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Nonlocal Cauchy problems for first-order
multivalued differential equations *

Abdelkader Boucherif

Abstract

We prove the existence of solutions for a nonlocal Cauchy problem for
a first-order multivalued differential equation. Our approach is based on
the topological transversality theory for set-valued maps.

1 Introduction

In this paper, we investigate the existence of solutions for the nonlocal Cauchy
problem
2'(t) € F(t,z(t)) te (0,T)]

:E(O) + iak:r(tk) =0 (11)
k=1

Here F : J xR — 2R is a set-valued map, J = [0,T],0 < t; <ty < -+ < t,, <1,
and ag # 0 for all kK =1,2,...,m. Nonlocal Cauchy problems for ordinary dif-
ferential equations (single-valued F') have been investigated by several authors,
both for the scalar case and the abstract case (see for instance [3, 7] and the
references therein). Also, classical initial value problems for multivalued differ-
ential equations have been considered by many authors (see [5, 1, 6] and the
references therein). The importance of nonlocal conditions in many applica-
tions is discussed in [3, 4] . Also, reference [8] contains examples of problems
with nonlocal conditions and references to other works dealing with nonlocal
problems.

2 Preliminaries

In this section we introduce notations, definitions and results that will be used
in the remainder of this paper.
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Function spaces

Let J be a compact interval in R. C(J) is the Banach space of continuous
real-valued functions defined on J, with the norm ||z||p = sup{|z(¢)|; ¢t € J}
for x € C(J). C*(J) is the Banach space of k-times continuously differentiable
functions. LP(J) is the set of measurable functions 2 such that [ [z(t)|Pdt <

+00. Define [|z||z» = ([ |x(t)|Pdt)!/P. The Sobolev spaces W*?(.J) are defined
as follows:

Whe(J) = {x € LP(J);32" € LP(J) such that /ngb' = —/Jx'gb
V¢ € C'(J) with compact support}
or equivalently,
WhP(J) = {x: J — R;x absolutely continuous and 2’ € L?(J), 1 < p < oo} .
Then we define
WhP(J) = {z e WFLP(J); 2/ e WEEP(D)} k> 2.

The notation H'(J) is used for W12(.J). Let
HYJ) :={ue H'(J Zakutk =0}.

Note that the embeddings j : WkP(J) — C*=1(J), p > 1, are completely
continuous for J compact [2].

Set-valued Maps

Let X and Y be Banach spaces. A set-valued map G : X — 2V is said to be
compact if G(X) = U{G(x);x € X} is compact. G has convex (closed, compact)
values if G(x) is convex (closed, compact) for every x € X. G is bounded on
bounded subsets of X if G(B) is bounded in Y for every bounded subsets B of
X. A set-valued map G is upper semicontinuous at zg € X if for every open set
O containing Gz, there exists a neighborhood M of zy such that G(M) C O.
G is upper semicontinuous on X if it is upper semicontinuous at every point
of X. If G is nonempty and compact-valued then G is upper semicontinuous
if and only if G has a closed graph. The set of all bounded closed convex and
nonempty subsets of X is denoted by bee(X). A set-valued map G : J — bee(X)
is measurable if for each z € X, the function ¢ — dist(z, G(t)) is measurable on
J. If X CY, G has a fixed point if there exists x € X such that z € Gz. Also,

|G ()| = sup{|yl; y € G(z)}.
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Definition A multivalued map F : J x R — 2R is said to be L!-Carathéodory
if

(i) t— F(t,y) is measurable for each y € R;
(ii) y — F(t,y) is upper semicontinuous for almost all ¢t € J;
(iii) For each o > 0, there exists h, € L'(J,R;) such that
I1E @ y)ll = sup{|v] : v € F(t,y)} < ho(t)
for all |y| < o and for almost all ¢ € J.
The set of selectors of F' that belong to L' is denoted by
S};(_ﬁy(.)) ={ve L'(J,):v(t) € F(t,y(t)) for ae. t € J}

By a solution of (1.1) we mean an absolutely continuous function x on J, such

that =’ € L! and
()= f(t) ae. te(0,7T]

- 2.1
x(0) + Zakx(tk) =0 2.1)
k=1
where f € S}?(‘ 2()"
Note that for an L'-Carathéodory multifunction F : J x R — 2F the set
Sll,(. 2(.)) s not empty (see [9]). For more details on set-valued maps we refer to

[5].

