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METASTABILITY IN THE SHADOW SYSTEM FOR
GIERER-MEINHARDT’S EQUATIONS

PIETER DE GROEN & GEORGI KARADZHOV

Abstract. In this paper we study the stability of the single internal spike so-

lution of the shadow system for the Gierer-Meinhardt equations in one space
dimension. It is well-known, that the linearization around this spike consists of
a differential operator plus a non-local term. For parameter values in certain

subsets of the 3D (p, q, r)–parameter space we prove that the non-local term
moves the negative O(1) eigenvalue of the differential operator to the positive
(stable) half plane and that an exponentially small eigenvalue remains in the
negative half plane, indicating a marginal instability (dubbed “metastability”).
We also show, that for parameters (p, q, r) in another region, the O(1) eigen-
value remains in the negative half plane. In all asymptotic approximations we
compute rigorous bounds for the order of the error.

1. Introduction

Based on pioneering ideas of Turing [14] about pattern formation by interaction
of diffusing chemical substances, Gierer & Meinhardt proposed and studied in [3]
the following system of reaction diffusion equations on a spatial domain Ω

Ut = ε2∆U − U + UpH−q x ∈ Ω, t > 0,

τHt = D∆H − µH + UrH−s x ∈ Ω, t > 0,

∂nU = 0 = ∂nH x ∈ ∂Ω, t ≥ 0,

(1.1)

where U and H represent activator and inhibitor concentrations, ε and D their
diffusivities, and where τ and µ are the reaction time rate and the decay rate
of the inhibitor; D is assumed to be large and ε and τ small (positive). Ω is a
bounded domain; we shall restrict our analysis to one space dimension and choose
Ω := [−1, 1]. Since in our analysis the factor µ is not important, we set µ := 1; since
the parameters q and s only appear together in the quotient q/(s+1) and s ≥ 0, we
may choose s=0 without loss of generality. The exponents {p > 1, q > 0, r > 1}
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satisfy the inequality

γr :=
qr

p− 1
> 1. (1.2)

The numerical study in [3] revealed strongly localized pulse solutions in the
activator U against a nearly constant background of the inhibitor concentration
for large values of D and 1/ε. Irons & Ward [15] analyze by formal asymptotic
expansions metastable spike solutions for the reduced “shadow”-system, derived
from (1.1) in the limit for D → ∞ and τ → 0. Doelman, Gardner & Kaper
[2] consider the same problem, using “geometric singular perturbation theory” to
derive criteria for stability of a solution with one spike. The reader is advised
to consult those papers for a more general description of facts and results in this
type of problems. As in [11], [10] and [15] we derive the simplified shadow system
from (1.1) as follows. The average h of H satisfies the average of (1.1b), τht =
−h+ 1

2

∫ 1

−1
Urdx. If τ is small and D is large, H(x) ≈ h is approximately constant

and τht negligible, such that the averaged equation reduces to the constraint

h =
1
2

∫ 1

−1

Urdx. (1.3)

So we find from (1.1a) the shadow system for (x, t) ∈ (−1, 1)× (0,∞),

Ut = ε2Uxx − U + h−qUp, Ux(−1, t) = 0 = Ux(1, t). (1.4)

We can eliminate from this equation the direct dependence on h by (1.3).
The aim of this paper is a study of metastability of the single internal spike solu-

tion via the spectrum of the linearized operator. We consider the shadow system of
(1.1) in one space dimension, construct a (stationary) solution to it along the lines
of [13] and we show how the interesting spectral properties of the variation around
this solution can be derived. We extend the results obtained by Wei in [17]. The
differential operator associated with this variation consists of a selfadjoint differen-
tial operator Lε and a non-local term (due to the constant inhibitor background).
Lε has one large (O(1)) negative (i.e. unstable) eigenvalue associated to an even
eigenfunction and one exponentially small negative eigenvalue associated to an odd
eigenfunction. Using several perturbational techniques, we derive conditions under
which the non-local term pushes the spectrum to the right (i.e. it increases the
stability) and maps the large negative eigenvalue into the positive half plane, see
figure 1. Since the non-local term is zero on the odd functions, it does not affect
the exponentially small eigenvalue. We remark, that Doelman et al. in [2] assume
that the spatial domain is unbounded and consider this only a minor simplification.
Although this simplification looks quite innocently, our study shows that it removes
the asymptotically small terms in the expansions of the eigenvalues of the shadow
equation, that are decisive for the (very weak) stability or instability.

The boundary conditions on the finite domain are extremely important. With
Neumann boundary conditions, the only exact stationary spike solution, having
exactly one interior maximum and no boundary maxima, is the symmetric spike
with maximum at the center. If we want an off-center spike, we have to change
the Neumann condition at x = 1 or at x = −1 into a mixed condition; either
Ux(1)+εδU(1) = 0 for a spike on (0, 1) or Ux(1)−εδU(1) = 0 for a spike on (−1, 0)
for some δ > 0. Only using the exact spike, we can linearize around it in such a way
that the quadratic terms do not contain secular terms due to the approximation of
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Figure 1. Plot of the four eigenvalues with smallest real part
of the operator, restricted to the subspace of even functions, as
a function of q if p = 2 and r = 2. As soon as q crosses the
point q = p−1

r = 1
2 , condition (1.2) is met and the smallest eigen-

value crosses the imaginary axis. Near q = 0.66 the two smallest
eigenvalues meet and go off into the complex plane.

the spike. Also this aspect disappears, when we study the problem on the whole
real axis.

In section 2 we study stationary spike-solutions of (1.4), their asymptotics for
small ε and the linearization of this equation around such a solution. In section 3
we study the spectrum of the differential operator Lε using the (new) explicit
solution 2.2 (see also [7]) of the shadow system. The eigenvalues are estimated
using Rayleigh’s quotient. In section 4 we make a detailed study of the influence
of the nonlocal term on the eigenvalues as a function of the parameters p, q and r
using perturbational methods. Finally, we study in section 5 the “metastability”
of (1.3–1.4) along the lines of [6].

While linearizing (1.1) or (1.4) around a spike we should always keep in mind
that the non-linear system is well-defined only for positive solutions and hence that
only those variations are acceptable, that do not compromise the positivity. For
the study of the spectrum of the linearized equation this does not matter. However,
for a study of metastability, we have to restrict the perturbations to functions that
are not larger than some (fixed positive) factor % < 1 times the spike.

Essentially, the methods are applicable too in the case where D is large but not
pushed to the limit D →∞, see [16].

2. A spike solution and linearization around it

2.1. A stationary one-spike solutions and its asymptotics. A typical (sta-
tionary) spike solution of (1.3–1.4) should be large on a small support around
some interior point xo and negligible elsewhere. Assuming that such a spike solu-
tion S has the form S(xo+εξ, t) = hγu(ξ), where ξ is the stretched variable and
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Figure 2. Phasediagram in the (u, u′)-plane for the solution of
u′′ − u+ up = 0 from (2.1) with p = 3.

γ = q/(p−1−rq), we find for u the equation

u′′ − u+ up = 0, u′((±1− xo)/ε) = 0. (2.1)

For p > 1 the system of equations for (u, u′) in the phase plane has a saddle point
at (0, 0) and a center at (1, 0). A unique homoclinic solution around the center
connects the saddle to itself, see figure 2.

