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Uniqueness theorem for p-biharmonic equations ∗

Jǐŕı Benedikt

Abstract

The goal of this paper is to prove existence and uniqueness of a solution
of the initial value problem for the equation

(|u′′|p−2u′′)′′ = λ|u|q−2u

where λ ∈ R and p, q > 1. We prove the existence for p ≥ q only, and give
a counterexample which shows that for p < q there need not exist a global
solution (blow-up of the solution can occur). On the other hand, we prove
the uniqueness for p ≤ q, and show that for p > q the uniqueness does not
hold true (we give a corresponding counterexample again). Moreover, we
deal with continuous dependence of the solution on the initial conditions
and parameters.

1 Introduction

In 2000, Drábek and Ôtani proved [3] that the initial value problem(
|u′′(t)|p−2u′′(t)

)′′ = λ|u(t)|p−2u(t), t ∈ [t0, t0 + ε],
u(t0) = α, u′(t0) = β,

|u′′(t0)|p−2u′′(t0) = γ,
(
|u′′(t)|p−2u′′(t)

)′∣∣∣
t=t0

= δ

(1.1)

where λ > 0 and p > 1, has a unique locally defined solution (for some ε > 0).
The equation in (1.1) is a generalization of the one-dimensional version of the
well-known linear clamped plate equation, which we obtain choosing p = 2 in
(1.1).

It should be mentioned that the existence and uniqueness problem for (1.1)
cannot be inferred from the classical theory. Indeed, let us denote v := |u′′|p−2u′′

and rewrite (1.1) as the equivalent problem

u′′(t) = |v(t)|
2−p
p−1 v(t), u(t0) = α, u′(t0) = β,

v′′(t) = λ|u(t)|p−2u(t), v(t0) = γ, v′(t0) = δ,
t ∈ [t0, t0 + ε]. (1.2)
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Whenever p 6= 2, at least one of the right-hand sides in (1.2) satisfies neither
Lipschitz (see, e.g., [2]) nor any other general condition that guarantees existence
or uniqueness of a solution. For example, the very general Kamke’s Theorem
(or its corollaries—Nagumo’s (Rosenblatt’s), Osgood’s, Tonelli’s Criterion, see,
e.g., [4, pp. 31–35]) cannot be used to prove the uniqueness here.

In what follows, we show how the situation gets more complicated as we
carry forward to more general problems than (1.1), namely to problems with

• different growth of the nonlinearity depending on u′′ and on u (non-ho-
mogeneous equation),

• jumping nonlinearity,

• non-constant coefficients.

Let us consider the problem with a non-homogeneous equation(
|u′′(t)|p−2u′′(t)

)′′ = λ|u(t)|q−2u(t), t ∈ I,
u(t0) = α, u′(t0) = β,

|u′′(t0)|p−2u′′(t0) = γ,
(
|u′′(t)|p−2u′′(t)

)′∣∣∣
t=t0

= δ

(1.3)

where λ ∈ R, p, q > 1 and I = [t0, t1], t0 < t1, or I = [t0,∞). Taking
p = q in (1.3) we obtain (1.1), but for p 6= q the situation is more complex:
for p < q we lose the existence of a globally defined solution (we call this a
“global existence”), and for p > q we lose the uniqueness of a locally defined
solution (we call this a “local uniqueness”). In Sections 3 and 4 we introduce
the corresponding counterexamples.

We can further generalize (1.3) adding the jumping nonlinearity to the right-
hand side:(

|u′′(t)|p−2u′′(t)
)′′ = µ|u(t)|q1−2u+(t)− ν|u(t)|q2−2u−(t), t ∈ I,

u(t0) = α, u′(t0) = β,

|u′′(t0)|p−2u′′(t0) = γ,
(
|u′′(t)|p−2u′′(t)

)′∣∣∣
t=t0

= δ

(1.4)

where p, q1, q2 > 1, µ, ν ∈ R, u+ = max{u, 0} (positive part of u) and u− =
max{−u, 0} (negative part of u). Putting q := q1 = q2 and λ := µ = ν into
(1.4) we arrive at (1.3). Now the situation is analogous to the previous case
(1.3): to prove the global existence we have to assume p ≥ max{q1, q2}, and to
prove the local uniqueness we must have p ≤ min{q1, q2}.

Taking into account non-constant coefficients in (1.3) we obtain:(
|a(t)u′′(t)|p−2u′′(t)

)′′ = b(t)|u(t)|q−2u(t), t ∈ I,
u(t0) = α, u′(t0) = β,

|a(t0)u′′(t0)|p−2u′′(t0) = γ,
(
a(t)|u′′(t)|p−2u′′(t)

)′∣∣∣
t=t0

= δ

(1.5)

where a, b ∈ C(I) and a > 0. When p > 2, it is not enough to assume p ≤ q
for proving the local uniqueness. We have to add a condition on b. It suffices



EJDE–2002/53 Jǐŕı Benedikt 3

to assume b ≥ 0 or b ≤ 0 on the whole interval I, i.e., that b does not change
its sign on I. Less restrictive is to assume that b have the property P (stated
below) on I.

Definiton 1.1 We say that a function f has a property P on the interval
I = [t0, t1], or I = [t0,∞], if

∀t̃ ∈ I∗ ∃ξ > 0, f(t) ≥ 0 ∀t ∈ [t̃, t̃+ ξ] or f(t) ≤ 0 ∀t ∈ [t̃, t̃+ ξ]

where I∗ = [t0, t1), or I∗ = [t0,∞), respectively. In other words, for every point
t̃ of I (except a contingent right boundary point) there exists some right closed
neighborhood of t̃ in which f does not change its sign.

Note that a continuous function that does not have the property P is, e.g.,

f(t) = (t− t0) sin
1

t− t0
for t > t0, f(t0) = 0.

