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Existence of solutions for elliptic systems with

critical Sobolev exponent ∗

Pablo Amster, Pablo De Nápoli, & Maria Cristina Mariani

Abstract

We establish conditions for existence and for nonexistence of nontrivial
solutions to an elliptic system of partial differential equations. This system
is of gradient type and has a nonlinearity with critical growth.

1 Introduction

The purpose of this work is to extend some results known for the quasilinear
elliptic equation

−∆u = up−1 + λu in Ω
u = 0 on ∂Ω

(1.1)

to the general system

−∆ui = fi(u) +
n∑
j=1

aijuj in Ω

ui = 0 on ∂Ω.

(1.2)

First we recall some results for the single equation (1.1) on a bounded domain
Ω ⊂ RN . If 2 < p < 2∗ = 2N/(N−2) (the critical Sobolev exponent), then (1.1)
has a nontrivial solution if and only if λ < λ1(Ω), the first eigenvalue of −∆.
This is proved by applying the Mountain Pass Theorem for finding nontrivial
critical points for the following functional in the Sobolev space H1

0 (Ω).

ϕ(u) =
1
2

∫
Ω

|∇u|2 − λ

2

∫
Ω

u2 − 1
p

∫
Ω

F (u) (1.3)

where F (u) = |u|p. Then by the compact imbedding H1
0 (Ω) ↪→ Lp(Ω), ϕ

satisfies the Palais-Smale condition (PS). However when p = 2∗, ϕ may not
satisfy the Palais-Smale condition (PS) due to the lack of compactness of the
above imbedding. For λ ≤ 0, a Pohozaev identity shows that there are no
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nontrivial solutions when Ω is star shaped. For the case 0 < λ < λ1(Ω), Brezis
a nd Nirenberg [1] proved the existence of at least one nontrivial solution when
N ≥ 4. Their proof relies in the fact that ϕ satisfies (PS)c (Palais-Smale at
level c) if c < c∗ = SN/2/N , where

S = inf
u∈D1,2

0 (RN ),‖u‖2∗=1
‖∇u‖22

which is the best constant in the Sobolev inequality. Moreover, when the value
of S and the optimal functions are explicitly known, it is possible to prove that
if

Sλ = inf
u∈H1

0 (Ω),‖u‖2∗=1
‖∇u‖22 + λ‖u‖22

then Sλ < S for λ > 0. Then, using the Mountain Pass Theorem a critical value
c < c∗ is obtained. For a detailed exposition see [12].

Quasilinear elliptic systems have been studied by several authors [4, 5, 6].
For gradient type systems such as (1.2), Boccardo and de Figueiredo [2] used
variational arguments to show the existence of nontrivial solutions. They proved
existence of solutions for the problem

−∆pu = Fu(x, u, v) in Ω
−∆qv = Fv(x, u, v) in Ω

u = v = 0 on ∂Ω,
(1.4)

where F is superlinear and subcritical. In this article, we study the critical case
p = q = 2∗.

The general problem of finding a condition on the matrix A = (aij) for which
(1.2) admits a nontrivial solution is still an open question. In this paper, we
present some results toward the solution of this question. For A symmetric with
‖A‖ < λ1(Ω), we prove that the method presented in [1] can be applied. More
precisely, we define appropriate numbers SF,A and SF such that if SF,A < SF
then (1.2) admits a solution. Furthermore, we show cases where this inequality
holds. We prove also that in some particular cases the condition ‖A‖ < λ1(Ω)
is necessary. We conclude this paper by showing that Pohoazev’s nonexistence
result may be generalized to problem (1.2) when A is symmetric and negative
definite. We remark that the symmetry of A can be considered as a natural
condition, since the proof of existence is based on the variational structure of
the problem.

Before we state our results, we recall the following definitions [8].