This homoclinic solution happens to have for all p > 1 the closed form1

wp(ξ) :=
(p+ 1

2
)1/(p−1)(cosh(

p− 1
2

ξ))−2/(p−1), (2.2)

and for large |ξ| it has the asymptotic behaviour

wp(ξ) = αe−|ξ|(1 +O(e−(p−1)|ξ|)), α := (2p+ 2)1/(p−1). (2.3)

Inside the homoclic orbit we find positive periodic orbits; from the phase portrait
it is clear that these are the only ones that may solve the Neumann boundary
conditions in (2.1). Necessary and sufficient is that an integral multiple of its half
period is equal to the interval length 2/ε. Let ϕ be such a periodic solution that
has minimum a and maximum b, then apparently

0 < a < 1 < b < tp :=
(p+ 1

2
)1/(p−1)

. (2.4)

Multiplying the equation for ϕ by ϕ̇ and integrating we find

ϕ̇2 = F (ϕ)− F (a), F (a) = F (b) and F (ϕ) := ϕ2 − 2
p+ 1

ϕp+1. (2.5)

Minimum and maximum of the solution ϕ are related by the equation F (a) = F (b)
and its period is given by the integral

Ta := 2
∫ b

a

dϕ√
F (ϕ)− F (a)

. (2.6)

1It is remarkable that we did not find this fact in any of the references consulted.
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From this picture it is clear that for every ε > 0 there is a unique stationary
solution with a single spike in the interior (and without boundary spikes). We shall
denote it in the sequel by ϕε; its minimum we denote by aε and its maximum by
bε. If ε→ 0, then ϕε → wp, aε → 0 and bε → tp and

aε =
√

(p− 1)tp(tp − bε)(1 +O(tp − bε)σ), σ := min(1, p− 1). (2.7)

Because the period has to fit in the interval, we can derive the asymptotics of aε
and bε for ε→ 0 from the equation Ta = 2/ε:
Lemma 2.1.

aε = 2αe−1/ε(1 +O(e−σ/ε)) and tp − bε = O(e−2/ε). (2.8)

proof. We estimate the integral (2.6) by the corresponding integral for wp, for
which we already know the asymptotics, (2.3) and we show that the difference tends
to the constant log 2 for a→ 0,∫ b

a

[ 1√
F (t)− F (a)

− 1√
F (t)

]
dt = log 2 +O(aσ), (2.9)

To do so, we split the interval of integration into three parts, [a, c], [c, d], and [d, b],
where a < c < d < b and where c and d are constants, not depending on a and
bounded away from the zeros of F , a and b. Obviously, the integral over the middle
segment is of order F (a) = O(a2).

In the third part on [d, b] we may estimate F from below by

F (t)− F (b) ≥ δ2(b− t), F (t) ≥ δ2(tp − t), if d ≤ t ≤ b

for some δ > 0. Hence we estimate the integral from above as follows,∫ b

d

[ 1√
F (t)− F (b)

− 1√
F (t)

]
dt

=
∫ b

d

F (a) dt√
F (t)− F (b)

√
F (t)

(√
F (t)− F (b) +

√
F (t)

)
≤
∫ b

d

F (a)dt
δ3
√
t− b√t− tp

(√
t− b+

√
t− tp

)
=
δ−3F (a)
tp − b

∫ b

d

[ 1√
t− b

− 1
√
t− tp

]
dt

= O(
√
tp − b) = O(a).

In the first part on [a, c] we substitute s2 = F (t) = t2 − 2
p+1 t

p+1, assuming c < 1.
This implies

s = t+O(tp) or t = s+O(sp) and dt =
sds

t− tp
= ds

(
1 +O(sp−1)

)
Writing ã2 := F (a) and c̃2 := F (c) we find∫ c

a

[ 1√
F (t)− F (b)

− 1√
F (t)

]
dt =

∫ c̃

ã

[ 1√
s2 − ã2

− 1√
s2

](
1 +O(sp−1)

)
ds.
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The main term evaluates to∫ c̃

ã

[ 1√
s2 − ã2

− 1√
s2

]
ds = log

(
1 +

√
1− ã2/c̃2

)
= log 2 +O(a2).

The remainder is bounded by a constant times the following integral, in which we
substitute s = ãσ,∫ c̃

ã

[ 1√
s2 − ã2

− 1√
s2

]
sp−1ds =

∫ c̃/ã

1

ãp−1σp−2dσ√
σ2 − 1(σ +

√
σ2 − 1)

.

The integrand in the right-hand side has a square root singularity at σ = 1 and
behaves like σp−4 for large σ, hence the integral is of the order O(amin(2,p−1)).
Finally, the integral for wp extends to tp, hence we have to subtract from (2.9) the
contribution ∫ tp

b

dt√
F (t)

= O
(∫ tp

b

dt
√
tp − t

)
= O(

√
tp − b) = O(a).

Summing up, we have proved∫ b

a

dt√
F (t)− F (a)

=
∫ tp

a

dt√
F (t)

+ log 2 +O(aσ). (2.10)

Since the integral in the right-hand side is the inverse function of wp, its asymptotics
(2.3) imply (2.8). �

As we expect we can use the function wp as an approximation to ϕε.
Lemma 2.2. For each ε > 0 equation (2.1) has a unique spike solution ϕε with a
single internal maximum, located at the center of the interval. It approximates wp,

|ϕε(ξ)− wp(ξ)| ≤ ce−1/ε, (2.11)

uniformly for |ξ| ≤ 1/ε, 0 < ε < εo and it satisfies on [−1/ε, 1/ε] the equivalence
ϕε � wp.
Proof: The equivalence is an immediate consequence of (2.11) and the fact that
both ϕε and wp are bounded from below by α ≈ e−1/ε. To prove (2.11) we start
with the evident property ϕo(ξ) = wp(ξ). For any 1 < b < tp we can define the
positive solution ϕ(ξ, b) with global maximum at zero by the integral:∫ b

ϕ(ξ,b)

dt√
F (t)− F (b)

= |ξ| or ϕε(ξ) = ϕ(ξ, bε).

Thus ϕ(ξ, b) is defined for |ξ| ≤ ξ(b), where

ξ(b) :=
∫ b

a(b)

dt√
F (t)− F (b)

and F (a(b)) = F (b), a(b) < 1 < b.

In particular, ξ(b)→∞ as b→ tp. We have

ψ(ξ, b) := ϕ(ξ, b)− wp(ξ) = ϕ(ξ, b)− ϕ(ξ, tp) =
∫ b

tp

∂ϕ

∂b
(ξ, b)db

and the function h(ξ, b) := ∂ϕ
∂b (ξ, b) satisfies the problem ( ′ = d/dξ)

h′′ = (1− pϕp−1)h, h(0, b) = 1, h′(0, b) = 0.
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In particular h(ξ, b) is bounded on any ε-independent rectangle [−η1, η1]×[tp−δ, tp].
Therefore

|ψ(ξ, bε)| ≤ ce−2/ε, if |ξ| ≤ η1, 0 < ε < εo.