It is clear that any constant function has the property P.
We prove the (both local and global) existence and uniqueness for the most

general non-homogeneous problem including the jumping nonlinearity and non-
constant coefficients as well:(
a(t)|u′′(t)|p−2u′′(t)

)′′ = b1(t)|u(t)|q1−2u+(t)− b2(t)|u(t)|q2−2u−(t), t ∈ I,
u(t0) = α, u′(t0) = β,

a(t0)|u′′(t0)|p−2u′′(t0) = γ,
(
a(t)|u′′(t)|p−2u′′(t)

)′∣∣∣
t=t0

= δ

(1.6)
where b1, b2 ∈ C(I) (the other parameters are as above).

Denoting u1 := u and u3 := a|u′′|p−2u′′ we can rewrite (1.6) as the equivalent
initial value problem for a system of four equations of the first order

u′1(t) = u2(t), u1(t0) = α,

u′2(t) = a−
1

p−1 (t)|u3(t)|
2−p
p−1u3(t), u2(t0) = β,

u′3(t) = u4(t), u3(t0) = γ,

u′4(t) = b1(t)|u1(t)|q1−2u+
1 (t)− b2(t)|u1(t)|q2−2u−1 (t), u4(t0) = δ,

t ∈ I.

(1.7)
The main results of this paper are the following.

Proposition 1.2 (local existence) There exists ε > 0 such that (1.6) has a
solution on I = [t0, t0 + ε].

Theorem 1.3 (global existence) Let p ≥ max{q1, q2}. Then (1.6) has a
solution on I = [t0,∞).

Corollary 1.4 If p ≥ max{q1, q2}, then (1.4) has a solution on I = [t0,∞).
If p ≥ q, then (1.5) and (1.3) have a solution on I = [t0,∞).
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Proposition 1.5 (local uniqueness) Let one of these conditions hold true:

• |α|+ |β|+ |γ|+ |δ| > 0 or

• p ≤ min{q1, q2}.

Moreover, let at least one of the following conditions hold true:

• p ≤ 2 or

• α = β = 0 or

• |γ|+ |δ| > 0 or

• there exists some right closed neighborhood of t0 in which neither b1 nor
b2 changes its sign.

Then there exists ε > 0 such that (1.6) has at most one solution on I =
[t0, t0 + ε].

Remark 1.6 For the special cases (1.3) and (1.4) of (1.6) the last condition of
the latter four is trivially satisfied, and so it remains to satisfy only one of the
former two conditions.

Theorem 1.7 (global uniqueness) Let p ≤ min{q1, q2}. Further, let p ≤ 2
or functions b1, b2 have the property P on I (see Definition 1.1). Then (1.6)
has at most one solution.

Corollary 1.8 If p ≤ min{q1, q2} and, furthermore, p ≤ 2 or neither b1 nor
b2 changes its sign on I, then (1.6) has at most one solution.

If p ≤ q and, furthermore, p ≤ 2 or b has the property P on I, then (1.5)
has at most one solution.

If p ≤ q and, furthermore, p ≤ 2 or b does not change its sign on I, then
(1.5) has at most one solution.

If p ≤ min{q1, q2}, then (1.4) has at most one solution.
If p ≤ q, then (1.3) has at most one solution.

The paper is organized as follows. In Section 2 we define the solution of (1.6).
In Section 3 we prove Proposition 1.2 and Theorem 1.3. Section 4 contains a
proof of Proposition 1.5 and Theorem 1.7. In Section 5 we introduce some open
problems related to this paper.

Tables 1 and 2 summarize the cases when the global existence, and the local
uniqueness, respectively, of a solution of (1.3) is guaranteed or foreclosed (there
exists a counterexample).

The following two corollaries are consequences of the global existence guar-
anteed by Theorem 1.3 and the global uniqueness guaranteed by Theorem 1.7.
The reader is invited to accomplish their proofs following, e.g., that of [2, Th. 4.1,
p. 59].



EJDE–2002/53 Jǐŕı Benedikt 5

p ≥ q YES (Corollary 1.4)

α, β, γ, δ ≥ 0, α+ β + γ + δ > 0 NO (Example 3.1,
or Remark 3.2)—blow-up

λ > 0 α, β, γ, δ ≤ 0, α+ β + γ + δ < 0 to ∞ or −∞
α = β = γ = δ = 0 YES (trivial)

p < q ∃κ1, κ2 ∈ {α, β, γ, δ} : κ1κ2 < 0 ?

λ = 0 YES (trivial)

λ < 0 ?

Table 1: Existence of a solution of (1.3) on I = [t0,∞).

|α|+ |β|+ |γ|+ |δ| > 0 YES (Proposition 1.5, Remark 1.6)

p ≤ q YES (Proposition 1.5, Remark 1.6)

α = β = γ = δ = 0 λ > 0 NO (Example 4.5)

p > q λ = 0 YES (trivial)

λ < 0 ?

Table 2: Uniqueness of a solution of (1.3) on I = [t0, t0 + ε] for some ε > 0.

Corollary 1.9 Let p̃ ≤ min{q̃1, q̃2}. Further, let p̃ ≤ 2 or b̃1, b̃2 have the
property P on [a, b]. Let ũ be a solution of (1.7) with p = p̃, q1 = q̃1, q2 = q̃2,
a = ã > 0, b1 = b̃1, b2 = b̃2, α = α̃, β = β̃, γ = γ̃, δ = δ̃, t0 = τ̃ and I = [a, b],
a < τ̃ < b.

Then there exists ε > 0 such that for any p, q1, q2, α, β, γ, δ, τ ∈ R and
a, b1, b2 ∈ C(I) satisfying

|p− p̃|+ |q1 − q̃1|+ |q2 − q̃2|+ ‖a− ã‖C(I) + ‖b1 − b̃1‖C(I) + ‖b2 − b̃2‖C(I)+

+|α− α̃|+ |β − β̃|+ |γ − γ̃|+ |δ − δ̃|+ |τ − τ̃ | < ε

all solutions u = u(t, p, q1, q2, a, b1, b2, α, β, γ, δ, τ) of (1.7) with t0 = τ exist
over I, and, as (p, q1, q2, a, b1, b2, α, β, γ, δ, τ) → (p̃, q̃1, q̃2, ã, b̃1, b̃2, α̃, β̃, γ̃, δ̃, τ̃),

u(t, p, q1, q2, a, b1, b2, α, β, γ, δ, τ) → ũ(t) = u(t, p̃, q̃1, q̃2, ã, b̃1, b̃2, α̃, β̃, γ̃, δ̃, τ̃)

uniformly over [a, b].