D1,2(RN ,Rn) = {u = (u1, . . . , un) ∈ L2∗(RN ,Rn) : ∇ui ∈ L2(RN ,RN )}

Let A = (aij) ∈ Rn×n. We shall say that:
i) A is nonnegative (A ≥ 0) if aij ≥ 0 for all i, j.
ii) A is reducible if by a simultaneous permutation of rows and columns, it may
be written in the form (

B 0
C D

)
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where B and D are square matrices. Throughout this article, the Euclidean
norm in Rn will be denoted by | · |.

Statement of results

Theorem 1.1 Let p = 2∗ = 2N/(N − 2). Let [·] be a norm on Rn such that
F (u) = [u]p is differentiable. Define fi = 1

p∂iF , and assume that A ∈ Rn×n is
symmetric, with ‖A‖ < λ1(Ω). Set

SF = inf
u∈D1,2(RN ,Rn),

∫
RN

F (u)=1

n∑
i=1

∫
RN

|∇ui|2,

SF,A(Ω) = inf
u∈H1(Ω,Rn),

∫
Ω F (u)=1

n∑
i=1

∫
Ω

|∇ui|2 −
∫

Ω

〈Au, u〉

Then: 1) SF is attained by a function u ∈ D1,2(RN ,Rn).
2) If SF,A(Ω) < SF then (1.2) admits at least one nontrivial weak solution.

As a consequence of this theorem, we have the existence of solutions for the
following case.

Corollary 1.2 Let p, A and fi satisfy the conditions of the Theroem 1.1 with
[u] = |u|q = (

∑n
i=1 |ui|q)1/q for some q ≥ 2. Moreover, assume that N ≥ 4 and

that aii > 0 for some i. Then (1.2) has a nontrivial weak solution.

Theorem 1.3 Let us assume that (1.2) admits a nonnegative nontrivial solu-
tion u ∈ H1

0 (Ω,Rn), and that fi(u) ≥ 0, with fi(u) > 0 for u > 0. We denote by
µmin and µmax the smallest and the largest eigenvalues of A, respectively. Then

1) If A is symmetric and positive definite, then µmin < λ1(Ω).

2) If A ≥ 0 is irreducible, then µmax < λ1(Ω).

3) If aij > 0 for every i, j, and A is symmetric, then ‖A‖ < λ1(Ω).

Using a Pohozaev-type identity [10] we shall prove as in [11] the following
nonexistence result.

Theorem 1.4 Let F ∈ C1(Rn) be homogeneous of degree p = 2∗ = 2N/(N−2)
and define fi = 1

p∂iF . Assume that A is symmetric and negative definite, and
that Ω is star shaped. Then u = 0 is the unique classical solution of (1.2).

2 The Brezis-Lieb Lemma

We shall use the following version of the Brezis-Lieb lemma [3].
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Lemma 2.1 Assume that F ∈ C1(Rn) with F (0) = 0 and
∣∣∣ ∂F∂ui ∣∣∣ ≤ C|u|p−1.

Let (uk) ⊂ Lp(Ω), (1 ≤ p < ∞). If (uk) is bounded in Lp(Ω) and uk → u a.e.
on Ω, then

lim
k→∞

(∫
Ω

F (uk)− F (uk − u)
)

=
∫

Ω

F (u)

Proof We first remark that u ∈ Lp(Ω) and ‖u‖p ≤ lim inf ‖uk‖p < ∞. We
claim that for a fixed ε > 0 there exists c(ε) such that for a, b ∈ Rn, it holds

|F (a+ b)− F (a)| ≤ ε|a|p + c(ε)|b|p (2.1)

