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Nonlocal Cauchy problems for first-order

multivalued differential equations ∗

Abdelkader Boucherif

Abstract

We prove the existence of solutions for a nonlocal Cauchy problem for
a first-order multivalued differential equation. Our approach is based on
the topological transversality theory for set-valued maps.

1 Introduction

In this paper, we investigate the existence of solutions for the nonlocal Cauchy
problem

x′(t) ∈ F (t, x(t)) t ∈ (0, T ]

x(0) +
m∑
k=1

akx(tk) = 0
(1.1)

Here F : J×R→ 2R is a set-valued map, J = [0, T ], 0 < t1 < t2 < · · · < tm < 1,
and ak 6= 0 for all k = 1, 2, . . . ,m. Nonlocal Cauchy problems for ordinary dif-
ferential equations (single-valued F ) have been investigated by several authors,
both for the scalar case and the abstract case (see for instance [3, 7] and the
references therein). Also, classical initial value problems for multivalued differ-
ential equations have been considered by many authors (see [5, 1, 6] and the
references therein). The importance of nonlocal conditions in many applica-
tions is discussed in [3, 4] . Also, reference [8] contains examples of problems
with nonlocal conditions and references to other works dealing with nonlocal
problems.

2 Preliminaries

In this section we introduce notations, definitions and results that will be used
in the remainder of this paper.
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Function spaces

Let J be a compact interval in R. C(J) is the Banach space of continuous
real-valued functions defined on J , with the norm ‖x‖0 = sup{|x(t)|; t ∈ J}
for x ∈ C(J). Ck(J) is the Banach space of k-times continuously differentiable
functions. Lp(J) is the set of measurable functions x such that

∫
J
|x(t)|pdt <

+∞. Define ‖x‖Lp = (
∫
J
|x(t)|pdt)1/p. The Sobolev spaces W k,p(J) are defined

as follows:

W 1,p(J) :=
{
x ∈ Lp(J);∃x′ ∈ Lp(J) such that

∫
J

xφ′ = −
∫
J

x′φ

∀φ ∈ C1(J) with compact support
}

or equivalently,

W 1,p(J) = {x : J → R;x absolutely continuous and x′ ∈ Lp(J), 1 ≤ p ≤ ∞} .

Then we define

W k,p(J) =
{
x ∈W k−1,p(J); x′ ∈W k−1,p(J)

}
k ≥ 2.

The notation H1(J) is used for W 1,2(J). Let

H1
b (J) := {u ∈ H1(J);u(0) +

m∑
k=1

aku(tk) = 0}.

Note that the embeddings j : W k,p(J) → Ck−1(J), p > 1, are completely
continuous for J compact [2].

Set-valued Maps

Let X and Y be Banach spaces. A set-valued map G : X → 2Y is said to be
compact if G(X) = ∪{G(x);x ∈ X} is compact. G has convex (closed, compact)
values if G(x) is convex (closed, compact) for every x ∈ X. G is bounded on
bounded subsets of X if G(B) is bounded in Y for every bounded subsets B of
X. A set-valued map G is upper semicontinuous at z0 ∈ X if for every open set
O containing Gz0, there exists a neighborhood M of z0 such that G(M) ⊂ O.
G is upper semicontinuous on X if it is upper semicontinuous at every point
of X. If G is nonempty and compact-valued then G is upper semicontinuous
if and only if G has a closed graph. The set of all bounded closed convex and
nonempty subsets of X is denoted by bcc(X). A set-valued map G : J → bcc(X)
is measurable if for each x ∈ X, the function t 7→ dist(x,G(t)) is measurable on
J . If X ⊂ Y , G has a fixed point if there exists x ∈ X such that x ∈ Gx. Also,
|G(x)| = sup{|y|; y ∈ G(x)}.
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Definition A multivalued map F : J ×R→ 2R is said to be L1-Carathéodory
if

(i) t 7→ F (t, y) is measurable for each y ∈ R;

(ii) y 7→ F (t, y) is upper semicontinuous for almost all t ∈ J ;

(iii) For each σ > 0, there exists hσ ∈ L1(J,R+) such that

‖F (t, y)‖ = sup{|v| : v ∈ F (t, y)} ≤ hσ(t)

for all |y| ≤ σ and for almost all t ∈ J .