Since ψ is an even function it remains to consider the interval [η1, 1/ε]. Now we
shall use the maximum principle for the boundary problem:

ψ′′ = qεψ, q(ξ, ε) :=
f(ϕε)− f(wp)

ϕε − wp
,

ψ(η1, bε) = O(e−1/ε), ψ(1/ε, bε) = O(e−1/ε),

where f(t) = t − tp. The function f is decreasing on [0, to) to := p−1/(p−1) < 1,
hence q is non-negative if ϕε ≤ to and wp ≤ to. If we choose η1 such that those
conditions are satisfied by ϕε and wp in this point, they are true on all of [η1, 1/ε]
because of the monotony of both functions. Then the maximum principle implies

|ψ(ξ, bε)| ≤ ce−1/ε

in the interval [η1, 1/ε]. �
Thus we have only one steady state solution S which has a single internal spike

at zero:

S(x, ε) = H(Φ)Φ(x, ε), H(Φ) :=
[

1
2

∫ 1

−1

Φr(ξ, ε)dξ
]−αr

, (2.12)

where Φ(x, ε) := ϕε(x/ε) and αr := q
rq−p+1 . For all x ∈ [−1, 1] it satisfies the

estimates

|Φ(x, ε)− wp(x/ε)| ≤ ce−1/ε, |Φ′(x, ε)− w′p(x/ε)| ≤ ce−1/ε. (2.13)

Using this internal spike solution Φ we can define two steady state solutions with
one boundary spike. Namely,

Φ+(x, ε) := Φ(x2 −
1
2 ,

ε
2 ), and Φ−(x, ε) := Φ(x2 + 1

2 ,
ε
2 ), 0 < ε < εo (2.14)

have spikes at x = 1 and at x = −1 respectively. Both functions are smooth
periodic functions with period 4.

2.2. Linearization around the one-spike solution. To study stability of the
spike solution, we consider the first variation of the shadow system (1.4)–(1.3)
around this solution. It is convenient to rewrite this system as one equation:

ut = ε2uxx − u+ g(u),

ux(±1, t) = 0, u(x, 0) = uo(x), u′o(±1) = 0,
(2.15)

where

g(u) = [ 1
2

∫ 1

−1

ur(ξ, t)dξ]−qup. (2.16)

Let v be the variation around S; set u(x, t) = S(x, ε) + v(x, t), then v satisfies

vt = ε2vxx − v + g(S + v)− g(S),

vx(±1, t) = 0, v(x, 0) = vo(x) := uo(x)− S(x, ε),

or written in operator form

vt +Av = f [v], v(x, 0) = vo(x), (2.17)
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where f is the quadratic term

f [v] :=
∫ 1

0

(1− σ)∂2
σg(S + σv) dσ (2.18)

where ∂2
σ denotes the second derivative of σ 7→ g(S + σv) w.r.t. σ and where A is

the spatial linear operator,

Av := −ε2v′′+ v− pΦp−1v+ qrΦp
(∫ 1

−1

Φr(ξ, ε)dξ
)−1

∫ 1

−1

Φr−1(ξ, ε)v(ξ)dξ, (2.19)

defined on the Sobolev space H2(−1, 1) with boundary conditions v′(±1) = 0.
For the study of the spectrum and the study of stability using this spectrum it

is convenient to stretch the spatial variable by x = εξ and to define the operators
Aε = Lε +Bε on the stretched interval [−1/ε, 1/ε], where (u̇ := du/dξ)

Lεu := −ü+ u− pϕp−1
ε u, D(Lε) := {u ∈ H2([− 1

ε ,
1
ε ]) u̇(± 1

ε ) = 0}. (2.20)

Its limit Lo for ε→ 0 has domain H2(R). The non-local operator Bε (of rank one)
is defined by

Bε = dr,ε〈·, ϕr−1
ε 〉ϕpε , (2.21)

where

dr,ε =
γr(p− 1)
βr,ε

=
qr

βr,ε
, βr,ε =

∫ 1/ε

−1/ε

ϕrε(ξ, ε)dξ

and γr > 1 is given by γr = qr/(p− 1), see (1.2).
The derivative of ϕε and powers of ϕε are to be used in estimating eigenvalues

etc. Below we give some useful relations. For all m > 0 we have

Lεϕ
m
ε = (1−m2)ϕmε + κmϕ

m+p−1 +m(m−1)F (aε)ϕm−2
ε , (2.22)

where κm := m(2m+ p− 1)/(p+ 1)− p. The third term is uniformly of the order
O(e−min(m,2)/ε). In particular, the remainder is zero for m = 1:

Lεϕε = (1− p)ϕpε . (2.23)

It is also easy to check that

Lε
( ϕε
p− 1

+
ξϕ̇ε
2
)

= −ϕε and Lεϕ̇ε = 0. (2.24)

Finally, we can evaluate the integral βm,0 :=
∫∞
−∞ wmp (ξ)dξ in terms of the Gamma

function,

βm,0 = (
p+ 1

2
)
m/(p−1) 2

p− 1

√
πΓ( m

p−1 )

Γ( m
p−1 + 1

2 )
. (2.25)

3. The spectrum of the differential operator

The eigenvalues of a selfadjoint differential operator L := −d2/dx2 +Q(x) with
domain D(L) of functions on a bounded or unbounded interval I ⊂ R satisfy the
minimax property, see [12, Theorem XIII.1, p. 76]. If L has isolated eigenvalues
λo ≤ λ1 ≤ λ2 ≤ · · · , ordered in increasing sense and counted according their
multiplicity (and below the continuous spectrum if present), these satisfy

λk = inf
E⊂C, dim(E)≥k+1

max
u∈E, ‖u‖=1

〈Lu, u〉, (3.1)

where 〈·, ·〉 denotes the inner product and where C is the domain of the operator.
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The operator Lε of our study (with “potential” Q := 1− pϕp−1) is a selfadjoint
differential operator bounded from below and it has a discrete spectrum consisting
of eigenvalues of multiplicity one for each ε > 0: λo(ε) < λ1(ε) < λ2(ε) < · · · with
corresponding eigenfunctions ψo(·, ε), ψ1(·, ε), ψ2(·, ε), · · ·. Its spectrum converges
for ε → 0 (and for all selfadjoint boundary conditions) to the spectrum of Lo, see
e.g. [1, ch. 9]. We shall calculate the rate of convergence.

The “limiting” operator Lo (on the whole real axis) has the continuous spectrum
[1,∞) and may have discrete eigenvalues below this interval (see [8, p. 140]). Simple
calculations show:

ψo := w
p+1

2
p , Loψo = − (p−1)(p+3)

4 ψo, p > 1,

ψ1 := ẇp , Loψ1 = 0, p > 1,

ψ2 := w
3−p

2
p − 1

2
p+3
p+1w

p+1
2

p , Loψ2 = (p−1)(5−p)
4 ψ2, 1 < p < 3.

(3.2)

Since ψo, ψ1 and ψ2 have zero, one and two zeros respectively, and since the
zeros of the eigenfunctions of second order ordinary differential operators interlace,
λo := − 1

4 (p− 1)(p+ 3), λ1 := 0 and (if p < 3) λ2 := 1
4 (p− 1)(5− p) are the three

smallest eigenvalues of Lo. In order to show that Lo does not have a second isolated
eigenvalue for p > 3, we substitute ψ(ξ) = ϑ(p−1

2 ξ) in the eigenvalue equation
Loψ = λψ using the explicit form of wp from (2.2). This yields the equation

Mpϑ := −ϑ̈− 2p(p+ 1)(p− 1)−2 cosh−2(η)ϑ = (
2

p− 1
)2(λ− 1)ϑ = µϑ. (3.3)

Since the “potential” in Mp is an increasing function of p, its eigenvalues are in-
creasing functions of p by the minimax theorem (3.1). Since λ2 → 1 if p→ 3 from
below, the second eigenvalue of Mp tends to zero for p↗ 3 and gets absorbed into
the continuous spectrum if p ≥ 3. So Lo has only two eigenvalues below 1 if p ≥ 3.

