume additionally that

(H3) For e ∈ P given in (H2)∫ t0

0

Vx(t, x(t))dt ≤ e for all x ∈ X

and there exists d ∈ R such that∣∣∣ ∫ t0

0

V (t, x(t))dt
∣∣∣ ≤ d for all x ∈ X.

Let an operator A : X → P̄ be given by

Ax(t) :=
∫ t

0

Ãx(s)|Ãx(s)|−
q−2
q−1 ds.

Since Ãx(t) > 0 for all t ∈ [0, T ], so the operator A is well-defined. We easily see
that solving the boundary problem (1.1)-(1.2) is equivalent to solve the operator
equation x = Ax in A0b.

Now we give some auxiliary results

Lemma 1.2 The set X satisfies AX ⊂ X; i.e. for each x ∈ X there exists
w ∈ X such that w = Ax.

Proof. It is clear that if x ∈ X then Ax(t) ≥ 0 and

(Ax(t))′ = Ãx(t)|Ãx(t)|−
q−2
q−1 ≥ 0.

First we will prove that Ãx(t) ≤ b(t), t ∈ (0, T ] for x ∈ X. Indeed; fix x ∈ X,
then using definition of X we have for all t ∈ (0, T ]

Ãx(t) =α
1
k(t)

∫ T

t0

1
k(r)

∫ T

r

Vx(s, x(s))dsdg(r) +
1
k(t)

∫ T

t

Vx(s, x(s))ds

≤α 1
k(t)

∫ T

t0

1
k(r)

dg(r)
∫ T

t0

Vx(s, x(s))ds+
1
k(t)

∫ T

0

Vx(s, x(s))ds

≤ (αa+ 1)c+ e

k(t)
= b(t)
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and ∣∣Ãx(t)
∣∣− q−2

q−1 ≤
∣∣Ãv(t)

∣∣− q−2
q−1 ≤ |u(t)|−

q−2
q−1 .

Combining these results we obtain

Ax(t) =
∫ t

0

Ãx(s)|Ãx(s)|−
q−2
q−1 ds ≤

∫ t

0

b(s)|u(s)|−
q−2
q−1 ds = z(t).

Thus, assumptions (H1) and (H2) imply∫ T

t0

Vx(s,Ax(s))ds ≤
∫ T

t0

Vx(s, z(s))ds ≤ c.

On the other hand we have for all t ∈ (0, T )

Ax(t) =
∫ t

0

Ãx(s)|Ãx(s)|−
q−2
q−1 ds

≥
∫ t

0

|b(s)|−
q−2
q−1 Ãx(s)ds ≥

∫ t

0

|b(s)|−
q−2
q−1 Ãv(s)ds

≥
∫ t

0

|b(s)|−
q−2
q−1u(s)ds = v(t).

Summarizing: Ax ∈ X. As the dual set to X we shall consider the set

Xd =
{
p ∈ Aq

′
: there exists x ∈ X such that

p(t) = k(t)|x′(t)|q−2x′(t), t ∈ [0, T ]
}
.

Remark 1.3 From the definition of A and X, we derive that for each x ∈ X
there exists p ∈ Xd such that p′(·) = −Vx(·, x(·)) and therefore∫ T

0

〈−p′(t), x(t)〉dt−
∫ T

0

V ∗(t,−p′(t))dt =
∫ T

0

V (t, x(t))dt.

Indeed; fixing x ∈ X, Lemma 1.2 leads to the existence of x̃ ∈ X such that
x̃ = Ax. So that we have

|x̃′(t)|q−2x̃′(t) =[|Ãx(t)||Ãx(t)|−
q−2
q−1 ]q−2Ãx(t)|Ãx(t)|−

q−2
q−1

=[|Ãx(t)|
1
q−1 ]q−2Ãx(t)|Ãx(t)|−

q−2
q−1 = Ãx(t).

Set p(t) = k(t)|x̃′(t)|q−2x̃′(t), t ∈ [0, T ]. Since x̃ ∈ X , p ∈ Xd we get what
follows

(p(t))′ =(k(t)|x̃′(t)|q−2x̃′(t))′

=(k(t)Ãx(t))′

=
(
α

∫ T

t0

1
k(r)

∫ T

r

Vx(s, x(s))dsdg(r) +
∫ T

t

Vx(s, x(s))ds
)′
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=− Vx(t, x(t)).