Corollary 1.10 Let p̃ = q̃1 = q̃2. Further, let p̃ ≤ 2 or b̃1, b̃2 have the property
P on [a, b]. Let p̃, q̃1, q̃2, α̃, β̃, γ̃, δ̃, τ̃ ∈ R, a < τ̃ < b, and ã, b̃1, b̃2 ∈ C(I), a > 0,
be fixed. Then there exists a solution ũ of (1.7) with p = p̃, q1 = q̃1, q2 = q̃2,
a = ã, b1 = b̃1, b2 = b̃2, α = α̃, β = β̃, γ = γ̃, δ = δ̃, t0 = τ̃ and I = [a, b], and
the conclusion of Corollary 1.9 holds true.
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This paper is a brief version of the first chapter of the author’s diploma
thesis [1] which is available in Czech only.

2 Preliminaries

Let us define a function ψp: R → R, p > 1, by ψp(s) = |s|p−2s for s 6= 0, and
ψp(0) = 0. Now we can rewrite (1.6) as(

a(t)ψp(u′′(t))
)′′ = b1(t)ψq1(u

+(t))− b2(t)ψq2(u
−(t)), t ∈ I,

u(t0) = α, u′(t0) = β,

a(t0)ψp(u′′(t0)) = γ,
(
a(t)ψp(u′′(t))

)′∣∣∣
t=t0

= δ.

(2.1)

We denote p′ = p
p−1 . One can simply show that ψp and ψp′ are inverse functions.

The problem (1.7) then takes the form

u′1(t) = u2(t), u1(t0) = α,

u′2(t) = c(t)ψp′(u3(t)), u2(t0) = β,

u′3(t) = u4(t), u3(t0) = γ,

u′4(t) = b1(t)ψq1(u
+
1 (t))− b2(t)ψq2(u

−
1 (t)), u4(t0) = δ,

t ∈ I (2.2)

where c(t) = ψp′
(

1
a(t)

)
(c ∈ C(I), c > 0).

Definiton 2.1 By a solution of (2.2) we understand a vector function u =
(u1, u2, u3, u4) of the class (C1(I))4 which satisfy the equations in (2.2) at every
point of I, and fulfill the initial conditions in (2.2).

By a solution of the problem (2.1) we understand a function u of the class
C2(I), such that

(
u, u′, aψp(u′′), (aψp(u′′))′

)
is a solution of the corresponding

problem (2.2).

Remark 2.2 We transferred the problem of existence and uniqueness of a so-
lution of (2.1) (i.e. (1.6)) to the equivalent problem for (2.2).

3 Existence

Proof of Proposition 1.2 By integration of the equations in (2.2) we obtain
that u is a solution of (2.2) if and only if (u1, u3) is a fixed point of the operator
T :C(I)× C(I) → C(I)× C(I) defined by

T (u, v) =
(
α+ βt+

∫ t

0

(t− τ)c(τ)ψp′(v(τ)) dτ ,

γ + δt+
∫ t

0

(t− τ)
(
b1(τ)ψq1(u

+(τ))− b2(τ)ψq2(u
−(τ))

)
dτ
)
.
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The reader is invited to prove that there exists ε > 0 such that the Schauder
Fixed Point Theorem guarantees the existence of at least one fixed point of T .
It completes the proof of Proposition 1.2 (see Remark 2.2). �

Now we want to prove that the local solution can be extended to ∞, i.e.,
that there exists a solution of (2.2) on I = [t0,∞). We find that it is not always
possible, and we must add some conditions on the parameters in (2.2). We
begin with the example which shows that it is necessary.

Example 3.1 Let in (1.3) p < q and λ > 0. Let H > t0 be arbitrary (fixed).
Then one can compute that the function u(t) = K(H − t)r where

r =
2p
p− q

and K =

(
2p(p− 1)q

(
p(p+ q)

)p−1(2pq − p− q)
λ(q − p)2p

)1/(q−p)

is a solution of (1.3) with

α = K(H − t0)r, β = −Kr(H − t0)r−1,

γ =
(
Kr(r − 1)

)p−1(H − t0)(r−2)(p−1),

δ = −
(
Kr(r − 1)

)p−1(r − 2)(p− 1)(H − t0)(r−2)(p−1)−1

on I = [t0, t1] for any t1 ∈ (t0,H). However, this solution cannot be extended
to I = [t0,H] because u(t) → ∞ as t → H. This situation is called a blow-up
of the solution.

Remark 3.2 Using Example 3.1 one can prove that each of the conditions

• α, β, γ, δ ≥ 0, α+ β + γ + δ > 0, p < q1 and c, b1 ≥ C > 0 on [t0,∞), and

• α, β, γ, δ ≤ 0, α+ β + γ + δ < 0, p < q2 and c, b2 ≥ C > 0 on [t0,∞)

is sufficient for existence of H > t0 such that there is no solution of (1.6) on
I = [t0,H]. The idea of the proof is based on comparison of solutions of the
initial value problem (1.6).

Remark 3.3 Example 3.1 can be generalized for the initial value problem of
the (2n)th-order (n ∈ N)

(−1)n
(
ψp(u(n)(t))

)(n) = λψq(u(t)), t ∈ I,

u(i)(t0) = αi,
(
ψp(u(n)(t))

)(i)∣∣∣
t=t0

= βi, i = 0, . . . , n− 1
(3.1)

where p < q and (−1)nλ > 0. The solution is defined similarly as for (2.1). Let
H > t0 be arbitrary (fixed). The reader is invited to justify that the function
u(t) = K(H − t)r where

r =
np

p− q
and

K =


(
n−1∏
k=0

(
(n− k)p+ kq

))p−1 n−1∏
k=0

(
npq − kp− (n− k)q

)
(−1)nλ(q − p)np


1/(q−p)
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is a solution of (3.1) (with some initial conditions) on I = [t0, t1] for any t1 ∈
(t0,H). As in Example 3.1, this solution cannot be extended to I = [t0,H]
because u(t) →∞ as t→ H.