In order to compute the exponentially small rate of convergence of the smallest
eigenvalues λo(ε) and λ1(ε) (and λ2(ε) if p < 3) of Lε, we can use the technique of
[5] and [6]. We compute (formally) approximate eigenfunctions and project them
onto the true eigenfunctions; the residuals yields estimates for the eigenvalues.

The asymptotic expansion of λk(ε) will be calculated explicitly for k = 1; the
expansions for the other eigenvalues are not needed explicitly and are completely
analogous. We use the same technique as in [5] and [6]. We compute an approximate
eigenfunction w of unit norm ‖w‖ = 1 of the operator Lε and we show that

〈Lεw,w〉 = νε(1 +O(R̃ε)) and ‖Lεw‖2 = O(R̃εRε), (3.4)

where both R̃ε = o(1) and Rε = o(1) as ε→ 0.
The generalized Fourier expansion of w in the true eigenfunctions {ψk|k =

0, 1, · · · } of Lε is

w =
∞∑
k=0

ckψk with
∞∑
k=0

|ck|2 = ‖w‖2 = 1. (3.5)

Since all eigenvalues of Lε except λ1(ε) are uniformly bounded away from λ1(0) = 0
by a distance d > 0, we find from (3.4)

1− |c1|2 =
∞∑

k=0, k 6=1

|ck|2 ≤ d−2
∞∑

k=0, k 6=1

λ2
k|ck|2 ≤ d−2‖Lεw‖2 = O(R̃εRε),
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implying that |c1|2 = 1 + O(R̃εRε). The estimate for the inner product in (3.4)
now implies that

〈Lεw,w〉 − νε = |c1|2λ1(ε)− νε +
∞∑

k=0, k 6=1

λk|ck|2 = O(R̃ε(νε +Rε))

and hence that
λ1(ε) = νε +O(R̃ε(νε +Rε)). (3.6)

Let ψ1(·, ε) be the true eigenfunction of Lε corresponding to λ1(ε). We look for an
approximate eigenfunction of the form ψ1(·, ε) ≈ ϕ̇ε+ boundary layer corrections.
Within the interval [−1/ε, 1/ε] the tails of ϕ̇ε are exponentially small by (2.8) and
(2.11),

ϕ̇ε(± 1
ε ) = 0 and ϕ̈ε(± 1

ε ) = 2αe−1/ε(1 +O(e−σ/ε)). (3.7)
We construct boundary layer terms at both endpoints by standard matched asymp-
totic expansions. Suitable boundary layer corrections at the right and left endpoints
are

h(ξ) := − ϕ̈ε( 1
ε )%(εξ) exp

(
ξ − 1

ε

)
,

k(ξ) := ϕ̈ε(− 1
ε )%(−εξ) exp

(
− ξ − 1

ε

)
,

ψ̃1 := ϕ̇ε + h+ k

(3.8)

where % is a monotonous C∞ cut-off function satisfying %(x) = 1 if x ≥ 1/2 and
%(x) = 0 if x ≤ 1/4. From the definition it is clear that ψ̃1 satisfies the boundary
conditions at ξ = ±1/ε and

Lεh = −pϕp−1
ε h+ ϕ̈ε( 1

ε )
(
ε2%′′ + 2ε%′

)
exp

(
ξ − 1

ε

)
. (3.9)

In the first term the decay of ϕε towards the boundary compensates (partially if
p < 2) the increase of the boundary layer term h giving the order O(e−(1+σ)/ε)
with σ := min(1, p − 1). Since the support of %′ is in [1/4, 1

2 ], the second term in
the r.h.s. is of the order O(e−3/2ε). For Lεk we have an analogous estimate. Hence,

‖Lεψ̃1‖2 = O
(
e−3/ε + e−2(1+σ)/ε

)
. (3.10)

Since Lεψ̃1 = Lε(h + k) and ˙̃
ψ1(±1/ε) = 0, we can evaluate the quadratic form

(3.4), using integration by parts:

〈Lεψ̃1, ψ̃1〉 =〈Lε(h+ k), ψ̃1〉 =
[
−(ḣ+ k̇)ψ̃1

]1/ε
−1/ε

+ 〈h, Lεh〉+ 〈k, Lεk〉

=− 8α2e−2/ε
(
1 +O(e−σ/ε)

) (3.11)

By (3.6) we may conclude, see [15, eq. (43)]

λ1(ε) = −8α2ζe−2/ε
(
1 +O(e−σ/ε)

)
, ζ−1 :=

∫ 1/ε

−1/ε

ϕ̇2
ε(ξ)dξ. (3.12)

The factor 8 is due to the factor 2 in (2.8), which makes the approximate eigen-
function two times as large as the function wp used in [15].

The asymptotics of λo(ε) and λ2(ε) is derived in an analogous way. By analogy
to (3.2) and (3.8) suitable approximate eigenfunction corresponding to λo(ε) and
λ2(ε) are

ψ̃o := ϕ
p+1

2
ε and ψ̃2 := ϕ

3−p
2

ε − 1
2
p+3
p+1 ϕ

p+1
2

ε . (3.13)
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Their asset is, that they satisfy the boundary conditions exactly; however, Lεψ−λψ
is small but nonzero, due to (2.22). As an alternative, we can use the functions
given in (3.2) plus boundary layer corrections, which produce error terms likewise.
A lower bound on λ2 for p > 3 is produced likewise as before, using the fact that
ϕε is well approximated by wp according to lemma 2.2. So we have proved the
following statement.
Theorem 3.1. The three smallest eigenvalues of Lε satisfy the asymptotic formulae
for p > 1 and for ε→ 0

λo(ε) = − 1
4 (p− 1)(p+ 3) +O

(
e−2/ε

)
λ1(ε) = −8α2ζe−2/ε

(
1 +O(e−σ/ε)

)
λ2(ε)

{
= 1

4 (p− 1)(5− p) +O
(
e−(3−p)/ε) if p < 3

≥ 1 +O(e−2/ε) if p ≥ 3.

(3.14)

where σ := min(1, p− 1), see (2.7).
Remark 3.2. When we linearize around the single boundary spike steady state
solutions (cf. (2.14)), we can do the same analysis as before by considering the
respective operator Lε on H2(0, 2/ε) (using the translational invariance). In com-
parison to the previous case this means that we have to consider on the interval
[−2/ε, 2/ε] the subset of even functions only and hence, that the odd-indexed eigen-
values are not present. Hence there is no exponentially small negative eigenvalue
in this case: λo(ε) persists and the next eigenvalue is near 1

4 (p− 1)(5− p) if p < 3
or above 1 otherwise.
Remark 3.3. Likewise we can linearize the problem around wp at any off-central
location instead of ϕε, like Ward & all do, [15, 16, 17]; we need not use an exact
stationary solution of (1.4). For the eigenvalue analysis this makes little difference.
All above results can be translated to this case, if we replace 1/ε in the estimates
by the distance from the center of the (approximate) spike to the boundary.