Taking into account the properties of the subdifferential, we can infer that the
required relation is satisfied.

Now we study the action functional

J(x) =
∫ T

0

(−V (t, x(t)) +
1
q
k(t)|x′(t)|q)dt− 〈x(T ), |x′(T )|q−2x′(T )〉

on the set X. To show that x̄ ∈ X realizing “min” is a critical point of J we
develop a duality theory between J and dual to it JD.

2 Duality results

In this section we shall develop the duality, which describes the relationship
between the critical value of J and the infimum of the dual functional JD :
Xd → R,

JD(p) = −
∫ T

0

1
q′

[k(t)]1−q
′
|p(t)|q

′
+
∫ T

0

V ∗(t,−p′(t))dt, (2.1)

where q′ := q/(q − 1).
Now we need a kind of perturbation of J and the convexity of a function

considered on a whole space. Therefore, for each x ∈ X the perturbation
Jx : Lq([0, T ],Rn)× Rn → R for the functional J is defined as

Jx(y, a) =
∫ T

0

(V̆ (t, x(t) + y(t))− k(t)
q
|x′(t)|q)dt+ 〈x(T )− a, |x′(T )|q−2x′(T )〉

=
∫ T

0

(V̆ (t, x(t) + y(t))− k(t)
q
|x′(t)|q)dt

+ 〈x(T ), |x′(T )|q−2x′(T )〉 − 〈a, |x′(T )|q−2x′(T )〉,

with

V̆ (t, x) =

{
V (t, x) if x ∈ P̄ , t ∈ [0, T ]
∞ if x /∈ P̄ , t ∈ [0, T ].

We use this notation only for the purpose of duality and we will not change a
notation for the functional J containing V or V̆ . It is associated with the fact
that our all investigation reduce to the set X on which V̆ (t, x) = V (t, x) for all
t ∈ [0, T ]. Let J#

x : Xd → R, where x ∈ X, be defined as a type of conjugate of
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Jx:

J#
x (p) = sup

y∈Lq([0,T ],Rn),a∈Rn

{∫ T

0

〈y(t), p′(t)〉dt+ 〈p(T ), a〉 − Jx(y, a)
}

= sup
y∈Lq([0,T ],Rn)

{∫ T

0

〈y(t), p′(t)〉dt−
∫ T

0

V̆ (t, x(t) + y(t))dt
}

+ sup
a∈Rn

{
〈a, p(T )〉+ 〈a, |x′(T )|q−2x′(T )〉

}
+
∫ T

0

k(t)
q
|x′(t)|qdt− 〈x(T ), |x′(T )|q−2x′(T )〉.

(2.2)

Put l : Rn → {0,+∞}, l(b) =

{
0, for b = 0
+∞, for b 6= 0.

We see at once that

J#
x (p) =−

∫ T

0

〈x(t), p′(t)〉dt+
1
q

∫ T

0

k(t)|x′(t)|qdt+
∫ T

0

V ∗(t, p′(t))dt

− 〈x(T ), |x′(T )|q−2x′(T )〉+ l(|x′(T )|q−2x′(T ) + p(T ))

=
∫ T

0

〈x′(t), p(t)〉dt− 〈x(T ), p(T )〉

+
1
q

∫ T

0

k(t)|x′(t)|qdt+
∫ T

0

V ∗(t, p′(t))dt

− 〈x(T ), |x′(T )|q−2x′(T )〉+ l(|x′(T )|q−2x′(T ) + p(T )).

(2.3)

Theorem 2.1 For functionals Jand JD, we have the duality relation

inf
x∈X

J(x) ≤ inf
p∈Xd

JD(p).