Proof of Theorem 1.3 Now we begin the proof of the existence of a solution
of (1.6) on I = [t0,∞) assuming p ≥ max{q1, q2}. It suffices to prove that there
exists at least one solution of (2.2) (see Remark 2.2) on I = [t0, t1] for any t1
satisfying t0 < t1.

Let us have the auxiliary problem

û′1(t) = û2(t), û1(t0) = α̂,

û′2(t) = Cψp′(û3(t)), û2(t0) = β̂,

û′3(t) = û4(t), û3(t0) = γ̂,

û′4(t) = Bψp(û1(t)), û4(t0) = δ̂,

t ∈ [t0, t1] (3.2)

where |b1(t)| ≤ B, |b2(t)| ≤ B and |c(t)| ≤ C on [t0, t1]. The vector function
û = (û1, û2, û3, û4) where

û1(t) = Ker(t−t0), û2(t) = Krer(t−t0),

û3(t) =
(
Kr2

C

)p−1

er(p−1)(t−t0), û4(t) =
(
Kr2

C

)p−1

r(p− 1)er(p−1)(t−t0),

K > 0 is arbitrary and

r =
(

(p− 1)2

BCp−1

)1/(2p)

,

is a solution of (3.2) with

α̂ = K, β̂ = Kr, γ̂ =
(
Kr2

C

)p−1

, δ̂ =
(
Kr2

C

)p−1

r(p− 1).

We choose K big enough to have |α| < α̂, |β| < β̂, |γ| < γ̂ and |δ| < δ̂. We shall
prove that for any solution u = (u1, u2, u3, u4) of (2.2) on I = [t0, t1]

|u1(t)| ≤ û1(t), |u2(t)| ≤ û2(t), |u3(t)| ≤ û3(t), |u4(t)| ≤ û4(t) (3.3)

for every t ∈ [t0, t1]. We have |u1(t0)| < û1(t0), and so the set

T = {t̃ ∈ [t0, t1] : |u1(t̃)| ≤ û1(t̃)}

is non-empty and closed, and there exists

tm = max{t̃ ∈ [t0, t1] : [t0, t̃] ⊆ T}.

We can assume K ≥ 1. Then for any t ∈ [t0, tm] we have û1(t) ≥ 1 and

|u′4(t)| ≤ B|u1(t)|q−1 ≤ B(û1(t))q−1 ≤ B(û1(t))p−1 = û′4(t)
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where q = q1 if u1(t) ≥ 0, and q = q2 if u1(t) < 0. For any t ∈ [t0, tm] we now
have

|u4(t)| ≤ |δ|+
∫ t

t0

|u′4(τ)|dτ ≤ δ̂ +
∫ t

t0

û′4(τ) dτ = û4(t),

|u3(t)| ≤ |γ|+
∫ t

t0

|u4(τ)|dτ ≤ γ̂ +
∫ t

t0

û4(τ) dτ = û3(t).

Similarly we can show that for t ∈ [t0, tm]

|u′2(t)| ≤ û′2(t) and |u2(t)| ≤ û2(t).

Thus

|u1(tm)| ≤ |α|+
∫ tm

t0

|u′1(τ)|dτ < α̂+
∫ tm

t0

û′1(τ) dτ = û1(tm).

This inequality would for tm < t1 contradict with the maximality of tm, and so
tm = t1 and (3.3) is proved. Using the standard continuation arguments, the
proof of Theorem 1.3 is completed. �

4 Uniqueness

In this section we prove the local uniqueness (Proposition 1.5). We distinguish
the cases (a) |α|+ |β|+ |γ|+ |δ| > 0 and (b) α = β = γ = δ = 0.
(a) Here u1 does not change its sign on some right neighborhood of t0. Hence
in this case it suffices to prove the uniqueness for the problem without the
jumping nonlinearity, i.e. (1.5). The proof is divided into four parts: Lemma
4.1 (for p ≤ 2, q ≥ 2), Lemma 4.2 (for p ≤ 2, q < 2), Lemma 4.3 (for p > 2,
q ≥ 2) and Lemma 4.4 (for p > 2, q < 2).
(b) We assume p ≤ min{q1, q2} here (see Proposition 1.5). Lemma 4.7 deals
with this case. Before Lemma 4.7 we introduce the example of non-uniqueness
of a solution of (1.3) for α = β = γ = δ = 0 and p > q.

In all proofs in this section we denote by A,B,C > 0 such constants that
|a(t)| ≤ A (i.e. |c(t)| ≥ A1−p′), |b1(t)| ≤ B, |b2(t)| ≤ B (i.e. |b(t)| ≤ B for b
from (1.5)) and |c(t)| ≤ C (i.e. |a(t)| ≥ C1−p) for every t ∈ I. We can also
assume t0 = 0. According to Remark 2.2, we prove the assertions for (2.2). For
Lemmata 4.1–4.4, formulated for (1.5), the fourth equation in (2.2) takes the
form u′4(t) = b(t)ψq(u(t)).

Lemma 4.1 Let |α| + |β| + |γ| + |δ| > 0, p ≤ 2 and q ≥ 2. Then there exists
ε > 0 such that (1.5) has at most one solution on I = [t0, t0 + ε].

Proof Let u and v be solutions of the special case of (2.2), corresponding to
(1.5). From the former two equations we conclude

u3(t)− v3(t) = a(t)
(
ψp(u′′1(t))− ψp(v′′1 (t))

)
,
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and from the latter two equations we obtain

u′′3(t)− v′′3 (t) = b(t)
(
ψq(u1(t))− ψq(v1(t))

)
,

t ∈ I. Then

a(t)
(
ψp(u′′1(t))−ψp(v′′1 (t))

)
=
∫ t

0

(t− τ)b(τ)
(
ψq(u1(τ))−ψq(v1(τ))

)
dτ. (4.1)

There exists a constant K1 > 0 such that |u′′1(t)| ≤ K1 and |v′′1 (t)| ≤ K1 on I.
Since p ≤ 2, ψ′p(τ) ≥ ψ′p(K1) for |τ | ≤ K1, and so

∣∣∣a(t)(ψp(u′′1(t))− ψp(v′′1 (t)
)∣∣∣ ≥ C1−p

∣∣∣∫ u′′1 (t)

v′′1 (t)

ψ′p(τ) dτ
∣∣∣ ≥

≥ (p− 1)Kp−2
1 C1−p|u′′1(t)− v′′1 (t)|.