4. Perturbation by the non-local term

In this section we consider how the non-local operator Bε, defined in (2.21),
perturbs the eigenvalue of Lε with smallest real part. Both the operators Lε and
Bε are invariant under change of sign ξ 7→ −ξ and hence leave the subspaces of
even and odd functions invariant. Since Bε maps odd functions to zero, the part of
the spectrum of Lε associated with odd eigenfunctions remains unchanged. Hence
we restrict our analysis exclusively to even functions in this section. In particular,
this removes the negative exponentially small eigenvalue λ1(ε) with asymptotics
given by (3.14) from the spectrum under study, because it is associated with an
odd eigenfunction. Except for λo, all eigenvalues of (the even part) of Lε are
positive and bounded from below by µ := min(λ2, 1). The addition of the non-local
perturbation Bε changes the eigenvalues; as seen from fig. 1 they may go off into
the complex plane. Our goal is to find conditions on the parameters p, q, r so that
the spectrum of Aε (on even functions) lies in the right half -plane. Condition (1.2)
is necessary. In [17] and [16] it is shown, that positivity is true if r = p+1 or if
r = 2 and 1 < p < 5. We show that positivity is true also if r = (p+ 3)/2 and, by
perturbational techniques, in a wide area around these cases. Finally we consider
a negative result, that the smallest eigenvalue remains in the negative half plane if
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r is slightly larger than (p − 1)/q and q > 2. For consistency of the exposition we
repeat some arguments from the papers cited above. For ease of notation we use
the spectral resolution of Lε (restricted to the subspace of even functions).

Lεu = λo〈u, ψo〉ψo +
∫ ∞
µε

νdEνu, (4.1)

where ψo is the normalized ground state of Lε and µε is the next eigenvalue µε =
λ2(ε) or the bottom of the continuous spectrum (if ε = 0 and p ≥ 3).

4.1. Preliminaries. First we show that λo(ε) is not in the spectrum of Aε. Sup-
pose the contrary, that λo is an eigenvalue with eigenfunction ψ, Aεψ = λo(ε)ψ.
Then 〈ψ,ϕr−1

ε 〉 6= 0, because otherwise Bεψ = 0 and Lεψ = λo(ε)ψ, such that ψ is
a multiple of ψo, which is a positive and cannot have zero inner product with the
positive function ϕε. Because λo is an eigenvalue of Lε, selfadjointness implies

0 = 〈(Lε − λo(ε))ψ,ψo〉 = −〈Bεψ,ψo〉 = −dr,ε〈ψ,ϕr−1〉〈ψo, ϕ
p〉 6= 0.

This contradiction shows that λo(ε) is not an eigenvalue for Aε. In order to prove, in
addition, that λo is in the resolvent set we must show that the inverse of Aε−λo(ε)
is bounded. Since this is a closed operator defined on the whole Hilbert space
L2(−1/ε, 1/ε), it suffices to show that we can solve the equation (Aε−λo(ε))ψ = g
for arbitrary g. To this end we apply Fourier’s method and write g, ϕε and ψ as a
multiple of ψo and a rest orthogonal to it,

g = cψo + go, 〈go, ψo〉 = 0,

ψ = lψo + h, where 〈h, ψo〉 = 0,
ϕpε = coψo + ho, 〈ho, ψo〉 = 0,

with co 6= 0. This splits the equation into an equation for h and a scalar one for l:

(Lε − λo(ε))h = go −
c

co
ho, lco〈ψo, ϕ

r−1〉+ 〈h, ϕr−1〉co = c.

Since both have a unique solution, we conclude that λo(ε) is not in the spectrum
of Aε.

In this way the problem is reduced to investigate the spectrum of Aε on the re-
solvent set of Lε. There we can use the formula of Sherman-Morrison for computing
the inverse,

(Aε − λ)−1 =
(
1 + (Lε − λ)−1Bε

)−1 (Lε − λ)−1

=
(

1− (Lε − λ)−1Bε
hε(λ)

)
(Lε − λ)−1,

(4.2)

where the function hε(λ) in the denominator by (2.23) and (4.1) satisfies

hε(λ) := 1 + dr,ε〈(Lε − λ)−1ϕpε , ϕ
r−1
ε 〉

= 1− dr,ε
p− 1

〈(Lε − λ)−1Lεϕε, ϕ
r−1
ε 〉 (4.3)

= 1− qr

p− 1
− dr,ε
p− 1

〈(Lε − λ)−1ϕε, ϕ
r−1
ε 〉

= 1− qr

p− 1
− qrλ

βr,ε(p− 1)

{
〈ϕε, ψo〉〈ψo, ϕ

r−1
ε 〉

λo − λ
+
∫ ∞
µε

〈dEνϕε, ϕr−1
ε 〉

ν − λ

}
.

This formula shows that hε is analytic on the resolvent set of Lε and that any zero of
hε outside the spectrum of Lε is an eigenvalue of Aε with associated eigenfunction
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ψ := (Lε − λ)−1ϕpε . Its value at λ = 0 is given by hε(0) = 1 − qr
p−1 = 1 − γr < 0.

Since h(λ) ↘ −∞ if λ is real and λ ↘ λo, h(λ) has a negative real zero if γr < 1,
i.e. if condition (1.2) is not satisfied. Moreover, this formula implies

|hε(λ)− 1 +
qr

p− 1
| ≤ dr,ε‖ϕε‖‖ϕr−1

ε ‖
p− 1

|λ|
min(|λ− µε|, |λo − λ|)

, (4.4)

such that a circle around 0 of radius O(1−p−1
qr ) (for qr+p−1↘0) must be contained

in the resolvent set of Aε.

4.2. The selfadjoint case r = p+1. Since Lε is a selfadjoint operator and Bεu =
dr,ε〈u, ϕr−1

ε 〉ϕpε , the operator Aε is selfadjoint if r = p+1 and has real eigenvalues.
For real λ the derivative of h satisfies

h′ε(λ) = dr,ε‖(Lε − λ)−1ϕpε‖2 ≥ 0, λ ∈ R.

Hence h is monotonically increasing and can not have negative zeros, because
hε(0) < 0.

To find the magnitude of perturbations around this case that conserve the posi-
tivity, we derive a lower bound for the smallest eigenvalue. Because the resolution
of the identity of Lε depends smoothly on ε ∈ [0, εo] for all λ in a compact subset
of the resolvent of Lo, we may compute a lower estimate for ε = 0 and extend the
result by continuity to [0, εo(p, q, r)]. Let α be the smallest eigenvalue of Ao. Evi-
dently α < µo. We estimate α from below by an upper estimate of the function ho

given in (4.3). Using (2.23), we see that for r = p+1 the integral in its right-hand
side may be written as

−
∫ ∞
µo

〈dEνϕo, ϕ
r−1
o 〉

ν − λ
=
∫ ∞
µo

ν

p− 1
〈dEνϕo, ϕo〉

ν − λ
=
∫ ∞
µo

p− 1
ν

〈dEνϕpo, ϕpo〉
ν − λ

(4.5)

and that both variants are positive for real λ < µo and can be estimated from above
by

M

µo − λ
:= min

( (p− 1)(‖ϕpo‖2 − 〈ψo, ϕ
p
o〉2)

µo(µo − λ)
,
µo(‖ϕo‖2 − 〈ψo, ϕo〉2)

(p− 1)(µo − λ)

)
Inserting this in (4.3) we find a simple upper estimate for ho(λ) which is monotone
on (λo, µo); hence it has a zero in this interval, that can be computed from a simple
quadratic equation. For some values of q this lower bound is plotted in figure 3.
Since the integral (4.5) is positive, we obtain from (4.3) an upper bound for α by
omitting the integral.