The set of selectors of F that belong to L1 is denoted by

S1
F (.,y(.)) = {v ∈ L1(J, ) : v(t) ∈ F (t, y(t)) for a.e. t ∈ J}

By a solution of (1.1) we mean an absolutely continuous function x on J , such
that x′ ∈ L1 and

x′(t) = f(t) a.e. t ∈ (0, T ]

x(0) +
m∑
k=1

akx(tk) = 0
(2.1)

where f ∈ S1
F (.,x(.)).

Note that for an L1-Carathéodory multifunction F : J × R → 2R the set
S1
F (.,x(.)) is not empty (see [9]). For more details on set-valued maps we refer to

[5].

Topological Transversality Theory for Set-valued Maps

Let X be a Banach space, C a convex subset of X and U an open subset of
C. K∂U (U, 2C) shall denote the set of all set-valued maps G : U → 2C which
are compact, upper semicontinuous with closed convex values and have no fixed
points on ∂U (i.e., u /∈ Gu for all u ∈ ∂U). A compact homotopy is a set-valued
map H : [0, 1] × U → 2C which is compact, upper semicontinuous with closed
convex values. If u /∈ H(λ, u) for every λ ∈ [0, 1], u ∈ ∂U , H is said to be fixed
point free on ∂U . Two set-valued maps F,G ∈ K∂U (U, 2C) are called homotopic
in K∂U (U, 2C) if there exists a compact homotopy H : [0, 1] × U → 2C which
is fixed point free on ∂U and such that H(0, ·) = F and H(1, ·) = G. G ∈
K∂U (U, 2C) is called essential if every F ∈ K∂U (U, 2C) such that G|∂U = F |∂U ,
has a fixed point. Otherwise G is called inessential. For more details we refer
the reader to [6].

Theorem 2.1 (Topological transversality theorem) Let F,G be two ho-
motopic set-valued maps in K∂U (U, 2C). Then F is essential if and only if G
is essential.

Theorem 2.2 Let G : U → 2C be the constant set-valued map G(u) ≡ u0.
Then, if u0 ∈ U , G is essential
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Theorem 2.3 (Nonlinear Alternative) Let U be an open subset of a convex
set C, with 0 ∈ U . Let H : [0, 1] × U → 2C be a compact homotopy such that
H0 ≡ 0. Then, either

(i) H(1, ·) has a fixed point in U , or

(ii) there exists u ∈ ∂U and λ ∈ (0, 1) such that u ∈ H(λ, u).

3 Main results

To prove our main results, we assume the following:

(H0) ak 6= 0 for each k = 1, 2, . . . ,m and
∑m
k=1 ak + 1 6= 0.

(H1) F : J × R→ bcc(R), (t, x) 7→ F (t, x) is

(i) measurable in t, for each x ∈ R
(ii) upper semicontinuous with respect to x ∈ for a.e. t ∈ J

(H2) |F (t, x)| ≤ ψ(|x|) for a.e. t ∈ J , all x ∈ R, where ψ : [0,+∞) → (0,+∞)
is continuous nondecreasing and such that lim supρ→∞

ψ(ρ)
ρ = 0.

Our first result reads as follows.

Theorem 3.1 If the assumptions (H0), (H1), and (H2) are satisfied, then the
initial-value problem (1.1) has at least one solution.

Proof This proof will be given in several steps, and uses some ideas from [6].
Step 1. Consider the set-valued operator Φ : C(J)→ L2(J) defined as

(Φx)(t) = F (t, x(t)).

Note that Φ is well defined, upper semicontinuous, with convex values and sends
bounded subsets of C(J) into bounded subsets of L2(J). In fact, we have

Φx := {u : J → R measurable; u(t) ∈ F (t, x(t)) a.e. t ∈ J} .

Let z ∈ C(J). If u ∈ Φz then

|u(t)| ≤ ψ(|z(t)|) ≤ ψ(‖z‖0).