Proof. Our proof starts with the observation that for all p ∈ Xd

inf
x∈X

J#
x (−p) = JD(p) (2.4)

and for all x ∈ X
inf
p∈Xd

J#
x (−p) ≥ J(x). (2.5)

Because X is not a linear space we need some trick to avoid calculation of the
conjugate with respect to a nonlinear space. To this effect we use the special
structure of the sets Xd and X. Indeed; fix p ∈ Xd. The definition of Xd

implies that there exists xp ∈ X satisfying the equality

p(t) = k(t)|x′p(t)|q−2x′p(t) for all t ∈ [0, T ]

and, in consequence∫ T

0

〈x′p(t), p(t)〉dt−
∫ T

0

k(t)
q
|x′p(t)|qdt =

∫ T

0

1
q′

[k(t)]1−q
′
|p(t)|q

′
dt.
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An easy calculation yields∫ T

0

〈x′p(t), p(t)〉dt−
∫ T

0

k(t)
q
|x′p(t)|qdt

≤ sup
x∈{z∈X,p(T )=|z′(T )|q−2z′(T )}

{∫ T

0

〈x′(t), p(t)〉dt−
∫ T

0

k(t)
q
|x(t)′|qdt

}
≤ sup
x∈X

{∫ T

0

〈x′(t), p(t)〉dt−
∫ T

0

k(t)
q
|x(t)′|qdt

}
≤ sup
x′∈Lq([0,T ],Rn)

{∫ T

0

〈x′(t), p(t)〉dt−
∫ T

0

k(t)
q
|x′(t)|qdt

}
=
∫ T

0

1
q′

[k(t)]1−q
′
|p(t)|q

′
dt .

Actually all inequalities above are equalities. Finally for p ∈ Xd, we obtain

− inf
x∈X

J#
x (−p) = sup

x∈X
(−J#

x (−p))

= sup
x∈X

{∫ T

0

〈x′(t), p(t)〉dt− 1
q

∫ T

0

k(t)|x′(t)|qdt

−
∫ T

0

V ∗(t,−p′(t))dt− 〈x(T ), p(T )〉+ 〈x(T ), |x′(T )|q−2x′(T )〉

− l(|x′(T )|q−2x′(T )− p(T ))
}

=−
∫ T

0

V ∗(t,−p′(t))dt+
∫ T

0

1
q′

[k(t)]1−q
′
|p(t)|q

′
dt = −JD(p),

which proves our claim. To show the other assertion, fix x ∈ X. Remark 1.3
leads to the existence of p̄ ∈ Xd such that∫ T

0

〈−p̄′(t), x(t)〉dt−
∫ T

0

V ∗(t,−p̄′(t))dt =
∫ T

0

V̆ (t, x(t))dt.

Moreover,∫ T

0

〈−p̄′(t), x(t)〉dt−
∫ T

0

V ∗(t,−p̄′(t))dt

≤ sup
p∈Xd

{
∫ T

0

〈−p′(t), x(t)〉dt−
∫ T

0

V ∗(t,−p′(t))dt}

≤ sup
p′∈Lq′ ([0,T ],Rn)

{
∫ T

0

〈−p′(t), x(t)〉dt−
∫ T

0

V ∗(t,−p′(t))dt}

=
∫ T

0

V̆ (t, x(t))dt.
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Combining both results we infer

sup
p∈Xd

(−J#
x (−p)) = sup

p∈Xd

{∫ T

0

〈x(t),−p′(t)〉dt−
∫ T

0

V ∗(t,−p′(t))dt

− l(|x′(T )|q−2x′(T )− p(T ))
}

+ 〈x(T ), |x′(T )|q−2x′(T )〉 − 1
q

∫ T

0

k(t)|x′(t)|qdt

≤ sup
p∈Xd

{
− l(|x′(T )|q−2x′(T )− p(T ))

}
+ sup
p∈Xd

{∫ T

0

〈x(t),−p′(t)〉dt−
∫ T

0

V ∗(t,−p′(t))dt
}

+ 〈x(T ), |x′(T )|q−2x′(T )〉 − 1
q

∫ T

0

k(t)|x′(t)|qdt

=−
∫ T

0

(−V̆ (t, x(t)) +
k(t)
q
|x′(t)|q)dt+ 〈x(T ), |x′(T )|q−2x′(T )〉

=− J(x);

so that infp∈Xd J#
x (−p) ≥ J(x). Combining (2.4) and (2.5) we obtain the chain

of relations

inf
x∈X

J(x) ≤ inf
x∈X

inf
p∈Xd

J#
x (−p) = inf

p∈Xd
inf
x∈X

J#
x (−p) = inf

p∈Xd
JD(p).