Indeed, writing

|F (a+ b)− F (a)| =

∣∣∣∣∣
n∑
i=1

∫ 1

0

∂F

∂ui
(a+ bt)bidt

∣∣∣∣∣ ≤ C
n∑
i=1

∫ 1

0

|a+ bt|p−1|bi|dt

and using that xy ≤ c(ε̃)xp + ε̃yp
′
(x, y > 0) we obtain

|F (a+ b)− F (a)| ≤ C
n∑
i=1

∫ 1

0

(ε̃|a+ bt|p + c(ε̃)|bi|p) dt

Moreover, as (x+ y)p ≤ 2p−1(xp + yp) (x, y > 0), we obtain:

|F (a+ b)− F (a)| ≤ 2p−1C
n∑
i=1

∫ 1

0

ε̃(|a|p + tp|b|p) + c(ε̃)|bi|pdt

and (2.1) follows. Letting a = uk(x)− u(x), b = u(x) we obtain

|F (uk)− F (uk − u)| ≤ ε|uk − u|p + c(ε)|u|p

We introduce the functions:

fεk = (|F (uk)− F (uk − u)− F (u)| − ε|uk − u|p)+

As |F (u)| ≤ K|u|p, then |fεk | ≤ (K+c(ε))|u|p. By Lebesgue theorem
∫

Ω
fεk → 0.

Since |F (uk)− F (uk − u)− F (u)| ≤ fεk + ε|uk − u|p, we obtain

lim sup
k→∞

∫
Ω

|F (uk)− F (uk − u)− F (u)| ≤ εc

with c = supk ‖uk − u‖pp <∞. Letting ε→ 0, the result follows.

Remark In particular, this result holds for F is homogeneous of degree p.
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3 Proofs of results

For the proof of part 1) of Theorem 1.1 we shall use the Lemma 3.1 below,
which is a version of the concentration compactness lemma in [9].

Let F : Rn → R be a C1 function homogeneous of degree p = 2∗, such that
F (u) > 0 if u 6= 0. By homogeneity, it is easy to see that

SF = inf
u∈D1,2(RN ,Rn),u 6=0

∑n
k=1

∫
RN
|∇uk|2(∫

RN
F (u)

)2/2∗
Lemma 3.1 Let (u(i)) ⊂ D1,2

0 (RN ,Rn) be a sequence such that:

i) u(i) → u weakly in D1,2(Ω)

ii) |∇(u(i)
k − uk)| → µk in M(Rn) weak ∗ for k = 1, ..., n.

iii) F (u(i) − u)→ ν in M(Rn) weak∗

iv) u(i) → u a.e. on RN

and define: µ =
∑n
k=1 µk,

ν∞ = lim
R→∞

(
lim sup
i→∞

∫
|x|≥R

F (u(i))dx
)
,

µ∞k = lim
R→∞

(
lim sup
i→∞

∫
|x|≥R

|∇u(i)
k |

2dx
)

Then:

‖ν‖2/2
∗
≤ 1
SF
‖µ‖ (3.1)

(ν∞)2/2∗ ≤ 1
SF

n∑
k=1

µ∞k (3.2)

lim sup
i→∞

|∇u(i)
k |

2
2 = |∇u|22 + ‖µk‖+ µ∞k for k = 1, ..., n (3.3)

lim sup
i→∞

∫
Ω

F (u(i)) =
∫

Ω

F (u) + ‖ν‖+ ν∞ (3.4)

Moreover, if u = 0 and equality holds in (3.1), then µ = 0 or µ is concentrated
at a single point.

Proof of Theorem 1.1 Part 1) Let (u(i)) ⊂ D1,2(RN ,Rn) be a minimizing
sequence for SF , i.e.,∫

RN

F (u(i)) = 1,
n∑
k=1

∫
RN

|∇u(i)
k |

2 → SF
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Using (3.1)-(3.3), we deduce, as in [12, Theorem 1.41], the existence of a se-
quence (yi, λi) ∈ RN × R such that λ(N−2)/2

i u(λix + yi) has a convergent sub-
sequence. In particular there exists a minimizer for SF .

To prove the second part of Theorem 1, we shall use the following version of
the Mountain Pass Lemma [12].