(4.2)

There exists a constant K2 > 0 such that |u1(τ)| ≤ K2 and |v1(τ)| ≤ K2 on I.
Since q ≥ 2, ψ′q(σ) ≤ ψ′q(K2) for |σ| ≤ K2. For τ ∈ I it yields

|ψq(u1(τ))− ψq(v1(τ))| =
∣∣∣ ∫ u1(τ)

v1(τ)

ψ′q(σ) dσ
∣∣∣ ≤ (q − 1)Kq−2

2 |u1(τ)− v1(τ)|.

(4.3)
Using the estimate

|u1(τ)− v1(τ)| =
∣∣∣ ∫ τ

0

(τ − σ)(u′′1(σ)− v′′1 (σ)) dσ
∣∣∣ ≤ τ2‖u′′1 − v′′1‖C(I) (4.4)

we conclude∣∣∣ ∫ t

0

(t− τ)b(τ)
(
ψq(u1(τ))− ψq(v1(τ))

)
dτ
∣∣∣ ≤ t4(q − 1)Kq−2

2 B‖u′′1 − v′′1‖C(I).

(4.5)
We combine (4.1), (4.2) and (4.5), take the maximum over t ∈ I, and get

‖u′′1 − v′′1‖C(I) ≤ ε4
(q − 1)Kq−2

2 B

(p− 1)Kp−2
1 C1−p

‖u′′1 − v′′1‖C(I). (4.6)

For ε > 0 small enough this implies u′′1 = v′′1 , and so u3 = v3. Since u1(0) = v1(0)
and u′1(0) = v′1(0), it is then u1 = v1. Thus u = v. �

Lemma 4.2 Let |α| + |β| + |γ| + |δ| > 0, p ≤ 2 and q < 2. Then there exists
ε > 0 such that (1.5) has at most one solution on I = [t0, t0 + ε].

Proof We distinguish the cases (i) α 6= 0, (ii) α = 0, β 6= 0, (iii) α = β = 0,
γ 6= 0 and (iv) α = β = γ = 0, δ 6= 0.
(i) We proceed as in the proof of Lemma 4.1. The assumption u1(0) = v1(0) =
α 6= 0 guarantees the existence of a constant K2 > 0 such that |u1(τ)| ≥ K2
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and |v1(τ)| ≥ K2 in [0, ε] for ε > 0 small enough. Since q < 2, ψ′q(σ) ≤ ψ′q(K2)
for |σ| ≥ K2. Hence (4.3) still holds true for all τ ∈ I, and we arrive again at
(4.6).
(ii) We modify again the proof of Lemma 4.1. Due to the assumptions (α = 0,
β 6= 0), u1(τ)

τ → β and v1(τ)
τ → β 6= 0 as τ → 0+. Hence there exists a constant

K2 > 0 such that
∣∣u1(τ)

τ

∣∣ ≥ K2 and
∣∣ v1(τ)

τ

∣∣ ≥ K2 for all τ ∈ (0, ε] with ε > 0
small enough. Thus∣∣∣ψq(u1(τ)

τ

)
− ψq

(v1(τ)
τ

)∣∣∣ = ∣∣∣∫ u1(τ)
τ

v1(τ)
τ

ψ′q(σ) dσ
∣∣∣ ≤ (q − 1)Kq−2

2

τ
|u1(τ)− v1(τ)|.

(4.7)
Using (4.7) instead of (4.3) we get

‖u′′1 − v′′1‖C(I) ≤ εq+2 (q − 1)Kq−2
2 B

(p− 1)Kp−2
1 C1−p

‖u′′1 − v′′1‖C(I). (4.8)

(iii) We follow again the proof of Lemma 4.1. By the assumptions (α = β = 0,
γ 6= 0), u1(τ)

τ2 → 1
2c(0)ψp′(γ) and v1(τ)

τ2 → 1
2c(0)ψp′(γ) 6= 0 as τ → 0+. Thus,

there exists a constant K2 > 0 such that
∣∣u1(τ)
τ2

∣∣ ≥ K2 and
∣∣ v1(τ)
τ2

∣∣ ≥ K2 for
every τ ∈ (0, ε] with ε > 0 small enough. Then∣∣∣ψq(u1(τ)

τ2

)
− ψq

(v1(τ)
τ2

)∣∣∣ = ∣∣∣∫ u1(τ)
τ2

v1(τ)
τ2

ψ′q(σ) dσ
∣∣∣ ≥ (q − 1)Kq−2

2

τ2
|u1(τ)− v1(τ)|.

(4.9)
Using (4.9) instead of (4.3) we get

‖u′′1 − v′′1‖C(I) ≤ ε2q
(q − 1)Kq−2

2 B

(p− 1)Kp−2
1 C1−p

‖u′′1 − v′′1‖C(I). (4.10)

(iv) Here we cannot follow the proof of Lemma 4.1. Like (4.1), we can derive
that for every t ∈ I∣∣b(t)(u1(t)−v1(t))

∣∣ ≤ |b(t)|
∫ t

0

(t− τ)|c(τ)|
∣∣∣ψp′(u3(τ))− ψp′(v3(τ))

∣∣∣ dτ . (4.11)

By the assumptions (γ = 0, δ 6= 0), u
′′
1 (τ)

τp′−1 → c(0)ψp′(δ) 6= 0 as τ → 0+. So there

exists a constant K1 > 0 such that
∣∣u′′1 (τ)