Having the above control on the smallest positive eigenvalue of the selfadjoint
operator Aε in the case r = p+ 1, we can consider it for neighbouring values of r as
a perturbation of the selfadjoit one. Namely, if A = L + B, where L is selfadjoint
and B has relatively small norm, then from the formulae

(A− λ)−1 = (1 + (L− λ)−1B)−1(L− λ)−1,

‖(L− λ)−1‖ ≤ 1/dist(λ, σ(L)),
(4.6)

where σ(L) is the spectrum of L, it follows that if λ is in the spectrum of A then
the distance from λ to the spectrum of L is at most the norm of B. In particular,
<λ ≥ α − ‖B‖, where α is the smallest real part of the spectrum of L. In our
particular case

B = u 7→ 〈u, dr,εϕr−1
ε − dp+1,εϕ

p
ε〉ϕpε
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Figure 3. Upper left: Lower and upper bounds for the smallest
eigenvalue of Ao for q=0.5, q=1 and q=2. The lower bound is a
monotone function of q (as is the eigenvalue itself). The dashed
curve is µo (the second eigenvalue or the bottom of the contin-
uous spectrum), which provides an upper bound for all q. The
dotted line provides a sharper upper bound for q=0.5. The other
pictures give the corresponding domains in p×r-plane around the
selfadjoint line (dash-dotted), where the perturbations are smaller
than the lower bound and the real part of the smallest eigenvalue
remains positive. The width of this domain is (more or less) in-
versely proportional to q. The dashed line represents condi-
tion (1.2).

and we can estimate the real part of any eigenvalue λ of Aε:

<λ ≥ αε − ‖ϕpε‖‖dr,εϕr−1
ε − dp+1,εϕ

p
ε‖,

hence all eigenvalues of Aε will have positive real part for all 0 < ε < εo(p, q, r) if
(p, q, r) satisfy

‖wpp‖ ‖dr,owr−1
p − dp+1,ow

p
p‖ < αo. (4.7)

4.3. The case p = 2r−3. Using Gershgorin’s theorem we prove that spectrum of
Aε (restricted to the subspace of even functions) is in the positive half plane for a
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large domain in parameter space (p, q, r) around the plane p = 2r−3. As before,
we consider first the case ε = 0.

1 1.2 1.4 1.6 1.8 2 2.2
0

5

10

15

20

25
 q = 0.1

<--- p --->

<
--

- 
r 

--
->

1 1.5 2 2.5 3 3.5
1

2

3

4

5

6

7

8

9
 q = 0.5

<--- p --->

<
--

- 
r 

--
->

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
 q = 1

<--- p --->

<
--

- 
r 

--
->

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7
 q = 2

<--- p --->

<
--

- 
r 

--
->

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7
 q = 4

<--- p --->

<
--

- 
r 

--
->

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7
 q = 8

<--- p --->

<
--

- 
r 

--
->

Figure 4. Domains in the p×r-plane, where lemma 4.1 implies
positivity of the real part of any eigenvalue, pictured for q =
0.1, 0.5, 1, 2, 4 and 8. The dashed line represents condition (1.2);
below it the smallest real part is negative, see. The straight line,
emanating from the point p = 1 and r = 2 is the line 2r = p + 3,
at which positivity is proved in remark 4.2, provided (1.2) is satis-
fied.

Let (λ, ψ) with <λ < µo be an eigenpair of Ao and let ψ = ξψo + ηg be the
orthogonal decomposition with 〈ψo, g〉 = 0 and ‖g‖ = 1, then λ is eigenvalue and
(ξ, η) ∈ R2 the corresponding eigenvector of the matrix

Mg =

(
m11 m12

m21 m22

)
:=

(
〈Loψo, ψo〉+ 〈Bεψo, ψo〉 〈Bεg, ψo〉

〈Bεψo, g〉 〈Log, g〉+ 〈Bεg, g〉

)
. (4.8)

With constants c1, c2, d1 and d2 defined by

c1 := 〈ϕpo, ψo〉, c2 := 〈ψo, ϕ
r−1
o 〉, d2

1 := ‖ϕpo‖2 − c21 and d2
2 := ‖ϕr−1

o ‖2 − c22
the elements of Mg are given by

m11 = λo + dr,εc1c2, m12 = dr,εc1〈g, ϕr−1
o 〉,

m21 = dr,εc2〈ϕpo, g〉, m22 = 〈Log, g〉 − dr,ε
and satisfy for any (normalized) function g orthogonal to ψo the inequalities

|m12| ≤ dr,εc1d2, |m21| ≤ dr,εc2d1, <m22 ≥ µo − dr,εd1d2 (4.9)

Lemma 4.1. If both m11 and µo−dr,εd1d2 are positive, then all eigenvalues of Ao

have positive real part if

m11(µo − dr,εd1d2) > (dr,ε)
2
c1c2d1d2 (4.10)
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Proof. From Gershgorin’s circle theorem (see [4], theorem 7.2.1) we know that
the eigenvalues of Mg are in the union of the disks around m11 and m22 with radii
|tm12| and |m21/t| respectively for any t ∈ R. If both diagonal elements have
positive real part, the Gershgorin circles around them are contained in the positive
half plane if their radii are smaller than those real parts. The optimal choice for t,
valid for all g, leads to condition (4.10). �

Remark 4.2. If 2r = p + 3, the non-local term B is zero on the orthogonal
complement of ψo. This implies that m12 = 0 and m22 ≥ µo. Hence, positivity of
the spectrum reduces to the condition m11 > 0. Using relation (2.23) we find

m11 =λo + dr,ε〈ϕpo, ψo〉〈ψo, ϕ
(p+1)/2
o 〉

=λo −
qrλo〈ϕo, ψo〉‖ϕ(p+1)/2

o ‖
βr,ε(p− 1)

=λo(1− qr

p− 1
) > 0,

implying positivity in the region satisfying (1.2). �

Since the significance of condition (4.10) is difficult to grasp, we have computed
the region in p×r-plane where it is satisfied and plotted its boundary for several
values of q in figure 4. Clearly, the line 2r = p + 3 is always inside the computed
domain. Moreover, we see that r may take large values if q is small. If q and/or r
are large, the non-local term is large too. Its contribution to m11 in (4.9) is always
positive. However, in the lower estimate, that we have to use for m22, it gives a
negative contribution. It can be made small only if the components of ϕpε and ϕr−1

ε

in the orthogonal complement of ψo are small.
For ε > 0 and small we may conclude as before, that all eigenvalues of Aε will

have positive real part for all 0 < ε < εo(p, q, r) if (4.10) is satisfied.

4.4. A negative result. As we pointed out in the beginning of this section, condi-
tion (1.2) is necessary for positivity of the real parts of all eigenvalues. It is however
not sufficient; we show that hε has a negative zero near the line qr = p − 1 and
q > 3. As before, we do the analysis for ε = 0 and extend the result to ε > 0 by
continuity. We can compute the next term in the expansion (4.3) of ho, writing

ho(λ) = 1− qr

p− 1
− dr,oλg(λ)

p− 1
, g(λ) := 〈(Lo − λ)−1ϕ,ϕr−1〉.