Theorem 3.2 (Ambrosetti-Rabinowitz) Let X be a Hilbert space, ϕ be an
element of C1(X,R), e ∈ X and r > 0 such that ‖e‖ > r, b = inf‖u‖=r ϕ(u) >
ϕ(0) ≥ ϕ(e). Then for each ε > 0 there exists u ∈ X such that c− ε ≤ ϕ(u) ≤
c+ ε and ‖ϕ′(u)‖ ≤ ε where

c = inf
γ∈Γ

max
t∈[0,1]

ϕ(γ(t)),

with Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}.
Letting ε = 1/k, we get a Palais-Smale sequence at level c; i.e., a sequence

(u(k)) ⊂ X such that
ϕ(u(k))→ c, ϕ′(u(k))→ 0

We shall apply this result to the functional

ϕ(u) =
1
2

∫
Ω

n∑
i=1

|∇ui|2 −
1
2∗

∫
Ω

F (u)− 1
2

∫
Ω

n∑
i,j=1

aijuiuj

in the Sobolev space X = H1
0 (Ω,Rn). As ‖A‖ < λ1(Ω), we may define on X the

norm

‖u‖ =

∫
Ω

n∑
i=1

|∇ui|2 −
∫

Ω

n∑
i,j=1

aijuiuj

1/2

which is equivalent to the usual norm. By standard arguments ϕ ∈ C1(X) and

〈ϕ′(u), h〉 =
n∑
i=1

∫
Ω

∇ui · ∇hi −
n∑
i=1

∫
Ω

fi(u)hi −
∫

Ω

n∑
i,j=1

aijhiuj

It follows that the critical points of ϕ are weak solutions of the system.

To ensure that the value c given by the mountain pass theorem is indeed a
critical value we need to prove the following lemma.

Lemma 3.3 Let F be homogeneous of degree 2∗. Then any (PS)c sequence

with c < c∗ =
(

1
2 −

1
2∗

) SN/2
F

N has a convergent subsequence.

Proof Let (u(k)) ⊂ H1
0 (Ω,Rn) be a (PS)c sequence. First we show that it is

bounded.

〈ϕ′(u(k)), u(k)〉 = ‖u(k)‖2 −
n∑
i=1

∫
Ω

fi(u(k))u(k)
i
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Since F is homogeneous of degree 2∗, we have that
∑n
i=1 fi(u

(k))u(k)
i = F (u(k)).

Then

1
2
‖u(k)‖2 = ϕ(u(k)) +

1
2∗

∫
Ω

F (u(k)) = ϕ(u(k)) +
1
2∗
(
‖u(k)‖2 − 〈ϕ′(u(k)), u(k)〉

)
Hence, for k ≥ k0 we have(1

2
− 1

2∗
)
‖u(k)‖2 ≤ C + ε‖u(k)‖

and we conclude that ‖u(k)‖ is bounded.
We may assume that u(k) → u weakly in H1

0 (Ω)n, u(k) → u in L2(Ω)n, and
u(k) → u a.e..

Since (u(k)) is bounded in L2∗(Ω), f(u(k)) is bounded in L2N/(N+2)(Ω). So
we may assume that f(u(k))→ f(u) weakly in L2N/(N+2). It follows that u is a
critical point of ϕ, i.e. u is a weak solution of the system. We deduce that

〈ϕ′(u), u〉 = ‖u‖2 −
∫

Ω

n∑
i=1

fi(u)ui = 0

Moreover,

ϕ(u) =
‖u‖2

2
− 1

2∗

∫
Ω

F (u) =
‖u‖2

2
− 1

2∗

∫
Ω

n∑
i=1

fi(u)ui = (
1
2
− 1

2∗
) ‖u‖2 ≥ 0

Writing v(k) = u− u(k), by Lemma 2.1 we have∫
Ω

F (u(k)) =
∫

Ω

F (u) +
∫

Ω

F (v(k)) + o(1)

and then

ϕ(u(k)) =
1
2
‖u− v(k)‖2 − 1

2∗

∫
Ω

F (u(k))− 1
2∗

∫
Ω

F (v(k)) + o(1)