τp′−1

∣∣ ≥ K1 for any τ ∈ (0, ε] with ε > 0
small enough. Thus, for every t ∈ I

|u1(t)| =
∫ t

0

(t− τ)|u′′1(τ)|dτ ≥
∫ t

0

(t− τ)K1τ
p′−1 dτ =

K1t
p′+1

p′(p′ + 1)
,

i.e.
∣∣ψq( u1(t)

tp′+1

)∣∣ ≥ K̃1 := ψq
(

K1
p′(p′+1)

)
> 0, and analogously

∣∣ψq( v1(t)tp′+1

)∣∣ ≥ K̃1 for

all t ∈ (0, ε]. Since q < 2, ψ′q′(σ) ≥ ψ′q′(K̃1) for |σ| ≥ K̃1. Thus, for all t ∈ (0, ε],∣∣b(t)(u1(t)− v1(t))
∣∣ = |b(t)|tp

′+1
∣∣∣ψq′(ψq(u1(t)

tp′+1

))
− ψq′

(
ψq

(v1(t)
tp′+1

))∣∣∣ =
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= |b(t)|tp
′+1
∣∣∣∫ ψq

(
u1(t)

tp′+1

)
ψq

(
v1(t)

tp′+1

) ψ′q′(σ) dσ
∣∣∣ ≥ t(2−q)(p

′+1)(q′ − 1)K̃q′−2
1 |u′′3(t)− v′′3 (t)|.

(4.12)
Since u3(τ)

τ → δ and v3(τ)
τ → δ as τ → 0+, there exists K2 > 0 such that∣∣u3(τ)

τ

∣∣ ≤ K2 and
∣∣ v3(τ)

τ

∣∣ ≤ K2 for any τ ∈ (0, ε]. Since p ≤ 2, ψ′p′(σ) ≤ ψ′p′(K2)
for |σ| ≤ K2, and so∣∣∣ψp′(u3(τ)

τ

)
−ψp′

(v3(τ)
τ

)∣∣∣ = ∣∣∣∫ u3(τ)
τ

v3(τ)
τ

ψ′p′(σ) dσ
∣∣∣ ≤ (p′ − 1)Kp′−2

2

τ
|u3(τ)−v3(τ)|.

(4.13)
Since, analogously to (4.4),

|u3(τ)− v3(τ)| ≤ τ2‖u′′3 − v′′3‖C(I) ∀τ ∈ I, (4.14)

we have the following estimate for all t ∈ I:

|b(t)|
∫ t

0

(t− τ)|c(τ)|ψp′(τ)
∣∣∣ψp′(u3(τ)

τ

)
− ψp′

(v3(τ)
τ

)∣∣∣ dτ ≤
≤ tp

′+2(p′ − 1)Kp′−2
2 BC‖u′′3 − v′′3‖C(I).

(4.15)

Putting (4.12), (4.11) and (4.15) together and passing to the maximum over
I (for t = 0 the inequality is trivially satisfied) we obtain

‖u′′3 − v′′3‖C(I) ≤ ε(q−1)(p′+1)+1 p
′ − 1
q′ − 1

K̃2−q′
1 Kp′−2

2 BC‖u′′3 − v′′3‖C(I). (4.16)

Since for any p, q > 1 we have (q − 1)(p′ + 1) + 1 > 0, the proof is complete. �

Lemma 4.3 Let |α| + |β| + |γ| + |δ| > 0, p > 2 and q ≥ 2. Moreover, let
|γ| + |δ| > 0 or b not change its sign on some right closed neighborhood of
t0. Then there exists ε > 0 such that (1.5) has at most one solution on I =
[t0, t0 + ε].

Proof We distinguish the cases (i) γ 6= 0, (ii) γ = 0, δ 6= 0, (iii) γ = δ = 0,
α 6= 0 and (iv) γ = δ = α = 0, β 6= 0. Let again u a v be solutions of the
special case (2.2), corresponding to (1.5).
(i) Since u′′1(0) = v′′1 (0) = c(0)ψp′(γ) 6= 0, there exists a constant K1 > 0 such
that |u′′1(t)| ≥ K1 and |v′′1 (t)| ≥ K1 for all t ∈ [0, ε] with ε > 0 small enough.
We have p > 2, and so ψ′p(τ) ≥ ψ′p(K1) for |τ | ≥ K1. Hence (4.2) holds true,
and we get (4.6).
(ii) As in the part (iv) of the proof of Lemma 4.2, there exists a constant
K1 > 0 such that

∣∣u′′1 (t)

tp′−1

∣∣ ≥ K1 and
∣∣ v′′1 (t)

tp′−1

∣∣ ≥ K1 for all t ∈ (0, ε] with ε > 0
small enough. Hence∣∣∣a(t)(ψp(u′′1(t))− ψp(v′′1 (t))

)∣∣∣ = |a(t)|t
∣∣∣ψp(u′′1 (t)

tp′−1

)
− ψp

(
v′′1 (t)

tp′−1

)∣∣∣ ≥
≥ C1−pt

∣∣∣∫ u′′1 (t)

tp′−1

v′′1 (t)

tp′−1

ψ′p(σ) dσ
∣∣∣ ≥ t2−p

′
(p− 1)Kp−2

1 C1−p|u′′1(t)− v′′1 (t)|.
(4.17)



EJDE–2002/53 Jǐŕı Benedikt 13

Using (4.17) instead of (4.2) we obtain

‖u′′1 − v′′1‖C(I) ≤ εp
′+2 (q − 1)Kq−2

2 B

(p− 1)Kp−2
1 C1−p

‖u′′1 − v′′1‖C(I). (4.18)

(iii) We can assume

f(t) :=
∫ t

0

(t− τ)|b(τ)|dτ > 0 ∀t ∈ (0, ε]

(otherwise b(τ) = 0 for all τ ∈ [0, t0] with some t0 > 0, and the uniqueness is
then trivial). Since u1(0) = α 6= 0, there exists a constant K1 > 0 such that
|u1(τ)| ≥ K1, and so |u′′3(τ)| ≥ Kq−1

1 |b(τ)| for all τ ∈ [0, ε] with ε > 0 small
enough. We suppose that b and u′′3 does not change its sign on I. Hence for
any t ∈ I

|u3(t)| =
∫ t

0

(t− τ)|u′′3(τ)|dτ ≥ Kq−1
1

∫ t

0

(t− τ)|b(τ)|dτ = Kq−1
1 f(t).