Denote by ∂Jx(y) the subdifferential of Jx. Calculating ∂Jx at 0 we obtain

∂Jx(0) =
{
p′ ∈ Lq

′
([0, T ],Rn) :

∫ T

0

V ∗(t, p′(t))dt

+
∫ T

0

V̆ (t, x(t))dt =
∫ T

0

〈p′(t), x(t)〉dt
} (2.6)

Our task is now to prove a variational principle for “min” arguments.

Theorem 2.2 Let x̄ ∈ X be a minimizer of J : X → R, J(x̄) = infx∈X J(x).
Then there exists p̄ ∈ Xd with −p̄′ ∈ ∂Jx̄(0), such that p̄ satisfies

JD(p̄) = inf
p∈Xd

JD(p).

Furthermore,

Jx(0) + J#
x̄ (−p̄) = 0 (2.7)

JD(p̄)− J#
x̄ (−p̄) = 0. (2.8)
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Proof. From Theorem 2.1, J(x̄) ≤ infp∈Xd JD(p), so to prove the first asser-
tion we need to show only the existence of p̄ ∈ Xd such that J(x̄) ≥ JD(p̄). To
this effect we use Remark 1.3 which implies the existence of p̄ ∈ Xd such that

p̄′(t) = −Vx(t, x(t)) a.e. on [0, T ]

and further∫ T

0

〈−p̄′(t), x(t)〉dt−
∫ T

0

V ∗(t,−p̄′(t))dt =
∫ T

0

V̆ (t, x(t))dt. (2.9)

Combining (2.9) and (2.6) we get the inclusion −p̄′ ∈ ∂Jx̄(0). On the other
hand an easy computation gives the equality J∗x̄(−p̄′,−p(T )) = J#

x̄ (−p̄) (where
J∗x̄(−p̄′,−p(T )) denotes the Fenchel transform of Jx̄ at (−p̄′,−p(T )) ). Indeed;
from the definitions of J∗x̄ and of J#

x̄ we have

J∗x̄(−p̄′,−p(T ))

= sup
y∈Lq([0,T ],Rn),a∈Rn

{∫ T

0

〈y(t),−p′(t)〉dt+ 〈a,−p(T )〉 − Jx̄(y, a)
}

= sup
y∈Lq([0,T ],Rn)

{∫ T

0

〈y(t),−p′(t)〉dt−
∫ T

0

V̆ (t, x̄(t) + y(t))dt
}

+ sup
a∈Rn

{
〈a,−p(T )〉+ 〈a, |x̄′(T )|q−2x̄′(T )〉

}
+
∫ T

0

k(t)
q
|x̄′(t)|qdt− 〈x̄(T ), |x̄′(T )|q−2x̄′(T )〉

=−
∫ T

0

〈x̄(t),−p′(t)〉dt+
1
q

∫ T

0

k(t)|x̄′(t)|qdt

+
∫ T

0

V ∗(t,−p′(t))dt− 〈x̄(T ), |x̄′(T )|q−2x̄′(T )〉+ l(|x̄′(T )|q−2x̄′(T )− p(T ))

=J#
x̄ (−p).

Therefore, we obtain (2.7). Finally

J(x̄) = J#
x̄ (−p̄) ≥ inf

x∈X
J#
x (−p̄) = JD(p̄),

where the last equality is due to (2.4). Hence J(x̄) ≥ JD(p̄). Now Theorem 2.1
leads to J(x̄) = JD(p̄) = infp∈Xd JD(p). (2.8) follows from (2.7) and the chain
of equalities Jx̄(0) = −J(x̄) = −JD(p).