As v(k) → 0 weakly,

‖u(k)‖2 = ‖u− v(k)‖2 = ‖u‖2 + ‖v(k)‖2 + o(1)

and then we obtain

1
2
‖u‖2 +

1
2
‖v(k)‖2 − 1

2∗

∫
Ω

F (u)− 1
2∗

∫
Ω

F (v(k))→ c (3.5)

On the other hand we also know that 〈ϕ′(u(k)), u(k)〉 → 0 and

〈ϕ′(u(k)), u(k)〉 =‖u(k)‖2 −
∫

Ω

n∑
i=1

fi(u(k))u(k)
i = ‖u(k)‖2 − 2∗

∫
Ω

F (u(k))

=‖u‖2 + ‖v(k)‖2 − 2∗
∫

Ω

F (u)− 2∗
∫

Ω

F (v(k)) + o(1)→ 0
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Hence,

‖v(k)‖2 − 2∗
∫

Ω

F (v(k))→ 2∗
∫

Ω

F (u)− ‖u‖2 = 0

We may therefore assume that ‖v(k)‖2 → b, 2∗
∫

Ω
F (v(k)) → b. From (3.5), we

deduce that
ϕ(u) +

(1
2
− 1

2∗
)
b = c

and since ϕ(u) ≥ 0, (1
2
− 1

2∗
)
b ≤ c

We claim that b = 0. Indeed, since u(k) → 0 in L2(Ω,Rn), it follows that∑n
i=1

∫
Ω
|∇(v(k))i|2 → b. On the other hand,

n∑
i=1

∫
Ω

|∇(v(k))i|2 ≥ SF
(∫

Ω

F (v(k))
)2/2∗

and, letting k →∞, b ≥ SF b2/2
∗
. It follows that b = 0 or b ≥ SN/2F . In this last

case,

c∗ =
(1

2
− 1

2∗
)SN/2F

N
≤
(1

2
− 1

2∗
) b
N
≤ c,

a contradiction. Hence, b = 0 and v(k) → 0 strongly.

Proof of Theorem 1.1 part 2) In the same way of [12, Theorem 1.45], it
suffices to apply the Mountain Pass Theorem with a value c < c∗. We shall find
the maximum of the function h : [0, 1]→ R given by

h(t) = ϕ(tv) =
(
t2

2
‖v‖2 − t2

∗

2∗

∫
Ω

F (v)
)

= A
t2

2
−Bt2

∗

Since 2∗ − 2 = 4
N−2 , we obtain the critical point

t0 =
( A

2∗B
)(N−2)/4

with
h(t0) =

( A

2∗B
)N/2(2∗

2
− 1
)
B > 0

Then, it is easy to conclude that c < c∗.
Now we consider the special case

[u] = |u|q =
( n∑
i=1

|ui|q
)1/q

and Fq(u) =
( n∑
i=1

|ui|q
)2∗/q

for proving Corollary 1.2.

Lemma 3.4 SF (Ω) = S for q ≥ 2 where S is the best constant for the Sobolev
inequality with n = 1.
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Proof Suppose first that q ≥ 2∗, then we have the estimate[ ∫
Ω

( n∑
i=1

|ui|q
)2∗/q]2/2∗

≤
[ ∫

Ω

n∑
i=1

|ui|2
∗
]2/2∗

=
[ n∑
i=1

∫
Ω

|ui|2
∗
]2/2∗

≤
[ n∑
i=1

(S−1

∫
Ω

|∇ui|22)2∗/2
]2/2∗

≤
n∑
i=1

S−1

∫
Ω

|∇ui|2

It follows that SF ≥ S. For 2 ≤ q ≤ 2∗ we use Minkowski inequality:

[ ∫
Ω

( n∑
i=1

|ui|q
)2∗/q]2/2∗

=

{[∫
Ω

( n∑
i=1

|ui|q
)2∗/q]q/2∗}2/q

≤
[( n∑

i=1

∫
Ω

|ui|2
∗
)q/2∗]2/q

=
n∑
i=1

(∫
Ω

|ui|2
∗
)2/2∗

≤
n∑
i=1

S−1

∫
Ω

|∇ui|2

The inequality SF ≤ S is verified easily taking functions of the form u =
(u1, 0, ..., 0).