Hence ‖u‖L2 ≤ C0 := ψ(‖z‖0). This shows that Φ is well defined. It is clear
that Φ is convex valued.

Now, let B be a bounded subset of C(J). Then, there exists K > 0 such that
‖u‖0 ≤ K for u ∈ B. So, for w ∈ Φu we have ‖w‖L2 ≤ C1, where C1 = ψ(K).
Also, we can argue as in [5, p. 16] to show that Φ is upper semicontinuous.
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Step 2. Let x be a possible solution of (1.1). Then there exists a positive
constant R∗, not depending on x, such that

|x(t)| ≤ R∗ for all t in J.

It follows from the definition of solutions of (1.1) that

x′(t) = f(t) a.e. t ∈ (0, T ]

x(0) +
m∑
k=1

akx(tk) = 0
(3.1)

where f ∈ S1
F (.,x(.)). Simple computations give

x(t) =
(
1 +

m∑
k=1

ak
)−1(− m∑

k=1

ak

∫ tk

0

f(s)ds
)

+
∫ t

0

f(s)ds (3.2)

Hence

|x(t)| ≤
∣∣(1 +

m∑
k=1

ak
)−1∣∣( m∑

k=1

|ak|
∫ tk

0

|f(s)|ds
)

+
∫ t

0

|f(s)|ds

Assumption (H2) yields

|x(t)| ≤
∣∣(1 +

m∑
k=1

ak
)−1∣∣( m∑

k=1

|ak|
∫ tk

0

ψ(|x(s)|)ds
)

+
∫ t

0

ψ(|x(s)|)ds

Let
R0 = max {|x(t)|; t ∈ J} .

Then

R0 ≤
∣∣(1 +

m∑
k=1

ak
)−1∣∣( m∑

k=1

|ak| tkψ(R0)
)

+ T ψ(R0)

or

R0 ≤
[{∣∣(1 +

m∑
k=1

ak
)−1∣∣ m∑

k=1

|ak| tk
}

+ T
]
ψ(R0)

The above inequality implies

1 ≤
(
T +

∣∣(1 +
m∑
k=1

ak)−1
∣∣ m∑
k=1

|ak| tk
)ψ(R0)

R0

Now, the condition on ψ in (H2) shows that there exists R∗ > 0 such that for
all R > R∗, (

T +
∣∣(1 +

m∑
k=1

ak)−1
∣∣ m∑
k=1

|ak| tk
)ψ(R)

R
< 1.
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Comparing these last two inequalities, we see that R0 ≤ R∗. Consequently, we
obtain |x(t)| ≤ R∗ for all t ∈ J .
Step 3. For 0 ≤ λ ≤ 1 consider the one-parameter family of problems

x′(t) ∈ λF (t, x(t)) t ∈ J,

x(0) +
m∑
k=1

akx(tk) = 0.
(3.3)

It follows from Step 2 that if x is a solution of (3.3) for some λ ∈ [0, 1], then

|x(t)| ≤ R∗ for all t ∈ J

and R∗ does not depend on λ. Define Φλ : C(J)→ L2(J) as

(Φλx)(t) = λF (t, x(t)).

Step 1 shows that Φλ is upper semicontinuous, has convex values and sends
bounded subsets of C(J) into bounded subsets of L2(J). Let j : H1

b (J)→ C(J)
be the completely continuous embedding. The operator L : H1

b (J) → L2(J),
defined by (Lx)(t) = x′(t) has a bounded inverse (in fact this follows from the
solution of (3.1) which is given by (3.2)), which we denote by L−1. Let BR∗+1 :=
{x ∈ C(J); ‖x‖0 < R∗ + 1}. Define a set-valued map H : [0, 1]×BR∗+1 → C(J)
by

H(λ, x) = (j ◦ L−1 ◦ Φλ)(x).

We can easily show that the fixed points of H(λ, ·) are solutions of (3.3). More-
over, H is a compact homotopy between H(0, ·) ≡ 0 and H(1, ·). In fact, H is
compact since Φλ is bounded on bounded subsets and j is completely continu-
ous. Also, H is upper semicontinuous with closed convex values. Since solutions
of (1)λ satisfy ‖x‖0 ≤ R∗ < R∗ + 1 we see that H(λ, ·) has no fixed points on
∂BR∗+1.