By (2.24) we can compute the value of g at zero

g(0) = 〈L−1
o ϕ,ϕr−1〉 = 〈 ϕ

p− 1
+
ξϕ′

2
, ϕr−1〉 = (

1
2r
− 1
p− 1

)βr,o. (4.11)

and for the remainder R with g(λ) = g(0) + λR(λ) we have

R(λ) = 〈[(Lo − λ)−1 − L−1
o ]ϕ,ϕr−1〉/λ = 〈(Lo − λ)−1L−1

o ϕ,ϕr−1〉. (4.12)

From (4.11) we see that g(0) > 0 if p > 2r + 1 and, hence, that h has a negative
slope at λ = 0; since h(0) < 0 this may imply that h(λ) may be positive for some
λ < 0 and hence that h has two negative zeros, if the remainder R is not too bad.
Using the spectral resolution (4.1) of Lo (with µo = 1 because p > 2r+1 ≥ 3) we
get for real λ in the interval [−1, 0]

R(λ) =
〈ϕo, ψo〉〈ψo, ϕ

r−1
o 〉

λo(λo − λ)
+
∫ ∞

1

〈dEνϕo, ϕ
r−1
o 〉

ν(ν − λ)
≤ c1c2
|λo|(|λo| − 1)

+ d1d2 =: ao,
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Figure 5. Region above the line qr = p − 1 with q > 3, where
the operator Aε (restricted to the subspace of even functions) has
two real negative eigenvalues. Because the region is quite small, we
rescale the domain and plot vertically r − p−1

q versus horizontally
p for the values q = 2.5, 3, 5, and 10.

where cj and dj are given in (4.9). Hence, we can estimate ho from below for
λ ∈ [−1, 0] by the quadratic

ho(λ) ≥ 1− qr

p− 1
− qλ(p− 1− 2r)

2(p− 1)2
− dr,oaoλ

2

p− 1
, (4.13)

for which we can easily check, whether it has positive values on [−1, 0]. In figure 5
we have plotted the small strip above the line qr = p − 1 with q > 3, where this
estimate proves the existence of two negative eigenvalues. An obvious drawback of
the method is, that it detects a negative result only if there are two real negative
eigenvalues and that the method fails if both eigenvalues coalesce and go off into a
complex pair with a negative real part as can be seen in figure 6, where the (real
parts of) the four smallest eigenvalues (of a numerical discretisation) are plotted in
the neighbourhood of the critical point, where rq = p− 1.

5. Contraction around the steady state S(x, ε)

In this section we study metastability of the spike solution S of (1.3–1.4) as given
in (2.12). We assume that the parameters (p, q, r) are such that all eigenvalues of
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1

1.5

p = 4;  r = 1.201;  <--- q --->

curves for real parts of the four smallest eigenvalues

Figure 6. Plot of (the real parts of) the four eigenvalues with
smallest real part as a function of q if p = 2.5 and r = 1.201 near
the critical value of q, where p− 1 = 2r.

Aε are located in the right half plane, except for the exponentially small negative
eigenvalue λ1(ε) associated with an odd (or antisymmetric) eigenfunction.
Norms. Besides the standard L2-norm for functions on the interval [−1, 1] denoted
by ‖ · ‖, we use in this section the “energy norm” ‖ · ‖1, and the “operator norm”
‖ · ‖2, which are associated naturally to a problem with a small parameter like (2.1)
and are defined by:

‖u‖21 := ‖u‖2 + ‖εu′‖2 and ‖u‖22 := ‖u‖2 + ‖ε2u′′‖2.

For fixed positive a and uniformly for all ε ∈ (0, εo] these norms satisfy the equiv-
alences

〈(A+ a)u, u〉1/2 � ‖u‖1 and ‖(A+ a)u‖ � ‖Au‖+ a‖u‖ � ‖u‖2 (a > 0) (5.1)

We denote by ‖ · ‖∞ the supremum norm (on the continuous functions); it satisfies
the Sobolev inequality

‖u‖∞ ≤
√

2/ε‖u‖1. (5.2)

Finally, C denotes a generic positive constant that may differ at each occurrence.
Metastability is generally used in a vague way in association with small eigen-

values of some linearized operator. The idea is, that a solution S is to be called
metastable, if a small perturbation of the initial condition yields a solution that
remains in the vicinity of S during a long time interval, whose length grows beyond
bound, if ε→ 0. To be precise:
Definition 5.1. The spike solution S(·, ε), 0 < ε < εo, is called metastable in
the norm | · | if there exist (monotonous) order functions δ(ε)→ 0, δo(ε)→ 0 and
T (ε)→∞ as ε→ 0, such that if a solution U of (1.4) initially satisfies |U(·, 0)−S| <
δo(ε), then it satisfies |U(·, t)− S| < δ(ε) for all 0 < t < T (ε), 0 < ε < εo.

Obviously, we are not satisfied with pure existence of such order functions and
we want to find explicit estimates on their decay or growth.

We study perturbations around the steady state spike solution S. As in [6] we
use a contraction method to show, that a solution starting near S stays confined
to a small tube around S for an (exponentially) long time lapse. The perturbation
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satisfies eq. (2.17), which reads:

vt +Av = f [v], v(x, 0) = vo(x),

where the quadratic term f is given by (2.18) and the (linear) operator A is de-
fined by (2.19). Obviously, this operator A has the same spectral properties as
its (stretched) cousin Aε has in sections 3 and 4. Under the positivity condition,
stated above, A is a sectorial operator, see [9]: there exists an angle χ ∈ (0, π/2),
such that the resolvent set of A contains the sector

Λ := {λ ∈ C χ ≤ | arg(λ− λ1(ε))| ≤ π, λ 6= λ1(ε)}.
In this sector the resolvent satisfies for some constant M , not depending on ε for
all small ε, the estimate

‖(A− λ)−1‖ ≤ M

|λ− λ1(ε)|
for all λ ∈ Λ.

Associated to A is the semigroup

e−At :=
1

2πi

∫
Γ

(A− λ)−1e−λtdλ, t > 0, (5.3)

where Γ is a suitable contour in the resolvent set Λ.
Lemma 5.2. For all t > 0, all ε ∈ (0, ε0] and for some constant c > 0 not
depending on t and ε this semigroup satisfies:

‖e−At‖ ≤ Ce−λ1(ε)t , (5.4)

‖Ae−At‖ ≤ C (|λ1|+ t−1)e−λ1(ε)t , (5.5)

‖e−At u‖1 ≤ Ce−λ1(ε)t

{
‖u‖1 ,
(1 + t−1/2) ‖u‖ ,

(5.6)

‖e−At u‖2 ≤ C e−λ1(ε)t ‖u‖2 . (5.7)

Proof. We choose in (5.3) the contour Γ := {−δ + λ1 + %e±iχ|% ∈ R+} for some
δ > 0 to be determined later on. Because cosχ > 0, we may estimate the resolvent
for any point in this set by

‖(A+ δ − λ1 + %e±iχ)−1‖ ≤ M

|δ + %e±iχ|
≤ M√

(1− cosχ)(δ2 + %2)
.

Hence,

‖e−At‖ ≤ Meδt−λ1t

π
√

1− cosχ

∫ ∞
0

e−%t cosχ√
%2 + δ2

d%.

