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Positive periodic solutions of nonlinear functional

difference equations ∗

Youssef N. Raffoul

Abstract

In this paper, we apply a cone theoretic fixed point theorem to ob-
tain sufficient conditions for the existence of multiple positive periodic
solutions to the nonlinear functional difference equations

x(n+ 1) = a(n)x(n)± λh(n)f(x(n− τ(n))).

1 Introduction

Let R denote the real numbers, Z the integers and R+ the positive real numbers.
Given a < b in Z, let [a, b] = {a, a+ 1, . . . , b}. In this paper, we investigate the
existence of multiple positive periodic solutions for the nonlinear delay func-
tional difference equation

x(n+ 1) = a(n)x(n) + λh(n)f(x(n− τ(n))) (1.1)

where a(n), h(n) and τ(n) are T -periodic for T is an integer with T ≥ 1. We
assume that λ, a(n), f(x) and h(n) are nonnegative with 0 < a(n) < 1 for all
n ∈ [0, T − 1].

The existence of multiple positive periodic solutions of nonlinear functional
differential equations have been studied extensively in recent years. We cite
some appropriate references here [2] and [11]. We are particularly motivated
by the work of Cheng and Zhang [2] on functional differential equations and
the work of Eloe, Raffoul and others [5] on a boundary value problem involving
functional difference equation. It is customary when working with boundary
value problems, whether in differential or difference equations, to display the
desired solution in terms of a suitable Green function and then apply cone the-
ory [1, 3, 4, 5, 6, 7, 9]. Since our equation (1.1) is not of the type of boundary
value we obtain a variation of parameters formula and then try to find a lower
and upper estimates for the kernel inside the summation. Once those estimates
are found we use Krasnoselskii’s fixed point theorem to show the existence of
multiple positive periodic solutions. In [10], the author studied the existence of
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periodic solutions of an equation similar to equation (1.1) using Schauder’s Sec-
ond fixed point theorem. Throughout this paper, we denote the product of y(n)
from n = a to n = b by

∏b
n=a y(n) with the understanding that

∏b
n=a y(n) = 1

for all a > b,

2 Positive periodic solutions

We now state Krasnosel’skii fixed point theorem [8].

Theorem 2.1 (Krasnosel’skii) Let B be a Banach space, and let P be a cone
in B. Suppose Ω1 and Ω2 are open subsets of B such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2

and suppose that
T : P ∩ (Ω2\Ω1)→ P

is a completely continuous operator such that

(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2; or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2\Ω1).

Let X be the set of all real T -periodic sequences. This set endowed with
the maximum norm ‖x‖ = maxn∈[0,T−1] |x(n)|, X is a Banach space. The next
Lemma is essential in obtaining our results.

Lemma 2.2 x(n) ∈ X is a solution of equation (1.1) if and only if

x(n) = λ
n+T−1∑
u=n

G(n, u)h(u)f(x(u− τ(u))) (2.1)

where

G(n, u) =
∏n+T−1
s=u+1 a(s)

1−
∏n+T−1
s=n a(s)

, u ∈ [n, n+ T − 1]. (2.2)

Note that the denominator in G(n, u) is not zero since 0 < a(n) < 1 for
n ∈ [0, T − 1]. The proof of Lemma 2.1 is easily obtained by noting that (1.1)
is equivalent to

4
( n−1∏
s=−∞

a−1(s)x(n)
)

= λh(n)f(x(n− τ(n))
n∏

s=−∞
a−1(s).

By summing the above equation from u = n to u = n+ T − 1 we obtain (2.1).
Note that since 0 < a(n) < 1 for all n ∈ [0, T − 1], we have

N ≡ G(n, n) ≤ G(n, u) ≤ G(n, n+ T − 1) = G(0, T − 1) ≡M
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for n ≤ u ≤ n+ T − 1 and

1 ≥ G(n, u)
G(n, n+ T − 1)

≥ G(n, n)
G(n, n+ T − 1)

=
N

M
> 0.