Now, H(0, ·) is essential by Theorem 2. Hence H1 is essential. This implies
that j ◦L−1 ◦Φ has a fixed point. Therefore problem (1.1) has a solution . This
completes the proof of Theorem 3.1. �

Our next result is based on an application of the nonlinear alternative. We
shall replace condition (H2) by

(H2’) |F (t, x)| ≤ p(t)ψ(|x|) for a.e. t ∈ J , all x ∈ R, where p ∈ L1(J,R+),
ψ : [0,+∞)→ (0,+∞) is continuous nondecreasing and such that

sup
δ∈(0,∞)

δ

[{|(1 +
∑m
k=1 ak)−1|

∑m
k=1 |ak| }+ T ] ‖p‖L1ψ(δ)

> 1

Now, we state our second result.

Theorem 3.2 If assumptions (H0), (H1), and (H2’) are satisfied, then the
initial value problem (1.1) has at least one solution.
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Proof This proof is similar to the proof of Theorem 3.1. Let M0 > 0 be
defined by

M0

[{|(1 +
∑m
k=1 ak)−1|

∑m
k=1 |ak|

∫ tk
0
p(s)ds}+ ‖p‖L1 ]ψ(M0)

> 1.

Let U := {x ∈ C(J); ‖x‖0 < M0}. Then consider the compact homotopy (see
Step 3 above) H : [0, 1]× U → C(J) defined by

H(λ, x) = (j ◦ L−1 ◦ Φλ)(x).

Suppose that alternative (ii) in Theorem 2.3 holds. This means that there exist
u ∈ ∂U and λ ∈ (0, 1) such that u ∈ H(λ, u), or equivalently

u′(t) ∈ λF (t, u(t)) t ∈ J,

u(0) +
m∑
k=1

aku(tk) = 0

Now, as in Step2 above, assumption (H2’) yields

|u(t)| ≤
∣∣(1 +

m∑
k=1

ak
)−1∣∣( m∑

k=1

|ak|
∫ tk

0

p(s)ψ(|u(s)|)ds
)

+
∫ t

0

p(s)ψ(|u(s)|)ds

Since ψ is increasing,

|u(t)| ≤
∣∣(1 +

m∑
k=1

ak
)−1∣∣( m∑

k=1

|ak|
∫ tk

0

p(s)ψ(‖u‖0)ds
)

+
∫ t

0

p(s)ψ(‖u‖0)ds .

Since for u ∈ ∂U we have ‖u‖0 = M0 this last inequality implies that

M0 ≤
∣∣(1 +

m∑
k=1

ak
)−1∣∣( m∑

k=1

|ak|
∫ tk

0

p(s)ψ(M0)ds
)

+
∫ t

0

p(s)ψ(M0)ds

which, in turn gives

M0 ≤
[{∣∣(1 +

m∑
k=1

ak
)−1∣∣ m∑

k=1

|ak|
∫ tk

0

p(s)ds
}

+
∫ t

0

p(s)ds
]
ψ(M0)

Hence,

M0 ≤
[{∣∣(1 +

m∑
k=1

ak
)−1∣∣ m∑

k=1

|ak|
∫ tk

0

p(s)ds
}

+ ‖p‖L1

]
ψ(M0)

This, clearly, contradicts the definition of M0. Therefore, condition (ii) of The-
orem 2.3 does not hold. Consequently, H(1, .) has a fixed point, which is a
solution of problem (1.1).
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Remark For nonlocal initial values of the form x(0) +
∑m
k=1 akx(tk) = x0,

where x0 is a given nonzero real number, we let y(t) = x(t)−x0(1+
∑m
k=1 ak)−1.

Then y is a solution to the problem

y′(t) ∈ F (t, y(t) + x0(1 +
m∑
k=1

ak)−1)

y(0) +
m∑
k=1

aky(tk) = 0
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