Clearly, the choice δ = 1/t yields the desired constant for a proof of (5.4). To check
(5.5) we use the same contour and δ in the t-derivative of (5.3):

‖Ae−At‖ =‖ 1
2πi

∫
Γ

(A− λ)−1e−λtλdλ‖

≤ Meδt−λ1t

π
√

1− cosχ

∫ ∞
0

e−%t cosχ√
%2 + δ2

(|δ|+ |λ1|+ %)d%.

To prove (5.7) we use the equivalence (5.1)

‖e−Atu‖2 � ‖e−Atu‖+ ‖e−AtAu‖ ≤ Ce−λ1(ε)t(‖u‖+ ‖Au‖) ≤ Ce−λ1(ε)t‖u‖2.
The inequalities (5.6) results from interpolation between (5.7) and (5.4). �



20 PIETER DE GROEN & GEORGI KARADZHOV EJDE–2002/50

Remark 5.3. Let A be the restriction of A to the orthogonal complement of the
(true) eigenfunction ψ1(x/ε, ε) associated with λ1 and let 2µ1 be equal to the real
part of the eigenvalue of A with smallest real part, then the semigroup generated
by this restriction satisfies the estimates

‖e−At‖j ≤ Ce−µ1t‖u‖j , j = 0, 1 or 2, (5.8)

‖Ae−At‖ ≤ Ct−1e−µ1t, (5.9)

proved in analogous way.
Now we estimate the nonlinear term f [v] in (2.17), using 〈·, ·〉 for the inner

product in L2(−1, 1). From g(u) = 2q〈ur, 1〉−qup we find the explicit formula

f [v] = 2q
∫ 1

0

(1− σ)
{
p(p− 1)〈(S + σv)r, 1〉−q(S + σv)p−2v2+

− 2pqr〈(S + σv)r, 1〉−q−1〈(S + σv)r−1, v〉(S + σv)p−1v+

+ q(q + 1)〈(S + σv)r, 1〉−q−2〈(S + σv)r−1, v〉2(S + σv)p+

− qr(r − 1)〈(S + σv)r, 1〉−q−1〈(S + σv)r−2, v2〉(S + σv)p
}
dσ,

(5.10)

provided (S + σv) is strictly positive. Using (2.11), (2.12) and (2.25)∫ 1

−1

Φr(ξ, ε)dξ �
∫ 1

−1

wrp(ξ/ε)dξ � ε

implying ∫ 1

−1

Srdξ � ε1−rαr = ε(1−p)/(qr+1−p),

and assuming that v(·, t) ∈ H1(−1, 1) is bounded in modulus by %S(·, ε) for some
% ∈ (0, 1

2 ), we find the estimate

|f [v](x, ·)| ≤ C%2εq(p−1)/(qr−p+1)Sp(x, ε) (5.11)

if |v(x, ·)| ≤ %S(x, ε) and % ≤ 1/2. To estimate the difference f [v]− f [w] we write

f [v]−f [w] =
∫ 1

0

(1−σ)∂2
σg(S+w+σ(v−w))dσ+

∫ 1

0

∂σ[∂τg(S+σw+τ(v−w))|τ=0]dσ

Assuming that v(·, t) and w(·, t) ∈ H1(−1, 1) are bounded in modulus by %S(·, ε)
and that the difference satisfies |v(·, t) − w(·, t)| ≤ τS(·, ε) we find by analogy to
(5.10)

|f [v]− f [w]| ≤ Cτ%εq(p−1)/(qr−p+1)Sp(x, ε) (5.12)

Now we have the problem, that bounds weighted by S are not compatible with
the L2-bounds in lemma 5.2. We choose here for a rough way out by using the
maximum and the minimum of S for estimates from above and below:

0 < c1ε
−αre−1/ε ≤ S(x, ε) ≤ c2ε−αr (5.13)

for some positive constants c1 and c2. This certainly will influence the magnitude
of the region of contraction but not the existence of such a region. Using (5.2), we
get the estimates

‖f [v]‖ ≤ cR(ε)‖v‖21, and ‖f [v]− f [w]‖ ≤ cR(ε)(‖v‖1 + ‖w‖1)‖v − w‖1, (5.14)
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where
R(ε) := εαr−1e2/ε. (5.15)

To apply the contraction method we consider the integral equation, equivalent to
(2.17),

v = Gv, where Gv(·, t) = e−Atvo +
∫ t

0

e−A(t−s)f [v(·, s)]ds.

On the time interval [0, T ] we have for all t the estimates:

‖Gv(·, t)‖1 ≤ ce|λ1|T ‖vo‖1 + cR(ε)(1 + T )e|λ1|T sup
0<s<T

‖v(·, s)‖21,

and

‖Gv(·, t)−Gw(·, t)‖1 ≤ ce|λ1|T

×
{
‖vo − wo‖1 +R(ε)(1 + T ) sup

0<s<T
(‖v(·, s)‖1 + w‖(·, s)‖1)‖v(·, s)− (·, s)‖1

}
.

Hence, the operator G maps the cylinder of functions v on (−1, 1) × [0, T ], that
satisfy ‖v(·, 0)‖1 ≤ %, into itself and is a contraction there, provided %R(ε)(1+T ) ≤
γ for some sufficiently small positive constant γ. This proves the metastability of
the single internal spike solution S(x, ε) in the Sobolev norm ‖ · ‖1 in the sense of
definition 5.1:
Theorem 5.4 (Metastability of the single internal spike). There exist positive
constants c, γ and εo, depending on p, q and r only, such that the solution U of
the shadow equation (1.4) exists for all times 0 < t < 1/|λ1(ε)| and satisfies

‖U(·, t)− S‖1 ≤ %, 0 < t < 1/|λ1(ε)|, 0 < ε < εo , 0 < % < %ε .

for all initial conditions Uo ∈ H1(−1, 1) in the vicinity of S, that satisfy the com-
patibility conditions U ′o(−1) = U ′o(1) = 0 and satisfy the bound

‖Uo − S‖1 ≤ c%, %ε := γ|λ1|/R(ε), 0 < ε < εo.

Remark 5.5 (Local stability of the single boundary spike). We already know
from remark 3.2 that the operator A will not have small negative eigenvalue, if
we linearize around a single boundary spike steady state solution then. Thus in
the region of parameters (p, q, r), where the large negative eigenvalue is shifted to
the positive halfplane by the non-local term, the real part of the spectrum of A is
positive and we have a positive lower bound <λ > α(p, q, r) > 0. Therefore we have
local stability:
There exist positive constants c, γ and εo, depending on p, q and r only, such that
the solution U of the shadow equation (1.4) exists for all times t > 0 and satisfies

‖U(·, t)− S‖1 ≤ %e−α(p,q,r)t, 0 < ε < εo , 0 < % < %ε .

for all initial conditions Uo ∈ H1(−1, 1) in the vicinity of S, that satisfy the com-
patibility conditions U ′o(−1) = U ′o(1) = 0 and satisfy the bound

‖Uo − S‖1 ≤ c%, %ε := γ/R(ε), 0 < ε < εo.

Remark 5.6. Since the exponentially small negative eigenvalue has a one dimen-
sional eigenspace consisting of the derivative of the spike profile and since A is
“stable” on the orthogonal complement, we can show the existence of an 1-D un-
stable manifold tangent to this eigenspace at the origin, like in [6] or in [8] (page
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113). Any small perturbation is attracted to this unstable manifold exponentially
fast and hence develops into (exponentially) slow motion of the spike.
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