Corollary 2.3 Let x̄ ∈ X be such that J(x̄) = infx∈X J(x). Then there exists
p̄ ∈ Xd such that the pair (x̄, p̄) satisfies the relations

JD(p̄) = inf
p∈Xd

JD(p) = inf
x∈X

J(x) = J(x̄) (2.10)

and
−(k(t)|x̄′(t)|q−2x̄′(t))′ = Vx(t, x̄(t)), (2.11)
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Proof. From Theorems 2.1 and 2.2, we obtain immediately (2.10). To show
(2.11) we use (2.7) and (2.8) obtaining the two equalities:∫ T

0

V (t, x̄(t))dt+
∫ T

0

V ∗(t,−p̄′(t))dt−
∫ T

0

〈x̄(t),−p̄′(t)〉dt = 0,∫ T

0

1
q′

[k(t)]1−q
′
|p̄(t)|q

′
dt+

∫ T

0

k(t)
q
|x̄′(t)|qdt−

∫ T

0

〈x̄′(t), p̄(t)〉dt = 0

and further

−p̄′(t) = Vx(t, x̄(t)) and p̄(t) = k(t)|x̄′(t)|q−2x̄′(t)

which gives (2.11).

3 Variational principles and a duality gap for
minimizing sequences

In this section we prove that a statement analogous to Theorem 2.2 is true for
a minimizing sequence of J . It is worth noting that as a consequence of our
duality we obtain for the first time in the superlinear case a measure of a duality
gap between primal and dual functional for approximate solutions to (1.1) (for
the sublinear case see [13]).

Theorem 3.1 Let {xj}, xj ∈ X, j = 1, 2, . . . , be a minimizing sequence for J .
Then there exist pj ∈ Xd with −p′j ∈ ∂Jxj (0) such that {pj} is a minimizing
sequence for JD i.e.,

inf
x∈X

J(x) = inf
j∈N

J(xj) = inf
j∈N

JD(pj) = inf
p∈Xd

JD(p). (3.1)

Furthermore,
Jxj (0) + J#

xj (−pj) = 0,

and for all ε > 0 there exists j0 ∈ N such that for all j ≥ j0,

JD(pj)− J#
xj (−pj) ≤ ε, (3.2)

0 ≤ J(xj)− JD(pj) ≤ ε. (3.3)

Proof. We first show the boundedness of J on X. By the assumptions made
on V and the definition of X we get for all x ∈ X, 0 ≤

∫ T
0
Vx(r, x(r))dr ≤ c+ e

and, in consequence,

‖x‖
∫ T

0

Vx(r, x(r))dr ≤ ‖x‖(c+ e),

where ‖x‖ = max{|x(t)| : t ∈ [0, T ]}. Therefore,∫ T

0

Vx(r, x(r))x(r)dr ≤ ‖x‖(c+ e).
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Hence, by the property of the subdifferential∫ T

0

V (r, 0)dr −
∫ T

0

V (r, x(r))dr ≥
∫ T

0

Vx(r, x(r))[0− x(r)]dr ≥ −‖x‖(c+ e)

and further

J(x) ≥
∫ T

0

k(t)
q
|x′(t)|qdt−

∫ T

0

V (t, 0)dt

− ‖x‖(c+ e)− 〈x(T ), |x′(T )|q−2x′(T )〉

≥
∫ T

0

k(t)
q
|x′(t)|qdt−

∫ T

0

V (t, 0)dt

− T‖x′‖Lq([0,T ],Rn)(c+ e)− |x(T )||x′(T )|q−1.

(3.4)

It is clear that the definition of J and (3.4) give the estimate

∞ > inf
j∈N

J(xj) = a > −∞.

Fix ε > 0. From the above there exists j0 such that J(xj)−a < ε, for all j ≥ j0.
We can now proceed analogously to the proof of Theorem 2.2. First we observe
that for each j ∈ N there exists pj ∈ Xd such that p′j(t) = −Vx(t, xj(t)) a.e. on
[0, T ]. This implies

−p′j ∈ ∂Jxj (0) for all j ∈ N,

which gives Jxj (0) + J#
xj (−pj) = 0 for all j ∈ N. As in the proof of Theorem

2.2, taking into account (2.4), this assertion yields

J(xj) = J#
xj (−pj) ≥ inf

x∈X
J#
x (−pj) = JD(pj).

Thus, by Theorem 2.1, we deduce that (3.1) holds. Then (3.2) and (3.3) follow
from (3.1) and two facts:

JD(pj) + ε ≥ J(xj) for j ≥ j0,
−J(xj) = Jxj (0) = −J#

xj (−pj) for each j ∈ N.