Thus
|u′′1(t)| = |c(t)ψp′(u3(t))| ≥ K

(q−1)(p′−1)
1 A1−p′fp

′−1(t),

and the same estimate holds for |v′′1 (t)|, t ∈ I. For t ∈ (0, ε] we can write∣∣∣a(t)(ψp(u′′1(t))− ψp(v′′1 (t))
)∣∣∣ ≥ C1−pf(t)

∣∣∣ψp( u′′1 (t)

fp′−1(t)

)
− ψp

(
v′′1 (t)

fp′−1(t)

)∣∣∣ =
= C1−pf(t)

∣∣∣∫ u′′1 (t)

fp′−1(t)

v′′1 (t)

fp′−1(t)

ψ′p(τ) dτ
∣∣∣ ≥ (4.19)

≥ (p− 1)K
(q−1)(p−2)

p−1
1 A− p−2

p−1C1−pf2−p′(t)|u′′1(t)− v′′1 (t)|.

Using (4.3) and (4.4) we get for t ∈ I∣∣∣ ∫ t

0

(t− τ)b(τ)
(
ψq(u1(τ))− ψq(v1(τ))

)
dτ
∣∣∣ ≤ t2(q − 1)Kq−2

2 f(t)‖u′′1 − v′′1‖C(I).

(4.20)
Obviously f(t) ≤ t2B. Putting (4.19), (4.1) and (4.20) together and passing to
the maximum over I we arrive at

‖u′′1 − v′′1‖C(I) ≤ ε2p
′ (q − 1)Kq−2

2 Bp
′−1

(p− 1)K
(q−1)(p−2)

p−1
1 A− p−2

p−1C1−p
‖u′′1 − v′′1‖C(I).

(iv) We proceed as analogically to (iii). We can assume

f(t) :=
∫ t

0

(t− τ)τ q−1|b(τ)|dτ > 0 ∀t ∈ (0, ε].
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Since u1(τ)
τ → β 6= 0, there exists a constant K1 > 0 such that

∣∣u1(τ)
τ

∣∣ ≥ K1,
and also |u′′3(τ)| ≥ (K1τ)q−1|b(τ)| for τ ∈ [0, ε] with ε > 0 small enough. We
suppose that b and u′′3 does not change sign on I. For any t ∈ I we have

|u3(t)| =
∫ t

0

(t− τ)|u′′3(τ)|dτ ≥ Kq−1
1

∫ t

0

(t− τ)τ q−1|b(τ)|dτ = Kq−1
1 f(t).

Analogously as (4.19) we can now for t ∈ (0, ε] derive∣∣∣a(t)(ψp(u′′1(t))− ψp(v′′1 (t))
)∣∣∣ ≥

≥ (p− 1)K
(q−1)(p−2)

p−1
1 A− p−2

p−1C1−pf2−p′(t)|u′′1(t)− v′′1 (t)|.
(4.21)

There exists a constant K2 > 0 such that
∣∣u1(τ)

τ

∣∣ ≤ K2 and
∣∣ v1(τ)

τ

∣∣ ≤ K2 for
all τ ∈ (0, ε]. Since q ≥ 2, ψ′q(σ) ≤ ψ′q(K2) for |σ| ≤ K2. Thus, (4.7) holds true
for all t ∈ (0, ε]. Together with (4.4) it yields for t ∈ I∣∣∣∫ t

0

(t− τ)b(τ)
(
ψq(u1(τ))− ψq(v1(τ))

)
dτ
∣∣∣ ≤ t(q − 1)Kq−2

2 f(t)‖u′′1 − v′′1‖C(I).

(4.22)
Obviously f(t) ≤ tq+1B. Using (4.21), (4.1), (4.22) we obtain for the maximum
over I

‖u′′1 − v′′1‖C(I) ≤ ε(q+1)(p′−1)+1 (q − 1)Kq−2
2 Bp

′−1

(p− 1)K
(q−1)(p−2)

p−1
1 A− p−2

p−1C1−p
‖u′′1 − v′′1‖C(I).

Since for p, q > 1 it is (q + 1)(p′ − 1) + 1 > 0, we proved the assertion of this
lemma. �

Lemma 4.4 Let |α| + |β| + |γ| + |δ| > 0, p > 2 and q < 2. Moreover, let
|γ| + |δ| > 0 or b not change its sign on some right closed neighborhood of
t0. Then there exists ε > 0 such that (1.5) has at most one solution on I =
[t0, t0 + ε].

Proof We combine the previous techniques. Consequently, we distinguish the
cases (i) α 6= 0, γ 6= 0, (ii) α 6= 0, γ = 0, δ 6= 0, (iii) α 6= 0, γ = δ = 0, (iv)
α = 0, β 6= 0, γ 6= 0, (v) α = 0, β 6= 0, γ = 0, δ 6= 0, (vi) α = 0, β 6= 0,
γ = δ = 0, (vii) α = β = 0, γ 6= 0 and (viii) α = β = γ = 0, δ 6= 0.
(i) As in the part (i) of the proof of Lemma 4.3, we can use (4.2), and, as in
the part (i) of the proof of Lemma 4.2, we can use (4.3). Using (4.1) we arrive
at (4.6).
(ii) From (4.17), (4.1) and (4.3) we derive (4.18).
(iii) As (4.3) holds true, we follow the part (iii) of the proof of Lemma 4.3.
(iv) From (4.2), (4.1) and (4.7) we get (4.8).
(v) Here (4.17), (4.1) and (4.7) yield

‖u′′1 − v′′1‖C(I) ≤ εp
′+q (q − 1)Kq−2

2 B

(p− 1)Kp−2
1 C1−p

‖u′′1 − v′′1‖C(I).
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(vi) Since (4.7) holds true for some K2 > 0, we can proceed as in the part (iv)
of the proof of Lemma 4.3.
(vii) From (4.2), (4.1) and (4.9) we conclude (4.10).
(viii) We follow the part (iv) of the proof of Lemma 4.2. Due to the assumptions
(γ = 0, δ 6= 0), there exists a constant K2 > 0 such that

∣∣u3(τ)
τ

∣∣ ≥ K2 and∣∣u3(τ)
τ

∣∣ ≥ K2 for all τ ∈ (0, ε] with ε > 0 small enough. Since p > 2, ψ′p′(σ) ≤
ψ′p′(K2) for |σ| ≥ K2, and so (4.13) holds true. Now we put (4.12), (4.11) and
(4.13) together to obtain (4.16). �

As we promised, we show now that if p > q, α = β = γ = δ = 0 and
λ > 0, then (1.3) has a non-trivial solution besides of the trivial one, and so the
uniqueness is broken.