Topological Transversality Theory for Set-valued Maps

Let X be a Banach space, C' a convex subset of X and U an open subset of
C. Kay(U,2%) shall denote the set of all set-valued maps G : U — 2 which
are compact, upper semicontinuous with closed convex values and have no fixed
points on OU (i.e., u ¢ Gu for all u € 9U). A compact homotopy is a set-valued
map H : [0,1] x U — 2° which is compact, upper semicontinuous with closed
convex values. If u ¢ H(\,u) for every A € [0,1],u € U, H is said to be fixed
point free on OU. Two set-valued maps F, G € Ky (U,2¢) are called homotopic
in Koy (U,2°) if there exists a compact homotopy H : [0,1] x U — 2¢ which
is fixed point free on OU and such that H(0,-) = F and H(1,-) = G. G €
Koy (U,2°) is called essential if every F € Kpp (U, 2¢) such that Gloy = Flav,
has a fixed point. Otherwise G is called inessential. For more details we refer
the reader to [6].

Theorem 2.1 (Topological transversality theorem) Let F,G be two ho-
motopic set-valued maps in Koy (U,2°). Then F is essential if and only if G
is essential.

Theorem 2.2 Let G : U — 2° be the constant set-valued map G(u) = ug.
Then, if ug € U, G is essential
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Theorem 2.3 (Nonlinear Alternative) Let U be an open subset of a convex
set O, with 0 € U. Let H : [0,1] x U — 2% be a compact homotopy such that
Hy = 0. Then, either

(i) H(1,-) has a fived point in U, or

(i) there exists uw € OU and X € (0,1) such that uw € H(\, u).

3 Main results

To prove our main results, we assume the following:

(HO) ai #0 for each k =1,2,...,m and > ;- a + 1 #0.
(H1) F:J xR — bee(R), (t,x) — F(t,x) is

(i) measurable in ¢, for each z € R

(ii) upper semicontinuous with respect to z € for a.e. t € J

(H2) |F(t,2)| < ¥(|z|) for a.e. t € J, all z € R, where ¢ : [0, +00) — (0, +00)
is continuous nondecreasing and such that limsup,_, @ =0.

Our first result reads as follows.

Theorem 3.1 If the assumptions (HO), (H1), and (H2) are satisfied, then the
initial-value problem (1.1) has at least one solution.

Proof This proof will be given in several steps, and uses some ideas from [6].
Step 1. Consider the set-valued operator ® : C'(J) — L?(J) defined as

(®2)(t) = F(t,2(t)).

Note that ® is well defined, upper semicontinuous, with convex values and sends
bounded subsets of C'(J) into bounded subsets of L?(J). In fact, we have

Oz :={u:J — R measurable; u(t) € F(t,z(t)) a.e. t € J}.
Let z € C(J). If u € &z then
lu(@®)] < »([2@)]) < ¢(lz]lo)-

Hence |Jullpz < Cy := ¥(||z|lo). This shows that ® is well defined. It is clear
that ® is convex valued.

Now, let B be a bounded subset of C'(J). Then, there exists K > 0 such that
luljo < K for u € B. So, for w € ®u we have |w| 2 < Cy, where C; = ¢(K).
Also, we can argue as in [5, p. 16] to show that ® is upper semicontinuous.



EJDE-2002/47 Abdelkader Boucherif 5

Step 2. Let z be a possible solution of (1.1). Then there exists a positive
constant R*, not depending on x, such that

|z(t)] < R* foralltin J.
It follows from the definition of solutions of (1.1) that

Z'(t) = f(t) ae. te(0,T]

= 3.1
2(0)+ 3 (i) = 0 -1
k=1
where f € S},(_@(_)). Simple computations give
m . m th +
x(t) = (1 + Zak) (— Zak/ f(s)ds) + [ f(s)ds (3.2)
k=1 k=1 0

Hence

)] < |1+ S a) S ol / " 1F(s)lds) + / £ (s)lds

k=1 k=1

Assumption (H2) yields

z(8)] < (1 + > ) (S |a| tkzb(lw(S)l)dS + tw(lfﬂ(S)l)ds
0+ 3 ) (o [ )+ |

Let
Ry = max {|z(¢t)|;t € J}.
Then . .
Ro < |(1+ Zak)71|(z |ar| trip(Ro)) + T ¢(Ro)
k=1 k=1
or

Ry < {{|(1 + Zak)ilf > lak| t} +T}1/)(R0)
k=1 k=1
The above inequality implies

m B m wR
1<(T+‘(1+kz_:lak) 1|k§_:l|ak|tk> (fi()O)