Theorem 3.1 gives the below corollary

Corollary 3.2 Let {xj}, xj ∈ X, j = 1, 2, . . . , be a minimizing sequence for
J . If −p′j(t) = Vx(t, xj(t)), then

pj(t) = pj(T )−
∫ T

t

p′j(s)ds, pj(T ) = |x′j(T )|q−2x′j(T )

which belongs to Xd and {pj} is a minimizing sequence for JD; i.e.,

inf
x∈X

J(x) = inf
j∈N

J(xj) = inf
j∈N

JD(pj) = inf
p∈Xd

JD(p).

Furthermore for a given ε > 0 and sufficiently large j,

JD(pj)− J#
xj (−pj) ≤ ε, 0 ≤ J(xj)− JD(pj) ≤ ε.
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4 The existence result

In this section we prove the existence of a minimizer of x̄ ∈ X of J on X;
i.e., J(x̄) = minx∈X J(x) being a solution of (1.1) with the non-local boundary
condition (1.2).

Theorem 4.1 Under hypotheses (H) and (H1)-(H3) there exists x̄ ∈ X such
that J(x̄) = minx∈X J(x) and x̄ satisfies (1.1)-(1.2).

Proof. Let Sz = {x ∈ X, J(x) ≤ z}, where z ∈ R. It follows from (3.4),
the assumptions made on V , and the definition of X that Sz is nonempty for
sufficiently large z and bounded with respect to the norm ‖x′‖Lq([0,T ],Rn). This
statement implies that Sz, z ∈ R, are relatively weakly compact in A0b. It
is a well known fact that the functional J is weakly lower semicontinuous in
A0 and thus also in X. Therefore, there exists a sequence {xn}, xn ∈ X,
such that xn ⇀ x̄ weakly in A0b with x̄ ∈ A0b (we use the fact that {xn}
is uniformly convergent to x̄) and lim infn→∞ J(xn) ≥ J(x̄). Moreover, the
uniform convergence of {xn} to x̄, implies that x̄ ∈ X.

Our task is now to show that x̄ ∈ X. For this purpose, we recall from
Corollary 3.2 that for

p′n(t) = −Vx(t, xn(t)), t ∈ [0, T ] (4.1)

pn(t) = pn(T ) −
∫ T
t
p′n(s)ds, where pn(T ) = |x′n(T )|q−2x′n(T ), belongs to Xd.

Then {pn} is a minimizing sequence for JD. We easily check that {pn(T )} is a
bounded sequence and therefore we may assume (up to a subsequence) that it
is convergent. From (4.1) we infer that {p′n} is a bounded sequence in L1 norm
and that it is pointwise convergent to

p̄′(t) = −Vx(t, x̄(t)). (4.2)

Thus {pn} is uniformly convergent to p̄ where p̄(t) = p̄(T )−
∫ T
t
p̄′(s)ds. By

Corollary 3.1 we also have that for εn → 0 (n→∞)

0 ≤
∫ T

0

(
1
q′

[k(t)]1−q
′
|pn(t)|q

′
+
k(t)
q
|x′n(t)|q)dt−

∫ T

0

〈x′n(t), pn(t)〉dt ≤ εn

where 1/q + 1/q′ = 1, and so, taking the limit

0 =
∫ T

0

1
q′

[k(t)]1−q
′
|p̄(t)|q

′
dt+ lim

n→∞

∫ T

0

k(t)
q
|x′n(t)|qdt−

∫ T

0

〈x̄′(t), p̄(t)〉dt.

Therefore, in view of the property of Fenchel inequality,

0 =
∫ T

0

1
q′

[k(t)]1−q
′
|p̄(t)|q

′
dt+

∫ T

0

k(t)
q
|x̄′(t)|qdt−

∫ T

0

〈x̄′(t), p̄(t)〉dt

and further
p̄(t) = k(t)|x̄′(t)|q−2x̄′(t). (4.3)

Thus x̄ ∈ X. Substituting (4.3) into (4.2) we can assert that the minimizer
x̄ ∈ X is the solution of problem (1.1)-(1.2).
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