Proof of Corollary 1.2 First we note that by the 2∗-homogeneity of F , SF
does not depend on Ω. Taking u(x) = U(x)ei, where

U(x) =
[N(N − 2)](N−2)/4

(1 + |x|2)(N−2)/2

is the function that attains Sobolev’s best constant in one dimension [12, The-
orem 1.42], it follows that SF is achieved when Ω = R

N (where N ≥ 4). By
translation invariance of the problem, SF is also achieved with uε(x) = Uε(x)·ei,
for

Uε(x) = ε(2−N)/2U(x/ε)

We shall see that SF,A < SF . Indeed, we may assume that 0 ∈ Ω and choose
i such that aii > 0. Then, if we define u(x) = vε(x)ei, with vε(x) = ψ(x)Uε(x),
and ψ a smooth function with compact support in Ω such that ψ ≡ 1 in B(0, ρ),
we obtain as in [12, Lemma 1.46]:∫

Ω

∑n
i=1 |∇ui|2 −

∫
Ω
〈Au, u〉( ∫

Ω
F (u)

)2/p
=

∫
Ω
|∇uε|2 − aii

∫
Ω
u2
ε( ∫

Ω
|uε|p

) < S

for ε small enough.

Proof of Theorem 1.3: Necessary conditions for the existence of non-
negative solutions We recall the following theorem in [8].
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Lemma 3.5 (Perron-Frobenius Theorem) Let A ≥ 0 be irreducible. Then
A has a positive simple eigenvalue µmax such that |µ| ≤ µmax for any µ eigen-
value of A. Furthermore, there exists an eigenvector of µmax with positive coor-
dinates.

Now we are able to prove Theorem 1.3.
Suppose that the system has a nonnegative nontrivial solution. If e1 is the

first eigenfunction of −∆ in H1
0 (Ω), then e1 ∈ C∞(Ω) and e1(x) > 0∀x ∈ Ω.

Then

λ1

∫
Ω

uie1 =
∫

Ω

−∆uie1 =
∫

Ω

fi(u)e1 +
n∑
j=1

aij

∫
Ω

uje1

If zi =
∫

Ω
uie1, then

λ1z ≥ Az,

and the inequality between the i-th components is strict if ui 6= 0 for some i.
Since z ≥ 0, and zi > 0 for some i, we obtain

λ1|z|2 > 〈Az, z〉 .

Since A is symmetric and positive definite,

λ1|z|2 > µmin|z|2 and λ1 > µmin.

This proves the first claim of the theorem.
For A ≥ 0 and irreducible, let v be the eigenvector of At corresponding to

µmax, then from the Perron-Frobenius Theorem [8], vi > 0 for any i and

λ1 〈z, v〉 > 〈Az, v〉 =
〈
z,Atv

〉
= µmax 〈z, v〉

and since 〈z, v〉 > 0, it follows that λ1 > µmax and the second claim is proved.
Finally when A ≥ 0 is symmetric, we have µmax = ‖A‖, and the proof is

complete. �

Proof of Theorem 1.4 The proof of Theorem 1.4 consists of the next lemma
and the next corollary.