For each x ∈ X, define a cone by

P =
{
y ∈ X : y(n) ≥ 0, n ∈ Z and y(n) ≥ η‖y‖

}
,

where η = N/M . Clearly, η ∈ (0, 1). Define a mapping T : X → X by

(Tx)(n) = λ

n+T−1∑
u=n

G(n, u)h(u)f(x(u− τ(u))

where G(n, u) is given by (2.2). By the nonnegativity of λ, f , a, h, and G,
Tx(n) ≥ 0 on [0, T − 1]. It is clear that (Tx)(n + T ) = (Tx)(n) and T is
completely continuous on bounded subset of P. Also, for any x ∈ P we have

(Tx)(n) = λ
n+T−1∑
u=n

G(n, u)h(u)f(x(u− τ(u)))

≤ λ
T−1∑
u=0

G(0, T − 1)h(u)f(x(u− τ(u)).

Thus,

‖Tx‖ = max
n∈[0,T−1]

|Tx(n)| ≤ λ
T−1∑
u=0

G(0, T − 1)h(u)f(x(u− τ(u))).

Therefore,

Tx(n) = λ
n+T−1∑
u=n

G(n, u)h(u)f(x(u− τ(u)))

≥ λN
T−1∑
u=0

h(u)f(x(u− τ(u)))

= λN
T−1∑
u=0

G(0, T − 1)
M

h(u)f(x(u− τ(u)))

≥ η‖Tx‖.

That is, TP is contained in P. ♦
In this paper we shall make the following assumptions.

(A1) the function f : R+ → R
+ is continuous

(A2) h(n) > 0 for n ∈ Z
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(L1) limx→0
f(x)
x =∞

(L2) limx→∞
f(x)
x =∞

(L3) limx→0
f(x)
x = 0

(L4) limx→∞
f(x)
x = 0

(L5) limx→0
f(x)
x = l with 0 < l <∞

(L6) limx→∞
f(x)
x = L with 0 < L <∞.

For the next theorem we let

A = max
0≤n≤T−1

T−1∑
u=0

G(n, u)h(u) (2.3)

and

B = min
0≤n≤T−1

T−1∑
u=0

G(n, u)h(u). (2.4)

Theorem 2.3 Assume that (A1), (A2), (L5), and (L6) hold. Then, for each
λ satisfying

1
ηBL

< λ <
1
Al

(2.5)

or
1
ηBl

< λ <
1
AL

(2.6)

equation (1.1) has at least one positive periodic solution.

Proof Suppose (2.5) hold. We construct the sets Ω1 and Ω2 in order to apply
Theorem 2.1. Let ε > 0 be such that

1
ηB(L− ε)

≤ λ ≤ 1
A(l + ε)

.

By condition (L5), there exists H1 > 0 such that f(y) ≤ (l+ε)y for 0 < y ≤ H1.
Define

Ω1 = {x ∈ P : ‖x‖ < H1}

Then, if x ∈ P ∩ ∂Ω1,

(Tx)(n) ≤ λ(l + ε)
n+T−1∑
u=n

G(n, u)h(u)x(u− τ(u)))

≤ λ(l + ε)‖x‖
T−1∑
u=o

G(n, u)h(u)

≤ λA(l + ε)‖x‖ ≤ ‖x‖.
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In particular, ‖Tx‖ ≤ ‖x‖, for all x ∈ P ∩ ∂Ω1.
Next we construct the set Ω2. Apply condition (L6) and find H such that

f(y) ≥ (L− ε)y, for all y ≥ H. Let H2 = max{2H1, ηH}. Define

Ω2 = {x ∈ P : ‖x‖ < H2}

Then, if x ∈ P ∩ ∂Ω2,

(Tx)(n) ≥ λ(L− ε)
n+T−1∑
u=n

G(n, u)h(u)x(u− τ(u)))

≥ λ(L− ε)η‖x‖
T−1∑
u=o

G(n, u)h(u)

≥ λ(L− ε)ηB‖x‖ ≥ ‖x‖.

In particular, ‖Tx‖ ≥ ‖x‖, for all x ∈ P ∩∂Ω2. Apply condition (i) of Theorem
2.1, and this completes the proof. When condition (2.6) holds, the proof can be
similarly obtained by invoking condition (ii) of Theorem 2.1.

Theorem 2.4 Assume that (A1) and (A2) hold. Also, if either (L1) and (L4)
hold, or, (L2) and (L3) hold, then (1.1) has at least one positive periodic solution
for any λ > 0.