Now, the condition on ¢ in (H2) shows that there exists R* > 0 such that for
all R > R*,

(T+]0+ iak)ﬂ i \akuk)@ <1
k=1

k=1
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Comparing these last two inequalities, we see that Ry < R*. Consequently, we
obtain |z(t)] < R* for all t € J.
Step 3. For 0 < A < 1 consider the one-parameter family of problems

2'(t) € ANF(t,z(t)) teJ,

2(0) + i apz(ty) = 0. (3.3)
k=1

It follows from Step 2 that if z is a solution of (3.3) for some A € [0, 1], then
lx(t)| < R* forallteJ
and R* does not depend on \. Define @, : C(J) — L?(J) as
(Drz)(t) = AF(t, z(t)).

Step 1 shows that ®, is upper semicontinuous, has convex values and sends
bounded subsets of C(J) into bounded subsets of L?(J). Let j : H}(J) — C(J)
be the completely continuous embedding. The operator L : H}(J) — L*(J),
defined by (Lx)(t) = 2/(t) has a bounded inverse (in fact this follows from the
solution of (3.1) which is given by (3.2)), which we denote by L=1. Let Bg«y1 :=
{z € C(J);||z]lo < R* + 1}. Define a set-valued map H : [0,1] X Br+41 — C(J)
by
H(\xz)=(joL ' o®y)(z).

We can easily show that the fixed points of H(J,-) are solutions of (3.3). More-
over, H is a compact homotopy between H(0,-) = 0 and H(1,-). In fact, H is
compact since @, is bounded on bounded subsets and j is completely continu-
ous. Also, H is upper semicontinuous with closed convex values. Since solutions
of (1), satisfy [|z]lo < R* < R* + 1 we see that H(],-) has no fixed points on
3BR*+1.

Now, H(0,-) is essential by Theorem 2. Hence H; is essential. This implies
that jo L~ o® has a fixed point. Therefore problem (1.1) has a solution . This
completes the proof of Theorem 3.1. 0

Our next result is based on an application of the nonlinear alternative. We
shall replace condition (H2) by

(H2’) |F(t,2)] < p(t)¥(|z]) for a.e. t € J, all x € R, where p € LY(J,R,),
¥ : [0, +00) — (0,400) is continuous nondecreasing and such that

4
sup >1

seo,00) [T+ 2250y ar) M 3260y lanl } + T Ipll 19 (9)

Now, we state our second result.

Theorem 3.2 If assumptions (HO0), (H1), and (H2’) are satisfied, then the
initial value problem (1.1) has at least one solution.
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Proof This proof is similar to the proof of Theorem 3.1. Let My > 0 be
defined by

Mo >1
{0+ Sy k)~ Sy faw] fy* p(s)ds} + [Ipll i Je(Mo)

Let U := {z € C(J);||z|]lo < Mp}. Then consider the compact homotopy (see
Step 3 above) H : [0,1] x U — C(J) defined by

H(\z)=(joL™ " o®y)(x).

Suppose that alternative (ii) in Theorem 2.3 holds. This means that there exist
u € U and X € (0,1) such that v € H(A, u), or equivalently

u'(t) € AF(t,u(t)) te€J,
0) + > apu(ty) =0
k=1

Now, as in Step2 above, assumption (H2’) yields

O <1+ a |ax| s)|)ds (s)¥(lu(s))ds
03 (e [ )+ [

Since 1) is increasing,

u(t)] < |(1+;ak ZlakI/ ¢(llullo) )+/0 p(s)¢(llullo)ds

Since for u € OU we have ||ul|p = My this last inequality implies that

My < }(1 + Zak Z |ak|/ (Mo ds) /O p(s)(My)ds

k=1

which, in turn gives

Vo < ({1004 ) D loul [ ptonas} + [ ptsias]via

Hence,

o= {10+ e I ol [ ptodas) + ol pono

This, clearly, contradicts the definition of My. Therefore, condition (ii) of The-
orem 2.3 does not hold. Consequently, H(1,.) has a fixed point, which is a
solution of problem (1.1).



Nonlocal Cauchy problems EJDE-2002/47

Remark For nonlocal initial values of the form z(0) + >"7" | axz(ty) = o,

where z is a given nonzero real number, we let y(t) = z(t) —xo(1+ Y jq ar) .

1

Then y is a solution to the problem

m

y'(t) € F(t,y(t) +zo(1 + Zak)_l)
k=1

y(0) + Z apy(ty) =0
k=1
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