Lemma 3.6 Suppose that u ∈ C2(Ω,Rn) is a classical solution of the gradient
elliptic system

−∆ui = gi(u) in Ω
u = 0 on ∂Ω

where gi = ∂G
∂ui

, G ∈ C1(Rn), G(0) = 0 and Ω ⊂ RN is a bounded open set with
smooth boundary. Then for a fixed y,

n∑
k=1

∫
∂Ω

|∇uk|2(x− y) · n(x)dS = 2N
∫

Ω

G(u)dx− (N − 2)
n∑
k=1

∫
Ω

gk(u)ukdx
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Proof Multiply the k-th equation by (x − y) · ∇uk =
∑N
i=1(xi − yi)∂uk∂xi

and
integrate by parts, then we have

∫
Ω

N∑
i=1

(xi − yi)
∂uk
∂xi

gk(u)

=
∫

Ω

|∇uk|2 +
∫

Ω

n∑
i,j=1

(xi − yi)
∂uk
∂xj

∂2uk
∂xixj

−
∫
∂Ω

|∇uk|2(x− y) · n(x)dS

Hence,∫
Ω

N∑
i=1

(xi − yi)
∂uk
∂xi

gk(u) =
(
1− N

2
) ∫

Ω

|∇uk|2 −
1
2

∫
∂Ω

|∇uk|2(x− y) · n(x)dS

Adding this identities for k = 1, 2, . . . n,

∫
Ω

N∑
i=1

(xi − yi)
n∑
k=1

∂uk
∂xi

gk(u)

=
(
1− N

2
) n∑
k=1

∫
Ω

|∇uk|2 −
1
2

n∑
k=1

∫
∂Ω

|∇u|2(x− y) · n(x)dS

By the chain rule we have∫
Ω

N∑
i=1

(xi − yi)
N∑
k=1

∂uk
∂xi

gk(u) =
∫

Ω

N∑
i=1

(xi − yi)
∂G(u)
∂xi

=−N
∫

Ω

G(u) +
n∑
i=1

∫
∂Ω

G(u)(xi − yi) · ni(x)dS .

Since G(u) = 0 on ∂Ω,

−N
∫

Ω

G(u) = (1− N

2
)
N∑
k=1

∫
Ω

|∇uj |2 −
1
2

N∑
k=1

∫
∂Ω

|∇u|2(x− y) · n(x)dS

Finally ∫
Ω

|∇uk|2 =
∫

Ω

gk(u)uk

and

N∑
k=1

∫
∂Ω

|∇uk|2(x− y) · n(x) = 2N
∫

Ω

G(u)− (N − 2)
N∑
k=1

∫
Ω

gk(u)uk

�
With the following corollary, we complete the proof of Theorem 1.4.
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Corollary 3.7 Assume that F ∈ C1(Rn) is homogeneous of degree p = 2∗ =
2N/(N − 2), with F (0) = 0. Further, assume that A is symmetric and negative
definite, and that Ω is star shaped. Then the system

−∆uj = fk(u) +
k∑
j=1

ajkuj in Ω

u = 0 on ∂Ω

with fk = ∂F
∂uk

admits only the trivial solution.

Proof Let G(u) = F (u) + 1
2 〈Au, u〉. Since F is homogeneous of degree p,

N∑
k=1

fk(u)uk = pF (u)

and

N∑
k=1

∫
∂Ω

|∇uk|2(x− y) · n(x) = [2N − p(N − 2)]
∫

Ω

F (u) + 2
N∑
k=1

∫
Ω

〈Au, u〉

Since p = 2N/(N − 2),

N∑
k=1

∫
∂Ω

|∇uk|2(x− y) · n(x) = 2
N∑
k=1

∫
Ω

〈Au, u〉

Now, because A is negative definite, 〈Au, u〉 ≤M |u|2 where M < 0 and then

N∑
k=1

∫
∂Ω

|∇uk|2(x− y) · n(x) ≤ 2M
n∑
k=1

∫
Ω

|u|2

Since Ω is star shaped, (x− y) · n(x) > 0 on ∂Ω, and we conclude that u = 0.
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