Example 4.5 Let in (1.3) p > q, α = β = γ = δ = 0, λ > 0 and I = [0, ε] with
some ε > 0. Then one can compute that u(t) = 0 and u(t) = K(t− t0)r where

r =
2p
p− q

and K =

(
2p(p− 1)q

(
p(p+ q)

)p−1(2pq − p− q)
λ(p− q)2p

)1/(q−p)

are solutions of (1.3).

Remark 4.6 Example 4.5 can be generalized (cf. Example 3.1) for the initial
value problem (3.1) of the (2n)th-order, n ∈ N, where p > q, (−1)nλ > 0 and
αi = βi = 0, i = 0, . . . , n− 1. The reader is invited to justify that u(t) = 0 and
u(t) = K(H − t)r where

r =
np

p− q
and

K =


(
n−1∏
k=0

(
(n− k)p+ kq

))p−1 n−1∏
k=0

(
npq − kp− (n− k)q

)
(−1)nλ(p− q)np


1/(q−p)

are solutions of (3.1).

Lemma 4.7 Let α = β = γ = δ = 0 and p ≤ min{q1, q2}. Then there exists
ε > 0 such that (1.6) has at most one solution on I = [t0, t0 + ε].

Proof Let u be a solution of (1.6). We prove that u1 = u2 = u3 = u4 = 0 on
[0, ε] for some ε > 0. For t ∈ I

|a(t)ψp(u′′1(t))| ≤
∫ t

0

(t− τ)
(
|b1(τ)|ψq1(|u+

1 (τ)|) + |b2(τ)|ψq2(|u−1 (τ)|)
)

dτ

(4.23)
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Since for τ ∈ I obviously |u(τ)| ≤ τ2‖u′′‖C(I), we have

|b1(τ)|ψq1(|u+
1 (τ)|) + |b2(τ)|ψq2(|u−1 (τ)|) ≤

≤ B
(
τ2q1−2‖u′′1‖

q1−1
C(I) + τ2q2−2‖u′′1‖

q2−1
C(I)

)
≤

≤ B
(
τ2q1−2‖u′′1‖

q1−p
C(I0)

+ τ2q2−2‖u′′1‖
q2−p
C(I0)

)
‖u′′1‖

p−1
C(I)

(4.24)

where I0 = [0, ε0] with ε0 > 0 arbitrary, but fixed, and ε ≤ ε0. We used
the assumption p ≤ min{q1, q2} which implies that ‖u′′1‖

qi−p
C[0,ε], i = 1, 2, are

increasing functions of ε. Using the estimate |a(t)ψp(u′′1(t))| ≥ C1−p|u′′1(t)|p−1

we can infer from (4.23) and (4.24) that for every t ∈ I

C1−p|u′′1(t)|p−1 ≤ B
(
t2q1‖u′′1‖

q1−p
C(I0)

+ t2q2‖u′′1‖
q2−p
C(I0)

)
‖u′′1‖

p−1
C(I).

Now we pass to the maximum for t ∈ I. If we suppose that ε ≤ 1, we obtain

‖u′′1‖
p−1
C(I) ≤ ε2 min{q1,q2}BCp−1

(
‖u′′‖q1−pC(I0)

+ ‖u′′‖q2−pC(I0)

)
‖u′′1‖

p−1
C(I).

For ε > 0 small enough this inequality guarantees that ‖u′′‖p−1
C(I) = 0, and so

u′′1 = 0, u1 = 0, and also u2 = u3 = u4 = 0 on I = [0, ε]. �

Now that we completed the proof of Proposition 1.5. Theorem 1.7 is a direct
consequence of this proposition.

5 Open Problems

The main problems we leave open are:

1. Does the conclusion of Proposition 1.5 (local uniqueness) hold true even
without the latter four conditions, i.e. for p > 2, γ = δ = 0, α or β nonzero
and b1 or b2 changing its sign on arbitrarily small right neighborhood
of t0? If it did, then the sufficient condition for the global uniqueness
(see Theorem 1.7) would be p ≤ min{q1, q2} only (we showed that this
assumption cannot be left out).

We can simplify this problem: Can there exist two different solutions of

u′′(t) = ψp′(v(t)), u(t0) = α, u′(t0) = β,
v′′(t) = b(t)ψp(u(t)), v(t0) = 0, v′(t0) = 0, t ∈ I (5.1)

with I = [t0, t1], b ∈ C(I) arbitrary, p > 2 and |α| + |β| > 0? Note that
the system of equations in (5.1) is homogeneous!

2. We gave Example 3.1 which showed that for p < q and some initial condi-
tions the solution of (1.3) did not have to exist on [t0,∞). In this Example
we assumed λ > 0, for λ = 0 the global existence is trivial, but for λ < 0
we leave the question of global existence open (see Table 1).
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3. Analogously to the previous open problem, for λ < 0, α = β = γ = δ = 0
and p > q we gave neither the proof of the local uniqueness of the solution
of (1.3) nor a counterexample (see Table 2), and so we leave it as an open
question, too.
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Addendum: July 28, 2003.

It was brought to my knowledge by a colleague that in Remark 4.6, fourth line
(page 15) there should be

u(t) = K(t− t0)r

instead of
u(t) = K(H − t)r .

Even though I think that this mistake is not misleading for the reader, I want
to correct it.