Proof: Apply (L1) and choose H1 > 0 such that if 0 < y < H1, then

f(y) ≥ y

ληB
.

Define Ω1 = {x ∈ P : ‖x‖ < H1}. If x ∈ P ∩ ∂Ω1, then

(Tx)(n) ≥ λ
1

ληB

T−1∑
u=0

G(n, u)h(u)x(u− τ(u)))

≥ 1
ληB

λ‖x‖
T−1∑
u=o

G(n, u)h(u)

≥ ‖x‖.

In particular, ‖Tx‖ ≥ ‖x‖, for all x ∈ P ∩ ∂Ω1. In order to construct Ω2, we
consider two cases, f bounded and f unbounded. The case where f is bounded
is straight forward. If f(y) is bounded by Q > 0, set

H2 = max{2H1, λQA}.

Then if x ∈ P and ‖x‖ = H2,

Tx(n) ≤ λN
T−1∑
u=0

G(n, u)h(u)

≤ λQA ≤ H2.
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Now assume f is unbounded. Apply condition (L4) and set ε1 > 0 such that if
x > ε1, then

f(y) <
y

λA
.

Set H2 = max{2H1, ε1} and define Ω2 = {x ∈ P : ‖x‖ < H2}. If x ∈ P ∩ ∂Ω2,
then

(Tx)(n) ≤ λ
1
λA

T−1∑
u=0

G(n, u)h(u)x(u− τ(u))

≤ 1
λA

λH2

T−1∑
u=o

G(n, u)h(u)

≤ H2 = ‖x‖.

In particular, ‖Tx‖ ≤ ‖x‖, for all x ∈ P ∩ ∂Ω2. Apply condition (ii) of The-
orem 2.1, and this completes the proof. The proof of the other part, follows
similarly by invoking condition (ii) of Theorem 2.1. The next two corollaries
are consequence of the previous two theorems.

Corollary 2.5 Assume that (A1) and (A2) hold. Also, if either (L1) and (L6)
hold, or, (L2) and (L5) hold, then (1.1) has at least one positive periodic solution
if λ satisfies either 0 < λ < 1/(AL), or, 0 < λ < 1/(Al).

Corollary 2.6 Assume that (A1) and (A2) hold. Also, if either (L3) and (L6)
hold, or, (L4) and (L5) hold, then (1.1) has at least one positive periodic solution
if λ satisfies either 1/(ηBL) < λ <∞, or, 1/(ηBl) < λ <∞.

Next we turn our attention to the equation

x(n+ 1) = a(n)x(n)− λh(n)f(x(n− τ(n))) (2.7)

where λ, a(n), f(x) and h(n) satisfy the same assumptions stated for (1.1) except
that a(n) > 1 for all n ∈ [0, T − 1]. In view of (2.7) we have that

x(n) = λ
n+T−1∑
u=n

K(n, u)h(u)f(x(u− τ(u))) (2.8)

where

K(n, u) =
∏n+T−1
s=u+1 a(s)∏n+T−1

s=n a(s)− 1
, u ∈ [n, n+ T − 1]. (2.9)

Note that the denominator in G(n, u) is not zero since a(n) > 1 for n ∈ [0, T−1].
Also, it is easily seen that since a(n) > 1 for all n ∈ [0, T − 1], we have

M ≡ K(n, n) ≥ K(n, u) ≥ K(n, n+ T − 1) = K(0, T − 1) ≡ N

for n ≤ u ≤ n+ T − 1 and

1 ≥ K(n, u)
K(n, n)

≥ K(n, n+ T − 1)
K(n, n)

=
N

M
> 0.
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Finally, by defining

A1 = max
0≤n≤T−1

T−1∑
u=0

K(n, u)h(u)

and

B1 = min
0≤n≤T−1

T−1∑
u=0

K(n, u)h(u)

similar theorems and corollaries can be easily stated and proven regarding equa-
tion (2.7).

We conclude this paper with the following open problems. Assume that (A1)
and (A2) hold. In view of this paper, what can be said about equations (1.1)
and (2.7) when:

1. The conditions (L1) and (L2) hold?

2. The conditions (L3) and (L4) hold?

3. 0 < a(n) < 1 in (2.7) and a(n) > 1 in (1.1) for all n ∈ [0, T − 1]?
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